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Abstract
We present a conditional generative model for
learning variation in cell and nuclear morphology
and predicting the location of subcellular struc-
tures from 3D microscopy images. The model
generalizes well to a wide array of structures and
allows for a probabilistic interpretation of cell
and nuclear morphology and structure localiza-
tion from fluorescence images. We demonstrate
the effectiveness of the approach by producing
and evaluating photo-realistic 3D cell images us-
ing the generative model, and show that the con-
ditional nature of themodel provides the ability to
predict the localization of unobserved structures,
given cell and nuclear morphology. We addition-
ally explore the model’s utility in a number of
applications, including cellular integration from
multiple experiments and exploration of variation
in structure localization. Finally, we discuss the
model in the context of foundational and contem-
porary work and suggest forthcoming extensions.

Contents

1. Introduction
Acentral conjecture throughout cell biology is that structure
determines function. Thus motivated, location proteomics
(Murphy, 2005) aims to determine cell state – i.e. subcel-
lular organization – by elucidating the localization of all
structures and how they change through the cell cycle, and
in response to perturbations in environment or mutation,
for example. However, determining global cellular orga-
nization is challenging, not in small part by the multitude
of different molecules, complexes and organelles that com-
prise living cells and determine their behaviors (Kim et al.,
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2014). While advances in microscopy, particularly live cell
fluorescence imaging, have permitted enormous insight and
rich datasets with which to explore subcellular organiza-
tion, the experimental state-of-the-art for live cell imaging
is currently limited to the simultaneous visualization of only
a limited number of tagged (2-6 tagged) molecules. Statis-
tical modeling approaches can address this limitation by
integrating subcellular structure data from diverse imaging
experiments.

Image feature-based methods have previously been em-
ployed to describe and model cell organization (Boland &
Murphy, 2001; Carpenter et al., 2006; Rajaram et al., 2012).
While useful for discriminative tasks, these approaches do
not explicitly model the relationships among subcellular
components, limiting their use to integration of all of these
structures, i.e., creating an integrated cell model.

Generative models are useful in this context.They capture
variation in a population and encode it as a probability dis-
tribution, accounting for the relationships among structures.
Fundamental work has previously demonstrated the utility
of expressing subcellular structure patterns as a generative
model, which can then be used as a building block for mod-
els of cell behavior, i.e. (Murphy, 2005; Donovan et al.,
2016).

Ongoing efforts to construct generative models of cell or-
ganization are primarily associated with the CellOrganizer
project (Zhao & Murphy, 2007; Peng & Murphy, 2011).
CellOrganizer implements a “cytometric” approach tomod-
eling that considers the number of objects, lengths, sizes,
etc. from segmented images and/or inverse procedural mod-
eling, which can be particularly useful for both analyzing
image content and approaching integrated cell organiza-
tion. These methods support parametric modeling of many
subcellular structure types and, as such, generalize well
when low amounts of appropriate imaging data are avail-
able. However, these models may depend on preprocessing
methods, such as segmentation, or other object identifica-
tion tasks for which a ground truth is not available. Addi-
tionally, there may exist subcellular structures for which a
parametric model does not exist or may not be appropriate
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e.g., structures that vary widely in localization (diffuse pro-
teins), or that reorganize dramatically during e.g. mitosis or
during a stimulated state (such as microtubules).

Thus, the presence of key structures for which current meth-
ods are notwell suitedmotivates the need for a newapproach
that generalizes well to a wide range of structure localiza-
tion.

Recent advances in generative adversarial networks (GANs)
(Goodfellow et al., 2014) present one possible resolution to
this dilemma. GANs have the ability to learn distributions
over images, generate photo-realistic exemplars, and learn
sophisticated conditional relationships; see e.g. Generative
Adversarial Networks (Goodfellow et al., 2014), Varational
Autoencoders/GAN (Larsen et al., 2015), Adversarial Au-
toencoders (Makhzani et al., 2015).

Leveraging these advances, we present a non-parametric
model of 3D cell shape and nuclear shape and location, and
relate it to the variation of other subcellular components.
The model is trained on data sets of approximately 160–
4400 fluorescencemicroscopy images per labeled structure;
it accounts for the spatial relationships among these compo-
nents, their fluorescent intensities, and generalizes well to a
variety of localization patterns. Using these relationships,
the model allows us to predict the outcome of theoretical
experiments, as well as encode complex image distributions
into a low dimensional probabilistic representation. This la-
tent space serves as a compact coordinate system to explore
variation.

Here, we present the integrated cell model, a discussion of
the training and conditional modeling, and initial results
demonstrating its utility. We then briefly discuss the re-
sults in context, current limitations of the work and future
extensions.

2. Model Description
Our generative model serves several distinct but comple-
mentary purposes. At its core, it is a probabilistic model
of cell and nuclear shape (specifically, of cell shape and
nuclear shape and location) conjoined with a probability
distribution for the localization of a given fluorescent pro-
tein (for these experiments, proteins were chosen to outline
major cellular structures) conditional on cell and to clas-
sify localization patterns from images where the protein
is unknown, and to predict the localization of unobserved
structures de novo.

