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Abstract 
Motivation: Genomic selection (GS) is a new breeding strategy by which the phenotypes of quantita-
tive traits are usually predicted based on genome-wide markers of genotypes using convention-
al statistical models. However, the GS prediction models typically make strong assumptions and per-
form linear regression analysis, limiting their accuracies since they do not capture the complex, non-
linear relationships within genotypes, and between genotypes and phenotypes. 
Results: We present a deep learning method, named DeepGS, to predict phenotypes from geno-
types. Using a deep convolutional neural network, DeepGS uses hidden variables that jointly repre-
sent features in genotypic markers when making predictions; it also employs convolution, sampling 
and dropout strategies to reduce the complexity of high-dimensional marker data. We used a large 
GS dataset to train DeepGS and compare its performance with other methods. In terms of mean 
normalized discounted cumulative gain value, DeepGS achieves an increase of 27.70%~246.34% 
over a conventional neural network in selecting top-ranked 1% individuals with high phenotypic val-
ues for the eight tested traits. Additionally, compared with the widely used method RR-BLUP, 
DeepGS still yields a relative improvement ranging from 1.44% to 65.24%. Through extensive simula-
tion experiments, we also demonstrated the effectiveness and robustness of DeepGS for the absent 
of outlier individuals and subsets of genotypic markers. Finally, we illustrated the complementarity of 
DeepGS and RR-BLUP with an ensemble learning approach for further improving prediction perfor-
mance. 
Availability: DeepGS is provided as an open source R package available at 

https://github.com/cma2015/DeepGS. 
 

1 Introduction  
Genomic selection (GS), originally proposed by Meuwissen et al. (2001) 
for animal breeding, is regarded as a promising breeding paradigm to 
better predict the plant or crop phenotypes of polygenic traits by using 
genome-wide markers (Bhat, et al., 2016; Desta and Ortiz, 2014; Jonas 
and De Koning, 2013; Poland and Rutkoski, 2016). Unlike both pheno-
typic and traditional marker-based selection, GS has the inherent ad-
vantages of predicting phenotypic trait values of individuals before 
planting, of estimating the breeding values of individuals before crosses 

are made, and, notably, of reducing the time length of the breeding cycle 
(Desta and Ortiz, 2014; Jannink, et al., 2010; Jonas and De Koning, 2013; 
Yu, et al., 2016). Recently, several GS projects have been launched for 
crop species, namely wheat, maize, rice and cassava (Guzman, et al., 
2016; Marulanda, et al., 2016; Poland and Rutkoski, 2016; Spindel, et al., 
2015). However, the application of GS in the field of practical crop 
breeding is still nascent, largely because it must overcome the require-
ment of robust approaches for making accurate predictions in high-
dimensional datasets, where the number of genotypic markers (p) is 

much larger than the population size (n) (p >> n) (Crossa, et al., 2017; 
Desta and Ortiz, 2014; Jannink, et al., 2010; Schmidt, et al., 2016). 
Various statistical models have been developed for GS, including 

BLUP (best linear unbiased prediction)-based algorithms, such as the 
ridge regression BLUP (RR-BLUP) (Endelman, 2011) and the genomic 

relationship BLUP (GBLUP) (VanRaden, 2008), and Bayesian-based 
algorithms, such as Bayes A, Bayes B, Bayes Cπ and Bayes LASSO (De 
Los Campos, et al., 2009; Meuwissen, et al., 2001). However, among the 
different statistical models, not much variation in prediction accuracy 
was frequently observed (Roorkiwal, et al., 2016; Varshney, 2016). In 
addition, the statistical models typically make strong assumptions and 
perform linear regression analysis. A representative example is the 
commonly used RR-BLUP model, which assumes that all the marker 
effects are normally distributed with a small but non-zero variance, and 

predicts phenotypes from a linear function of genotypic markers (Xu and 
Crouch, 2008). As a result, the GS models based on traditional statistical 
methods not only have to face the statistical challenges related to the 
high dimensionality of marker data, but also have difficulty capturing 
complex relationships within genotypes (e.g., multicolinearity among 
markers), and between genotypes and phenotypes (e.g., genotype-by-
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environment-by-trait interaction) (Crossa, et al., 2017; Van Eeuwijk, et 

al., 2010). Therefore, novel methods are urgently needed to augment GS 
and its potential in plant breeding.   
Deep learning (DL) is a recently developed machine-learning technique 

that provides good prediction capability with many advanced features, 

one of which is the deep multi-layered neural network architecture. In a 
deep multi-layered neural network, a large number of neurons are used to 
capture complex, nonlinear relationships in big data (large datasets) 
(LeCun, et al., 2015). DL has proven capable of improved prediction 
performance over traditional models for speech recognition, image iden-
tification and natural language processing (LeCun, et al., 2015). Most 
recently, however, DL has drawn the attention of systems biologists, 
who have successfully applied it to several prediction problems: the 
inference of gene expression (Chen, et al., 2016; Singh, et al., 2016), the 

functional annotation of genetic variants (Quang, et al., 2015; Quang and 
Xie, 2016; Xiong, et al., 2015; Zhou and Troyanskaya, 2015), the recog-
nition of protein folds (Jo, et al., 2015; Wang, et al., 2016) and the pre-
diction of genome accessibility (Kelley, et al., 2016), of enhancers (Kim, 
et al., 2016; Liu, et al., 2016), and of DNA- and RNA-binding proteins 
(Alipanahi, et al., 2015; Zeng, et al., 2016; Zhang, et al., 2016). These 
successful applications in the fields of computational biology and sys-
tems biology have demonstrated that DL has a powerful capability of 
learning complex relationships from biological data (Angermueller, et al., 

2016; Min, et al., 2017). However, to the best of our knowledge, the 
application of DL in the field of GS has not yet been investigated. 
  In this study, we present a DL method, named DeepGS, to predict phe-
notypes from genotypes by using a deep convolutional neural network 
(CNN). Unlike the conventional statistical models, DeepGS can automat-
ically “learn” complex relationships between genotypes and phenotypes 
from the training dataset, without pre-defined rules (e.g., normal distri-
bution, non-zero variance) for various variables in the neural network. In 
order to avoid overfitting of CNN, DeepGS also takes the advantages of 

DL technologies to reduce the complexity of high-dimensional marker 
data through dimensionality reduction using convolution, sampling and 
dropout strategies. We used a large GS data of wheat (2,000 individuals 
× 33,709 markers; eight phenotypic traits) from CIMMYT (International 
Maize and Wheat Improvement Center), to train DeepGS and compare 
its performance to those of other models. Cross-validation experimental 
results showed that the DeepGS outperformed a conventional feed-
forward neural network in the prediction of phenotypic values for all 
eight tested traits. DeepGS also had superiority over the widely used GS 

method RR-BLUP in selecting individuals with high phenotypic values. 
Further simulation experiments indicated that DeepGS still had the ad-
vantage over RR-BLUP in selecting individuals with high phenotypic 
values, even for the absent of outlier individuals and subsets of genotypic 
markers. We also proposed an ensemble learning approach to linearly 
combine the predictions of DeepGS and RR-BLUP for further improving 
the prediction performance. These results suggest that DeepGS can be 
used as a supplementary to RR-BLUP for selecting individuals with high 
phenotypic values.  DeepGS has been implemented as an open source R 

package now available for public use 
(https://github.com/cma2015/DeepGS). 

2 Methods 

2.1 GS dataset 

The GS dataset used in this study was obtained from the wheat gene 
bank of CIMMYT, which consists of 2,000 Iranian bread wheat 

(Triticum aestivum) landrace accessions genotyped with 33,709 DArT 
(Diversity Array Technology). For the DArT markers, an allele was 
encoded by either 1 or 0, to indicate its presence or absence, respectively. 
Each of these accessions was phenotyped for eight traits: grain length 
(GL), grain width (GW), grain hardness (GH), thousand-kernel weight 

(TKW), test weight (TW), sodium dodecyl sulphate-sedimentation 
(SDS), grain protein (GP) and plant height (PHT). More information 
about this GS dataset was presented in a recently published paper 
(Crossa, et al., 2016). The complete genotypic and standardized pheno-
typic datasets can be obtained from 
http://genomics.cimmyt.org/mexican_iranian/traverse/ irani-
an/standarizedData_univariate.RData. 