The main components of the model (Figure 1) are two mod-
ified autoencoders; one which encodes the variation in cell
and nuclear shape (reference structure model), and another
which learns the relationship between subcellular structures
dependent on this encoding (conditional model). Each au-

toencoder is regularized by the use of adversarial networks
on the latent space (to enforce the distribution of latent space
representations matches a known distribution), and on the
output (to enforce that de novo generated images match the
data distribution).
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Figure 1: Conditional model of subcellular localization.
The top half of the diagram outlines the reference struc-
ture model; the bottom half shows the conditional model.
The parallel white boxes indicate a nonlinear function. The
model is a probabilistic model of cell and nuclear shape
(specifically, of cell shape and nuclear shape and location,
the reference structure model) wedded to a probability dis-
tribution of structure localization (e.g. the localization of a
certain protein) conditional on cell and nuclear shape, the
conditional model. This model can be used both as a clas-
sifier for images of localization pattern where the protein is
unknown, and as a tool for prediction of the localization of
unobserved structures de novo. The main components are
two autoencoders: one encoding the variation in cell and
nuclear shape, and another which learns the relationship
between subcellular structures dependent on this encoding.
See Notation and Model description for details. Figure
adapted from (Makhzani et al., 2015)

Notation

The images input and output by themodel are multi-channel
(Figure 2). Each image x consists of both reference chan-
nels r and a structure channel s. Here, the cell and nu-
clear channels together serve as reference channels, and
the structure channel varies, taking on one of the following
structure types: α-actinin (actin bundles), α-tubulin (micro-
tubules), β-actin (actin filaments), desmoplakin (desmo-
somes), fibrillarin (nucleolus), sialyltransferase (golgi),
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lamin B1 (nuclear membrane), myosin IIB (actomyosin
bundles), Sec61β(endoplasmic reticulum), TOM20 (mito-
chondria), and ZO1 (tight junctions). We denote which
content is being used by superscripts; xr,s indicates all
channels are being used, whereas xs indicates only the
structure channel is being used, and xr only the reference
channels. We use y to denotes an index-valued categor-
ical variable indicating which structure type is labeled in
xs . For example, y = 1 might correspond to the α-actinin
channel being active, y = 2 to the α-tubulin channel, etc.
While y is a scalar integer, we also use y, a one-hot vector
representation of y, with a one in the yth element of y and
zeros elsewhere.

2.1. Model of cell and nuclear variation

We model cell and nuclear shape using an autoencoder to
construct a latent-space representation of these reference
channels. The model (Figure 1, upper half) maps images
of reference channels to a multivariate normal distribution
of moderate dimension – here we use a 128 dimensional
distribution. The choice of a normal distribution as the
prior for the latent space is, in many respects, one of conve-
nience, and of no large consequence tomodel behavior. The
nonlinear mappings learned by the encoder and decoder are
coupled to both the shape and dimensionality of the latent
space distribution; the mapping and the distribution only
function in tandem – see e.g. Figure 4 in (Makhzani et al.,
2015).

The primary architecture of the model is that of an autoen-
coder, which itself consists of two networks: an encoder
Encr that maps an image x to a latent space representa-
tion z via a learned deterministic function q(zr |xr ), and a
decoder Decr to reconstruct samples from the latent space
representation using a similarly learned function g(x̂r |zr ).

We use the following notation for these mappings:

zr = q(zr |xr ) = Encr (xr ) (1)
x̂r = g(x̂r |zr ) = Decr (zr ) (2)

where an input image x is distinguished from a recon-
structed image x̂.

2.1.1. Encoder and Decoder

The autoencoder minimizes the pixel-wise binary cross-
entropy loss of the input and reconstructed input using bi-
nary cross entropy,

Lxr = H(x̂r, xr ) (3)

where

H(û, u) = − 1
n

∑
p

up log ûp + (1 − up) log (1 − ûp) (4)

and the sum is over all the voxels p in all the channels in the
images u. We use this function for all images regardless of
content (i.e. we use it for xr and xr,s)

2.1.2. Encoding Discriminator

In addition to minimizing the above loss function, the au-
toencoder’s latent space – the output ofEncr – is regularized
by the use of an encoding discriminator EncDr . This dis-
criminator EncDr attempts to distinguish between latent
space embeddings that are mapped from the input data, and
latent space embeddings that are generatively drawn from
the desired prior latent space distribution (which is a 128
dimensional multivariate normal in this case). In attempt-
ing to "fool" the discriminator, the autoencoder is forced
to learn a latent space distribution q(zr ) that is similar in
distribution to the prior distribution p(zr ) (Makhzani et al.,
2015).

The encoding discriminator EncDr is trained on samples
from both the embedding space z ∼ q(zr ) and from the
desired prior z̃ ∼ p(zr ). We refer to z as observed samples,
and z̃ as generated samples, and use the subscripts “obs”
and “gen” to indicate these labels. Trained on these sam-
ples, EncDr outputs a continuous estimate of the source
distribution, v̂EncDr

∈ (0, 1).

The objective function for the encoding discriminator is thus
tominimize the binary-cross entropy between the true labels
v and the estimated labels v̂ for generated and observed
images:

LEncDr = H(v̂z
r

gen, v
zr

gen) + H(v̂z
r

obs, v
zr

obs) (5)

2.1.3. Decoding Discriminator

The final component of the autoencoder for cell and nu-
clear shape is an additional adversarial network DecD r ,
the decoding discriminator, which operates on the output
of the decoder to ensure that the decoded images are rep-
resentative of the observed data distribution, similar to that
of (Larsen et al., 2015). We train DecD r on images from
the data distribution, xrobs ∼ Xr , which we refer to as ob-
served images, and on decoded draws from the latent space,
xrgen ∼ Decr ( z̃r ), which we refer to as generated images.
The loss function for the decoding discriminator is then:

LDecDr = H(v̂x
r

gen, v
xr

gen) + H(v̂x
r

obs, v
xr

obs) (6)

2.2. Conditional model of structure localization

Given a trained model of cell and nuclear shape variation
from the above network component, we then train a condi-
tional model of structure localization upon the learned cell
and nuclear shape model. This model (Figure 1, lower)
consists of several parts, analogous to those outlined in the
previous section: the core is a tandem encoder Encr,s and
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decoder Decr,s that encode and decode images to and from
a low dimensional latent space; in addition, a discriminative
decoder EncDs regularizes the latent space, and a discrim-
inative decoder DecDr,s ensures that the decoded images
are similar to the input distribution.

2.2.1. Conditional Encoder

The encoder Encr,s is given images containing both the ref-
erence structures and a single additional structure of tagged
protein localization, xr,s , and produces three outputs:

ẑr, ŷ, zs = Encr,s(xr,s) = q( ẑr, ŷ, zs |xr,s) (7)

Here ẑr is the reconstructed cell and nuclear shape latent-
space representation learned in Section 2.1, ŷ is an estimate
of which structure channel was learned, and zs is a la-
tent variable that encodes all remaining variation in image
content not due to cell/nuclear shape and structure chan-
nel. Therefore zs is learned dependent on the latent space
embeddings of the reference structure, zr .

The loss function for the reconstruction of the latent space
embedding of the cell and nuclear shape is themean squared
error between the embedding zr learned from the cell and
nuclear shape autoencoder and the estimate ẑr of that em-
bedding produced by the conditional portion of the model:

Lẑr = MSE(zr, ẑr ) = 1
n ‖ z

r − ẑr ‖2 (8)

The output ŷ in equation 7 is a probability distribution over
structure channels, giving an estimate of the class label
for the structure. In our notation, y is an integer value
representing the true structure channel, and takes an integer
value 1 . . .K , while y is the one-hot encoding of that label,
a vector of length K equal to 1 at the yth position and 0
otherwise. Similarly, ŷ is a vector of length K whose kth
element represents the probability of assigning the label
y = k.

We use the softmax function to assign these probabilities.
In general, the softmax function is given by

LogSoftMax(u, i) = log
(

eui∑
j eu j

)
(9)

The loss function for ŷ is then

Ly = −LogSoftMax ( ŷ, y) (10)

The final output of the conditional encoder zs can be inter-
preted as a variable that encodes the residual variation in
the localization of the labeled structure after conditioning
on cell and nuclear shape.

2.2.2. Encoding Discriminator

As introduced above, the latent variable zs is regularized
by an adversary EncDs that enforces the distribution of

this latent variable to be similar to a chosen prior p(zs).
The output of EncDs is a vector ŷEncDs that has |y | + 1 =
K + 1 output labels, which take a value in [1, . . . ,K, gen].
That is, ŷEncDs has one slot for observed embeddings of
each particular labeled structure channel, and one additional
slot for samples from our reference distribution. The loss
function for the adversary is therefore:

LEncDr,s = −LogSoftMax
(
ŷEncDs

, y
)
. (11)

The construction of the loss function is intended to remove
structure-specific information from zs , forcing that infor-
mation into ŷ.

2.2.3. Conditional Decoder

The conditional decoder Decr,s outputs the image recon-
struction given the latent space embedding ẑr , the class
estimator ŷ, and the structure channel variation zs:

x̂r,s = Decr,s( ẑr, ŷ, zs) = g(xr | ẑr, ŷ, zs). (12)

The loss function for image reconstruction takes the same
form as equation 3 (the binary cross entropy between the
input and reconstructed image):

Lxr,s = H(x̂r,s, xr,s). (13)

2.2.4. Decoding Discriminator

As in the cell and nuclear shape model, attached to the
decoder Decr,s is an adversary DecDr,s intended to enforce
that the reconstructed images are similar in distribution to
the input images. Similar to Section 2.2.2, the output of this
discriminator is a vector ŷDecDr,s that has |y | + 1 = K + 1
output labels, which take a value in [1, . . . ,K, gen]. As
above, the loss function is:

LDecDr,s = −LogSoftMax
(
ŷDecDr,s

, y
)
. (14)

2.3. Training procedure

The training procedure occurs in two phases. We first train
the model of cell and nuclear shape variation, components
Encr , Decr , EncDr , DecDr to convergence (Algorithm 1).
We then train the conditional model, components Encr,s ,
Decr,s , EncDs , DecDr,s (Algorithm 2).

In training themodel, we adopt three strategies from (Larsen
et al., 2015): we limit error signals to relevant networks by
propagating the gradient update from any DecD through
only Dec, we train the image adversary, DecD, with both
generated and reconstructed images, and we weight the gra-
dient update from the discriminators with the scalars γEnc
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and γDec. The parameters of the model are therefore up-
dated as follows:

θEncr
+
← ∇θEncr (Lxr + γEncLEncDs ) (15)

θDecr
+
← ∇θDecr (Lxr + γDecLDecDs ) (16)

θEncr,s
+
← ∇θEncr,s (Lxr,s + Lẑr + Ly + γEncLEncDs ) (17)

θDecr,s
+
← ∇θDecr,s (Lxr,s + γDecLDecDr,s ) (18)

Algorithm 1 Training procedure reference structure model
θEncr , θDecr , θEncDr , θDecDr ← initialize network param-
eters
repeat

Xr ← random mini-batch from reference set
Zr ← Encs(Xr )

X̂r ← Decr (Ẑr )

V̂EncDr

gen ← EncDr (Z̃r )

V̂EncDr

obs ← EncDr (Zr )

LEncDr ← H(V̂EncDr

gen ,Vgen)

+H(V̂EncDr

obs ,Vobs)

θEncDr
+
← ∇θEncDr LEncDr

V̂DecDr

obs ← DecDr (Xr )

V̂DecDr

dec ← DecDr (X̂r ))

V̂DecDr

gen ← DecDr (Dec(Z̃r ))