2.2 10-fold cross-validation 

Cross-validation has been used to evaluate the prediction performance of 

GS models (Crossa, et al., 2016; Gianola and Schon, 2016; Qiu, et al., 
2016; Resende, et al., 2012). In this study, a 10-fold cross-validation has 
been used, in which individuals in the whole GS dataset were first ran-
domly partitioned into 10 groups with approximately equal size. The GS 
model was trained and validated using genotypic and phenotypic data of 
individuals from nine groups (90% individuals for the training set; 10% 
individuals for the validation set). The trained GS model was subse-
quently applied to predict phenotypic trait values of individuals from the 
remaining group (testing set) using only genotypic data. This process 

was repeated 10 times until each group was used once for testing; the 
predicted phenotypic trait values were finally combined for performance 
evaluation. 
  The prediction performance of each GS model for selecting individuals 
with high phenotypic values is assessed by the measure: the mean nor-
malized discounted cumulative gain value (MNV) (Blondel, et al., 2015). 
Given n individuals, the predicted and observed phenotypic values form 
an n × 2 matrix of score pairs (X, Y). The MNV for selecting the top-
ranked k individuals can be calculated in an iterative manner: 

MNV��, �, �	 
  1� 
�� � 1	MNV�� � 1, �, �	 � ∑ ���, �	���	�
���∑ ���, �	���	�
���

�, 
where, ���	 
  1/�log� � � 1	  is a monotonically decreasing discount 
function at position i; y(i,Y) is the ith value of observed phenotypic values 

Y sorted in descending order, here y(1,Y) � y(2,Y) � … � y(n,Y); y(i,X) 
is the corresponding value of Y in the score pairs (X, Y) for the ith  value 
of predicted scores X sorted in descending order. Thus, MNV has a range 
of 0 to 1 when all the observed phenotypic values are larger than zero; a 
higher MNV(k, X, Y) indicates a better performance of the GS model to 
select the top-ranked k individuals with high phenotypic values.  

2.3 Ridge regression-based linear unbiased prediction (RR-
BLUP) 

RR-BLUP is one of the most extensively used and robust regression 
models for GS (Bhering, et al., 2015; Huang, et al., 2016; Wimmer, et 

al., 2013). Given the genotype matrix Z (n × p; n individuals, p markers) 
and the corresponding phenotype vector Y (n × 1), the GS model is built 
using the standard linear regression formula: � 
µ � �� �  �, 
where, μ is the mean of phenotype vector Y,  ��� �  1	 is a vector of 
marker effects, and ε (n × 1) is the vector of random residual effects. The 
ridge regress  algorithm is used to  simultaneously estimate the effects of 
all genotypic markers, under the assumption that marker effects in ��� �  1	  follow a normal distribution norm ( �~!"0, $%��& ) with a 
small but non-zero variance ($%��) (Desta and Ortiz, 2014; Endelman, 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 31, 2017. ; https://doi.org/10.1101/241414doi: bioRxiv preprint 

https://doi.org/10.1101/241414


Predicting phenotypes from genotypes using Deep Learning 

2011; Riedelsheimer, et al., 2012; Whittaker, et al., 2000). I is the 
identity matrix, %�� is the variance of �. The RR-BLUP model was im-
plemented using the function “mixed.solve” in the R package “rrBLUP” 

(https://cran.r-project.org/web/packages/rrBLUP). 

2.4 DeepGS model 

The DeepGS model was built using the DL technique-deep convolution-
al neural network (CNN) with an 8-32-1-architecture; this included one 
input layer, one convolutional layer (eight neurons), one sampling layer, 
three dropout layers, two fully-connected layers (32 and one neurons) 
and one output layer (Fig. 1). The input layer receives the genotypic 

markers of a given individual in the 1 × p matrix, where p is the number 
of genotypic markers. The first convolutional layer filters the input ma-
trix with eight kernels that are each 1 × 18 in size with a stride size of 1 
× 1, followed by a 1 × 4 max-pooling layer with a stride size of 1 × 4. 
The output of the max-pooling layer is passed to a dropout layer with a 
rate of 0.2 for reducing overfitting (Srivastava, et al., 2014). The first 
fully-connected layer with 32 neurons is used after the dropout layer to 
join together the convolutional characters with a dropout rate of 0.1. A 
nonlinearity active function - rectified linear unit (ReLU), is applied in 

the convolutional and first fully connected layers. The output of the first 
fully-connected layer is then fed to the second fully-connected layer with 
one neural and a dropout rate of 0.05.  By using a linear regression mod-
el, the output of the second fully-connected layer is finally connected to 
the output layer which presents the predicted phenotypic value of the 
analyzed individual. 
  For each fold of cross-validation, the DeepGS was trained on the train-
ing set and validated on the validation set. Parameters in the DeepGS 
were optimized with the back propagation algorithm (Rumelhart, et al., 

1986), by setting the number of epochs to 6,000, the learning rate to 0.01, 

the momentum to 0.5, and the wd to 0.00001. The loss function we min-
imized is the mean absolute error (Mae) index: 

Mae 
 1) *|predict� � obs�|�

���

, 
where, m denotes the number of individuals in the training dataset, and 
predictk and obsk represent the predicted and observed phenotypic values 
of the kth individual, respectively.  
  DeepGS was implemented using the graphics-processing-unit (GPU)-
based DL framework MXNet (version 0.7.0; 
https://github.com/dmlc/mxnet); it was run on a GPU server that was 
equipped with four NVIDIA GeForce TITAN-XGPUs, each of which 
has 12GB of memory and 3072 CUDA (Compute Unified Device Archi-
tecture) cores. 