LDecDr ← H(V̂DecDr

obs ,Vobs)

+(H(V̂DecDr

dec ,Vgen)

+H(V̂DecDr

gen ,Vgen))/2
θDecDr

+
← ∇θDecDr LDecDr

LX̂r ← H(X̂r, Xr )

LEncDr ← H(V̂EncDr

obs ,Vgen)

LDecDr ← H(V̂DecDr

dec ,Vobs) + H(V̂DecDr

gen ,Vobs)

θEncr
+
← ∇θEncr LX̂r + γEncLEncDr

θDecr
+
← ∇θDecr LX̂r + γDecLDecDr

until convergence

2.4. Integrative Modelling

Beyond encoding and decoding images, we leverage the
conditional model of structure localization given cell and
nuclear shape (Section 2.1) as a tool to predict the local-
ization of multiple unobserved structures, p(xs |xr, y), in a
known cell and nuclear representation. In particular, we
predict using the most probable structure localization given
the cell and nuclear channels. The procedure for predicting
this localization is outlined in Algorithm 3.

Algorithm 2 Training procedure for conditional relation-
ship model
θEncr,s , θDecr,s , θEncDs , θDecDr,s ← initialize network
parameters

repeat
Xr,s,Y, Zr ← random mini-batch
from reference and structure set

Ẑr, Ŷ, Z s ← Encr,s(Xr,s)

X̂r,s ← Decs(Ẑr, Ŷ, Z s)

ŶEncDs

gen ← EncDs(Z̃ s)

ŶEncDs

obs ← EncDs(Z s)

LEncDs ← −LogSoftMax(ŶEncDr

gen ,Ygen)

−LogSoftMax(ŶEncDs

obs ,Yobs)

θEncDs
+
← ∇θEncDsLEncDs

Ŷobs ← DecDr,s(Xr,s)

Ŷdec ← DecDr,s(X̂r,s)

Ŷgen ← DecDr,s(Dec(Z̃r, Ỹ, Z̃ s))

LDecDr,s ← −LogSoftMax
(
Ŷobs,Y

)
−(LogSoftMax

(
Ŷdec,Ygen

)
+

LogSoftMax
(
Ŷgen,Ygen

)
)/2

θDecDr,s
+
← ∇θDecDr,sLDecDr,s

LX̂r,s ← H(X̂r,s, Xr,s)

LY ← −LogSoftMax(Ŷ,Y )
LẐr ← MSE(Ẑr, Zr )

LEncDs ← LogSoftMax(ŶEncDs

obs ,Ygen)

LDecDr,s ← −LogSoftMax(Ŷdec,Y )
−LogSoftMax(Ŷgen,Y )

θEncr,s
+
← ∇θEncr,sLX̂r,s + LY + LẐr + γEncLEncDs

θDecr,s
+
← ∇θDecr,sLX̂r,s + γDecLDecDr,s

until convergence

Algorithm 3 Structure integration procedure
trained Encr and Decr,s
xr ← reference structure image
zr ← Encr (xr )
for each structure in structures do

y ← structure
zs ← argmaxzs p(zs)
x̂r,s ← Decr,s(zr, y, zs)
append x̂s to xout

end for
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2.5. Estimate of structure variation

Given the differential relationships between these structures
of interest and cell and nuclear shape, we are able to estimate
the strength of the relationship between any given structure
localization and the corresponding cell and nuclear shape.
That is, if we fix the cell and nuclear shape embedding,
zr , and structure type, y, we are able to measure how much
variabilitywe observe aswe sample from the structure local-
ization embedding distribution, zs , resulting an an estimate
of structure variation.

3. Results
3.1. Data Set

We use a collection of 3D segmented cell images generated
from static 3D spinning disc confocal microscopy images
of human induced pluripotent stem cells. These cells are
from clonal lines, each gene edited to express mEGFP on a
protein that localizes to a specific structure of interest, e.g.
α-actinin (actin bundles), α-tubulin (microtubules), β-actin
(actin filaments), desmoplakin (desmosomes), fibrillarin
(nucleolus), lamin B1 (nuclear membrane), myosin IIB (ac-
tomyosin bundles), ST6GAL1 (golgi), Sec61β(endoplasmic
reticulum), TOM20 (mitochondria), and ZO1 (tight junc-
tions). Details on the cell lines, microscopy pipeline, and on
the source image collection are available via the Allen Cell
Explorer at http://www.allencell.org. Briefly, each
image consists of channels corresponding to the nuclear
signal, cell membrane signal, and a labeled sub-cellular
structure of interest (Figure 2). Individual cells were seg-
mented from a field, and each channel was processed by
subtracting the most populous pixel intensity, zeroing-out
negative-valued pixels, and rescaling image intensity to a
value between 0 and 1. The cells were aligned by the major
axis of the cell shape, centered according to the center of
mass of the segmented nuclear region, and flipped accord-
ing to image skew. Each of the 21,967 cell images were
rescaled to 0.317 µm/px, and padded to 128×96×64 cubic
voxels.

3.2. Model implementation

A summary of the model architectures is of-
fered in Section C. The explicit model definitions
and training procedures are available in the source
code at https://github.com/AllenCellModeling/
pytorch_integrated_cell.

We based the architectures and their implementations
on a combination of resources, primarily (Larsen et al.,
2015; Makhzani et al., 2015; Radford et al., 2015), and
Kai Arulkumaran’s Autoencoders package (Arulkumaran,
2017).

α-actinin

α-tubulin

β-actin

Desmoplakin

Fibrillarin

LaminB1

Myosin IIB

Sec61 β

Tom20

ZO1

α-actinin

α-tubulin

β-actin

desmoplakin

fibrillarin

lamin B1

Myosin IIB

ST6GAL1

Sec61 β

Tom20

ZO1

Figure 2: Example images for each of the 10 labeled struc-
tures of interest. Rows correspond to observed microscopy
images, used as inputs to the model, for six arbitrary cells,
each with a particular fluorescently labeled structure as
named, shown in yellow. The reference structures, the cell
membrane and nucleus (DNA), are shown in magenta and
cyan, respectively. Images have been cropped for visu-
alization purposes. See Figure S5a for isolated observed
structure channel only.
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We found that addingwhite noise to the first layer of decoder
adversaries, DecDr and DecDr,s , stabilizes the relationship
between the adversary and the autoencoder and improves
convergence as in (Sønderby et al., 2016) and (Salimans
et al., 2016).

We choose a 128-dimensional latent space for both Zr and
Z s .

3.3. Training

To train the model, we used the Adam optimizer (Kingma
& Ba, 2014) to perform gradient-descent, with a batch size
of 30 and learning rate of 0.0002 for Encr , Decr , DecDr ,
Encr,s , Decr,s , DecDr,s , a learning rate of 0.01 for EncDr

and EncDs , with γEnc and γDec values of 10−4 and 10−5

respectively. The dimensionality of the latent spaces Zr

and Z s were set to 128, and the prior distribution for both
is an isotropic gaussian.

We split the data set into 95% training and 5% test (for
more details see Table S9), and trained the model of cell
and nuclear shape for 150 epochs, and the conditionalmodel
for 150 epochs.

The training curves for the reference and conditional model
are shown in Figure S3.

The model was implemented in PyTorch (http://
pytorch.org) version 0.1.12., and run on 2NVIDIAV100
graphics cards via NVIDIA-docker. The model took ap-
proximately two weeks to train. Further details of our
implementation can be found in the software repository
(Section 4).

3.4. Experiments

We performed a variety of experiments to explore the utility
of the model. While quantitative assessment is paramount,
the nature of the data makes qualitative assessment indis-
pensable, so we include assessments of this type in addition
to more traditional measures of performance.

3.4.1. Image Classification

While classification is not our primary use-case, it is a
worthwhile benchmark of a well-functioning multi-class
generative model. To evaluate the performance of the class-
label identification of Encr,s , we compared the results of
the predicted labels and true labels on our hold out set. A
summary of the results of our multinomial classification
task is shown in Table S11. Our model is able to accurately
classify most structures, and has trouble only on the poorly
sampled or underrepresented classes.

3.4.2. Image reconstruction

A necessary but not sufficient condition for the model to
be useful is that cell images reconstructed from their latent
space representations resemble the native images. Exam-
ples of image reconstruction from the training and test set
are shown in Figure S1 for reference structures and Fig-
ure S2 for the structure localization model. The model
recapitulates the essential structure localization patterns in
the cells, and produce convincing reconstructions of cell
and nuclear shape in both the training and test data.

3.4.3. Integrating Cell Images

Conditional upon the cell and nuclear shape, the model pre-
dicts the most probable position of any particular structure
via Algorithm 3. Some examples of integrating structure
localization given cell and nuclear shapes is shown in Fig-
ure 3.

3.4.4. Evaluation of Generated Image Distribution

To determine how well our model captures the variation in
our data, we comparemetrics computed on our input images
and compare these tometrics computed onmodel-generated
images.

We choose two methods for evaluating this variation: a
pixel-wise measure of image similarity and the so-called
inception score (Salimans et al., 2016).

As our measure of image similarity, we compute the pixel-
wise cross correlation between the structure channels, xs ,
of every image in our training set. The distribution of
this correlation is reported in Figure S6a. As expected,
we can see that there is a large difference in this correlation
across structures. Stereotypically localized structure labels,
such as lamin B1 and fibrillarin, correlate highly; punctate
cytoplasmic labels, such as desmoplakin, ST5GAL1 and
ZO1 are highly variable in their localization in the current
model.

We compare these distributions to the pair-wise cross corre-
lation of encoded-decoded images from both the train and
test set (Figures. S6c, S6d), as well as images generated
by our model de novo (Figure S6b). Comparing the data
distribution to the encoded-decoded images in the training
set (Figure S6c), we see that the model does not capture the
total amount of variation of the data. This is expected, as
the autoencoder can be interpreted as a lossy compression
method. While these distributions differ slightly, direct in-
spection of these images can be seen in structure channel of
Figure S2, and these appear to be qualitatively similar.

Comparing the correlation between sampled images and the
train and test images in (Figures S6c, S6d, S6b), we see that
the distributions of the generated images are very similar to
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Figure 3: Most probable localization patterns predicted for
selected cells for each structure (rows, top to bottom, struc-
ture as labeled, shown in yellow). The first five columns
show the most probable localization for each structure,
given the cell and nuclear shape. The last column (far
right) shows an experimentally observed cell with that la-
beled structure for comparison. Reference structures, cell
membrane and nucleus (DNA), are in magenta and cyan,
respectively. Images have been cropped for visualization
purposes. Note, for example, how fibrillarin resides within
the DNA, and lamin B1 surrounds the DNA. See Figure
S5b for structure channel only.

the encoded-decoded held-out test data, indicating that the
model accurately captures high-level variation in the data
in a generalizable manner.

An alternate evaluation metric is via the "inception score"
introduced above (Salimans et al., 2016):

e 〈DKL (p(y |x) ‖ p(y))〉x . (19)

The inception score is the exponential of the average over the
input data of the KL-divergence of the conditional probabil-
ity of a label given an image, with respect to the marginal
probabilities of each label. It a widely used measure of
performance for generative models.