2.5 An integrated GS model linearly combining RR-BLUP 
and DeepGS 

An integrated GS model (I) was constructed using the ensemble learning 
approach by linearly combining the predictions of DeepGS (D) and RR-

BLUP (R), using the formula:  �45��67	 
  �8
 � �45��67
 � 8� � �45��67�	/�8
 � 8�	. 
  For each fold of 10-cross fold procedure, parameters (8
 and 8�) were 
optimized on the corresponding validation dataset using the particle 
swarm optimization (PSO) algorithm, which was developed by inspiring 
from the social behavior of bird flocking or fish schooling  (Kennedy and 
Eberhart, 1995). PSO has the capability of parallel searching on very 
large spaces of candidate solutions, without making assumptions about 
the problem being optimized. Details of the parameter optimization using 

the PSO algorithm are given in Supplementary Information. 

2.6 Statistical analysis in this study 

The Pearson’s correlation coefficient (PCC) and corresponding signifi-
cance level (p-value) were calculated with the function “cor.test” in R 
programming language (https://www.r-project.org). The significance 
level of the difference between paired samples was examined using the  
student’s t-test with R function “t.test” .  

3 Results 

3.1 DeepGS outperforms a conventional neural network 
and the random selection 

To perform the regression-based GS using neural network algorithms, 
we were interested in whether or not the DL-based neural network model 
(DeepGS) was more powerful than the conventional neural network 
model. To address this task, a three-layer, fully-connected, feed-forward 
neural network (FNN) was built using the matlab function 
“feedforwardnet”, in which there was also an 8-32-1 architecture (i.e. 
eight nodes in the first hidden layer, 32 nodes in the second hidden layer, 

and one node in the output layer). In FNN, nodes in one layer were fully 
connected to all nodes in the next layer. The 10-fold cross-validation was 
performed to evaluate the performance of DeepGS and FNN for predict-
ing phenotypic values of the eight tested traits using 33,709 DArT mark-
ers. 

Fig. 1. The DeepGS model is a deep convolutional neural network that has an 8-32-1 

architecture. “Dropout” denotes the dropout layer. ‘ReLU’ indicates the rectified linear 

unit. 
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  For the trait of grain length (GL), PCC analysis revealed that these two 

GS models had predicted phenotypic values that were significantly cor-
related with the observed phenotypic values (student’s t-test; p-value < 
1.00E-69) (Fig. 2A-2B). However, the DeepGS had a markedly higher 
PCC value (0.745) than did the FNN (0.378) (Fig. 2A-2B). Correspond-
ingly, the predictions of DeepGS had a significantly lower absolute error 
compared with that for the FNN (paired samples t-test; p-value <2.00E-
66) (Fig. 2C). 
  The MNV was further used to evaluate the performance of the DeepGS 
and FNN GS models for selecting individuals with high grain length. 

The MNV of the DeepGS model (0.43~0.68) was significantly higher 
than that of the FNN-based GS model (0.33~0.40) (paired samples t-test; 
p-value < 7.50E-91), with top-ranked α increasing from 1% to 100% 
(Fig. 2D). Both DeepGS and FNN had markedly higher MNVs than 
those generated from random selection (0~0.0040). In the random selec-
tion experiment, individuals were randomly ranked from 1 to 2,000, and 
this process was repeated 100 times, which generated 100 MNVs for 
each given α. The mean of these 100 MNVs was used to quantify the 
final performance of the random selection for the given α. For the other 

seven traits under study, we also observed that the performance followed 
the order of: DeepGS > FNN > random selection (Supplementary Fig. 
S1). At the top-ranked level of α = 1%, the MNV improvement of 
DeepGS over FNN could be as high as 74.37%, 58.98% (α = 1%), 89.10% 
(α = 2%), 62.49% (α = 18%), 86.92% (α = 15%), 158.68% (α = 3%), 
150.92% (α = 8%), and 445.71% (α = 8%) for GL, GW, GH, TKW, TW, 
SDS, GP, and PHT, respectively. 
  Taken together, these results showed that DeepGS outperforms both the 
FNN and the random selection for predicting phenotypic values of the 

eight tested traits. 