To compute the inception scores, we pass the generated
images through the encoder Encr,s and record the predic-
tions for the class of each image, p(y |x), from which the
marginal p(y) is trivial. If the generator Decr,s creates rep-
resentative images, the estimated class of each image image
p(y |x) should have low entropy, while the distribution of
class probability across all images, p(y), should have high
entropy.

In Table S10, we report inception scores for our train and
test data, and the generated images for each class sampled at
the train and test set frequencies. On the test set, our model
achieved an inception score of 7.561, compared to a score
of 7.823 on the encoded-decoded test data, and a score of
7.876 for raw test data itself.

While the absolute magnitude of these scores is not directly
evaluable at present, the similarity of these scores indicates
that the variety and quality of the generated structures is on
par with those in the data distribution.

3.4.5. Variation in Structure Localization

Given that the model reasonably approximates the data dis-
tribution, as described in the previous section, we are in-
terested in how predictive the cell and nuclear shape is of
structure localization. That is, howmuch intrinsic variation
is there in the localization of a given structure, and how
much of that structure’s localization is dictated by the shape
of the cell and nucleus? This relationship is quantified to
determine the model’s performance in predicting the loca-
tion and variation of different subcellular structures in the
following section.

We evaluated the variation themodel captures by generating
1000 structure images per cell and nuclear shape, and as-
sessing the variation in that structure localization (see 4) by
computing the negative log-determinant of the 1000x1000
matrix of pairwise correlations. By exploring this distribu-
tion of structure localization, we assessed the conditions in
which structure organization is tightly coupled to that cell
and nuclear shape. That is, for a given cell shape, the local-
ization of one structure type may be highly variable as one
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moves through the structure latent space, while the location
of another may not be as variable. Furthermore, it can be
imagined that these relationships would vary from cell state
to cell state.

We report the distribution of per-cell summary statistics for
cell and nuclear shapes in our train and test set in Figure S7.

In addition to assessing structure-wise variability and ac-
curacy, we can also investigate the relationships between
these metrics and the cell cycle. Using expert annotation
for a subset of 7592 of the cells, which annotate each cell
as in one of eight phases of the cell cycle ({interphase,
prophase, prophase 2, pro metaphase 1, pro metaphase 2,
metaphase, anaphase, telophase-cytokinesis}), we subdi-
vide our population in cells in stages, those that are labeled
in as interphase, and those that are not. As seen in Fig-
ure S7, the distributions of variation per structure show
interesting biological correlation: in mitosis, we see that
there is more variation (shift toward smaller negative log-
determinant) in the localization of lamin B1, fibrillarin,
ST6GAL1, and Tom20, while the distribution of α-tubulin
is less variable. From a biological point of view, this makes
sense: the nuclear envelope breaks down in mitosis, en-
tailing less stereotypy in the location of lamin B1 and fib-
rillarin, with corresponding fragmentation of mitochondria
(Tom20) and Golgi (ST6GAL1), while α-tubulin coalesces
in to spindles that are highly stereotyped in location.

On a per-structure basis, we are also able to sort the cells
in our input data according to which cell and nuclear shape
corresponds to both the most and the least varied structure
predictions, as shown in Figure S8. Structures such as
lamin B1, fibrillarin, ST6GAL1, and Tom20 show a clear
enrichment for mitotic cells in the most variable structure
predictions, as compared to the least variable predictions,
while the opposite is true of α-tubulin. This example for
mitosis suggests that the present model is able to learn how
the variability in the localization of different subcellular
structures may be coupled to cell state.

3.4.6. Latent space traversal

We further explore the generative capacity of our model by
mapping out the variation in cell morphology and structure
localization via a traversal of the reference latent space with
respect to cells in ordered stages of mitosis as introduced in
the previous section.

Given the expert manual annotation of cell cycle for 7592 of
our images and their corresponding cell and nuclear shape
representations, zr , we selectmedoid landmark cells chosen
from the test data as representative of each ordered stage in
mitosis.

In our traversal of the 128 dimensional latent space of cell
and nuclear shape, we interpolate linearly in radial coordi-

nates between each medoid of our annotated stages, from
interphase through metaphase. Samples along this path are
shown in Figure S9.

As wemove between stages of the cell cycle in the reference
latent space, we also predict the localization of each of our
structures of interest by generating the most probable struc-
ture channel localizations from the center of the structure
latent space.

Although these cell cycle expert annotations were not used
during model training, they offer an opportunity to investi-
gate how well the model generalizes to unseen data along
biologically important axes of variation. These predictions
of localization demonstrate smooth transitions and plausi-
ble localization patterns as the cell shape progresses from
interphase throughmetaphase on held-out data, demonstrat-
ing the ability of our model to capture and predict complex
relationships in structure organization and potentially other
key biological phenomena given new data.

4. Discussion
Buildingmodels that capture relationships between themor-
phology and organization of cell structures is difficult but
important challenge. While previous research has focused
on constructing subcellular structure-specific parametric
approaches, due to the extreme variation in localization
among different subcellular structures, these approaches
may not be convenient to employ for all structures under
all conditions. Here, we have presented a nonparametric
conditional model of structure organization that general-
izes well to a wide variety of localization patterns, encodes
the variation in cell structure and organization, allows for
a probabilistic interpretation of the image distribution, and
generates high quality three-dimensional, integrated syn-
thetic images.

Our model of cell and subcellular structure differs from
previous generative models (Zhao & Murphy, 2007; Peng
& Murphy, 2011; Johnson et al., 2015): we directly model
fluorescent label localization, rather than the detected ob-
jects and their boundaries. While object segmentation can
be essential in certain contexts, and helpful in others, when
these approaches are not necessary, it can be advantageous
to omit these non-trivial intermediate steps. Our model
does not constitute a “cytometric” approach (i.e. counting
objects), but since we are directly modeling the localiza-
tion of signal, we drastically reduce the modeling time by
minimizing the amount of segmentation and the task of
evaluating this segmentation with respect to the “ground
truth”.

Even considering these differences, the model is compati-
ble with existing frameworks and allows for mixed paramet-
ric and non-parametric localization relationships, since the
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model can be used for predicting the localization of struc-
tures when an appropriate parametric representation may
not exist.

Since the post of our initial preprint manuscript and soft-
ware (Johnson et al., 2017), there has been increased interest
in the application of GANs to modeling cell morphology
and organization. (Osokin et al., 2017) constructed a net-
work that can generate images of cell shape, and gener-
ates additional subcellular structures conditioned on those.
(Goldsborough et al., 2017) uses a GAN to generate images
of cells across different conditions and evaluate the perfor-
mance of a discriminator in identifying the mechanism of
action of these conditions. These other GAN approaches
(Osokin et al., 2017; Goldsborough et al., 2017), allow nei-
ther a probabilistic interpretation nor prediction of structure
localization, in real images. Furthermore, the methods pre-
sented above generate 2D images with one to two orders
of magnitude more training data than the method presented
here. Finally, in contrast to thesemodels, ourmethod allows
for a reversible mapping of images to a low-dimensional la-
tent space, which permits the prediction of novel subcellular
localization patterns in extant data.

Our model permits several straightforward extensions, in-
cluding extension to time series. Because of the flexibil-
ity of our latent-space representation, we can potentially
explicitly encode information regarding known cell states
and/or perturbations, such as position in cell cycle, time
after drug treatment, or "distance" along a differentiation
pathway. Given sufficient information, it would be possible
to encode a representation of a “structure space” to predict
the localization of unobserved structures, or “perturbation
space”, as in (Paolini et al., 2006). Coupling this with ac-
tive learning approaches (Naik et al., 2016) opens the way
to potentially build models that learn and encode the lo-
calization of diverse subcellular structures under a variety
different conditions.

Software and Data
The code for running the models used in this work is avail-
able at https://github.com/AllenCellModeling/
pytorch_integrated_cell

The data used to train the model is available at s3://aics.
integrated.cell.arxiv.paper.data.
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α-actinin α-tubulin β-actin desmoplakin fibrillarin lamin B1 Myosin IIB ST6GAL1 Sec61 β Tom20 ZO1

Figure S1: Image input (rows 1 and 3) and reconstruction (rows 2 and 4) from the reference model, showing training set
(above two rows), and test set (bottom two rows).

train, input

train, output

test, input

test, output

α-actinin α-tubulin β-actin desmoplakin fibrillarin lamin B1 Myosin IIB ST6GAL1 Sec61 β Tom20 ZO1

Figure S2: Image input (rows 1 and 3) and reconstruction (rows 2 and 4) from the structure model, showing training set
(above two rows), and test set (bottom two rows).

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 21, 2017. ; https://doi.org/10.1101/238378doi: bioRxiv preprint 

https://doi.org/10.1101/238378
http://creativecommons.org/licenses/by-nc-nd/4.0/


Building a 3D Integrated Cell

(a) (b)

Figure S3: Training curves for the training of the reference model (a) and conditional model (b)

(a) (b)

Figure S4: (a) two randomly selected dimensions of the reference structure latent space Zr . ( b) two randomly selected
dimensions of the reference structure latent space Z s .
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Figure S5: (a) Example structure channels for each of the 10 labeled structures in this paper and (b) predicted most probable
localization patterns for selected cells from each labeled pattern. The first 5 columns show the most probable localization
for the corresponding structures given the the same cell and nuclear shape. The last column shows a observed cell with that
labeled structure. Rows correspond to structure types. Images have been cropped for visualization purposes.
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(a) (b)

(c) (d)

Figure S6: Distribution of pixel-wise correlation between all pairs of structure channels across image collections. (a)
complete set of image data. (b) 2000 images sampled from the latent space distributions for each structure. (c) All
encoded-decoded images in the training set. (d) All encoded-decoded images in the test set.
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(a) (b)

(c) (d)

Figure S7: Distribution of per-cell variation statistics. For each cell and nuclear shape, we compute the variation between
all pairs of 1000 generated structure channels in a 1000-by-1000 matrix, and compute the log determinant of that matrix.
(a) training images labeled as interphase. (b) testing images labeled as interphase. (c) training images labeled as any stage
of mitosis. (d) test images labeled as any stage of mitosis.
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Figure S8: For each structure, we show the cells in our input data (top:train, bottom:test) that are predicted to have the most
(right) and least (left) amount of variation in structure localization, based upon morphology of the cell. We see a clear
enrichment for mitosis in several of the structures, indicating that the model has achieved an ability to differentially couple
the variability in localization of subcellular components across structures.
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Figure S9: Generated cell and nuclear shapes and corresponding most probable predicted localization patterns for a walk
from one mitotic state to the next. Each row indicates a time point, with columns corresponding to predicted localization
patterns for each
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B. Supplementary Algorithms

Algorithm 4 Estimation of structure variation
trained Encr and Decr,s , xr,s , y
n ← number of samples
zr ← Enc(xr )

for each i in 1 to n do
xsi ← Decr,s(zr, y, z̃s)

end for

for each i in 1 to n do
for each j in j+1 to n do
ρi, j = ρ(xsi , xsj )

end for
end for

return -log(|ρ|)/n
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C. Model Architectures

4 × 4 × 4 64 conv ↓ BNorm PReLU
4 × 4 × 4 128 conv ↓ BNorm PReLU
4 × 4 × 4 256 conv ↓ BNorm PReLU
4 × 4 × 4 512 conv ↓ BNorm PReLU
4 × 4 × 4 1024 conv ↓ BNorm PReLU
4 × 4 × 4 1024 conv ↓ BNorm PReLU
|Zr | FC

Table S1: Architecture of Encr

1024 FC BNorm PReLU
4 × 4 × 4 1024 conv ↑ BNorm PReLU
4 × 4 × 4 512 conv ↑ BNorm PReLU
4 × 4 × 4 256 conv ↑ BNorm PReLU
4 × 4 × 4 128 conv ↑ BNorm PReLU
4 × 4 × 4 64 conv ↑ BNorm PReLU
4 × 4 × 4 |r | conv ↑ sigmoid

Table S2: Architecture of Decr

1024 FC Leaky RelU
1024 FC BNorm Leaky RelU
512 FC BNorm Leaky RelU
1 FC Sigmoid

Table S3: Architecture of EncDr

+White Noise σ = 0.01
4 × 4 × 4 64 conv ↓ LeakyReLU
4 × 4 × 4 128 conv ↓ BNorm LeakyReLU
4 × 4 × 4 256 conv ↓ BNorm LeakyReLU
4 × 4 × 4 512 conv ↓ BNorm LeakyReLU
4 × 4 × 4 512 conv ↓ BNorm LeakyReLU
4 × 4 × 4 1 conv ↓ sigmoid

Table S4: Architecture of DecDr

4 × 4 × 4 64 conv ↓ BNorm PReLU
4 × 4 × 4 128 conv ↓ BNorm PReLU
4 × 4 × 4 256 conv ↓ BNorm PReLU
4 × 4 × 4 512 conv ↓ BNorm PReLU
4 × 4 × 4 1024 conv ↓ BNorm PReLU
4 × 4 × 4 1024 conv ↓ BNorm PReLU
{K FC, |Zr | FC, |Zs | FC} {Softmax, , }

Table S5: Architecture of Encr,s

1024 FC BNorm PReLU
4 × 4 × 4 1024 conv ↑ BNorm PReLU
4 × 4 × 4 512 conv ↑ BNorm PReLU
4 × 4 × 4 256 conv ↑ BNorm PReLU
4 × 4 × 4 128 conv ↑ BNorm PReLU
4 × 4 × 4 64 conv ↑ BNorm PReLU
4 × 4 × 4 |r + s | conv ↑ sigmoid

Table S6: Architecture of Decr,s

1024 FC Leaky RelU
1024 FC BNorm Leaky RelU
512 FC BNorm Leaky RelU
K+1 FC Sigmoid

Table S7: Architecture of EncDs

+White Noise σ = 0.01
4 × 4 × 4 64 conv ↓ BNorm LeakyReLU
4 × 4 × 4 128 conv ↓ BNorm LeakyReLU
4 × 4 × 4 256 conv ↓ BNorm LeakyReLU
4 × 4 × 4 512 conv ↓ BNorm LeakyReLU
4 × 4 × 4 512 conv ↓ BNorm LeakyReLU
4 × 4 × 4 K+1 conv ↓ sigmoid

Table S8: Architecture of DecDr,s
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D. Data

Labeled Structure #total #train #test

α-actinin 493 446 47
α-tubulin 3380 3035 345
β-actin 1603 1429 174
desmoplakin 2562 2326 236
fibrillarin 988 884 104
lamin B1 4465 4028 437
Myosin IIB 157 138 19
ST6GAL1 1544 1382 162
Sec61 β 1963 1742 221
Tom20 4578 4128 450
ZO1 234 217 17

Table S9: Labeled structures and their train/test split

data encoded-decoded generated
Labeled Structure train test train test train test

α-actinin 44.29 34.904 44.252 36.209 28.316 32.082
α-tubulin 6.509 6.42 6.509 6.524 6.319 6.21
β-actin 13.824 11.929 13.822 12.434 12.47 11.684
desmoplakin 8.493 9.228 8.492 8.732 7.48 8.273
fibrillarin 22.347 20.904 22.347 20.899 22.07 21.168
lamin B1 4.904 5.05 4.904 5.02 4.915 5.068
Myosin IIB 143.138 41.747 143.106 25.608 31.333 18.535
ST6GAL1 14.294 13.106 14.294 12.867 13.223 12.808
Sec61 β 11.34 9.687 11.34 9.843 11.103 9.884
Tom20 4.786 4.869 4.786 4.892 4.788 4.877
ZO1 91.031 83.076 91.008 54.921 13.355 11.081
all classes 8.085 7.876 8.085 7.823 7.493 7.561

Table S10: Inception scores. KL divergence was computed
with respect to p(y) across all classes.
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α-actinin 36 0 4 1 0 0 5 1 0 0 0
α-tubulin 1 330 5 1 2 2 1 0 2 1 0
β-actin 3 9 160 1 0 0 1 0 0 0 0

desmoplakin 0 0 0 229 0 0 0 4 0 0 3
fibrillarin 0 0 0 0 104 0 0 0 0 0 0
lamin B1 0 0 0 0 0 434 0 1 0 2 0

Myosin IIB 4 0 0 5 0 0 7 0 0 0 3
ST6GAL1 0 0 0 6 0 0 0 156 0 0 0

Sec61β 0 2 0 0 0 0 0 0 218 1 0
Tom20 0 0 0 0 0 0 0 0 1 449 0
ZO1 0 0 0 0 0 0 0 0 0 0 17
Table S11: Predicted structure labels from Encr,s on hold out
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