3.2 DeepGS outperforms RR-BLUP for selecting individu-
als with high phenotypic values 

For each of the eight traits under study, we performed 10-fold cross-

validation to evaluate the performance of RR-BLUP and DeepGS for 
selecting individuals with high phenotypic values. Paired samples t-test 

analysis showed that, when α ranged from 1% to 100%, the MNVs of 
DeepGS model were significantly higher than those of the RR-BLUP for 
all tested traits except PHT (Table 1; Fig. 3A). The relative improve-
ment of DeepGS over RR-BLUP in MNVs could be as high as 19.94% 
(α = 1%), 23.72% (α = 1%), 3.60% (α = 5%), 36.11% (α = 1%), 37.34% 
(α = 1%), 6.15% (α = 2%), 15.70% (α = 1%), and 65.24% (α = 1%) for 
GL, GW, GH, TKW, TW, SDS, GP and PHT, respectively (Table 1). 
These results indicate that DeepGS outperformed RR-BLUP, especially 
for selecting individuals with extremely high phenotypic values of the 

eight tested traits.  
  Considering that DeepGS and RR-BLUP used different algorithms to 
build regression-based GS models, we suspected that these two ap-
proaches may capture different aspects of the relationships between 
genotypes and phenotypes. Thus, the combination of predictions of 
DeepGS and RR-BLUP may contribute to a better performance. As 
expected, in terms of MNV, the integrated GS model also gained signifi-
cant higher performance than RR-BLUP for all tested traits when top-
ranked α ranged from 1% to 100% by paired samples t-test (Table 1; Fig. 
3B). Obviously, the integrated GS model substantially improved the 
prediction performance over RR-BLUP and DeepGS for GP and PHT 
(Fig. 3B). Compared with RR-BLUP, DeepGS improved the MNVs by 
0.21%~15.70% for GP and of -10.68%~65.24% for PHT; while the 
integrated GS model improved the MNVs by 3.25%~29.48% for GP and 
-1.53%~67.04% for PHT (Table 1). 
  These results indicated that the DeepGS can be used as a supplementary 
to the RR-BLUP model in selecting individuals with high phenotypic 
values for all of the eight tested traits. 

3.3 Outlier individuals and their effects on prediction per-
formance 

An outlier individual is one with an extremely high or low phenotypic 
value for a particular trait under study. These outlier individuals are 

valuable for breeding programs and for identifying trait-related genes in 
the bulked sample analysis (Zou, et al., 2016). We were interested in 
how the respective performance of DeepGS and RR-BLUP models 
might be affected by outlier individuals. For each of the eight traits, the 
outlier individuals were defined as above 75% quartile (Q3) plus 1.5 
times the interquartile range (IQR = Q3 – Q1) and below 25% quartile 

Fig. 3. The MNV improvement of DeepGS and the integrated GS models over RR-

BLUP for eight tested traits. (A) Boxplot of the MNV improvement with top-ranked α 

increasing from 1% to 100%. (B) The curves of MNV improvement with top-ranked α 

increasing from 1% to 100%. 

Fig. 2. Performance of DeepGS and FNN for predicting the grain length of wheat 

using 33,709 DArT markers. (A) Dot-plot comparison of observed phenotypic values 

with predicted phenotypic values of the DeepGS, and (B) the FNN. (C) Boxplot of the 

absolute errors between the observed and predicted phenotypic values. (D) MNV curves 

for DeepGS, FNN, and random selection with top-ranked α increasing from 1% to 100%. 
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(Q1) minus 1.5 times IQR of phenotypic values. We removed 50, 22, 40, 
19, and 65 outlying individuals for GL, GW, TW, GP and PHT, respec-

tively (Supplementary Fig. S2A). The remaining individuals of these 
five traits were used to evaluate the performance of RR-BLUP, DeepGS, 
and the integrated GS model using the 10-fold cross validation approach. 
  We observed that RR-BLUP and DeepGS are differentially sensitive to 
outlier individuals. The removal of outlier individuals improved the 
MNVs of RR-BLUP at different levels of α for GL (1% ; α ; 100%), 
GW (1% ; α ; 2%), TW (1% ; α ; 100%), GP (1% ; α ; 36%) 
except PHT, and while for DeepGS, higher performances were evident 
for GL (1% ; α ; 100%), TW (1% ; α ; 100%), and GP (1% ;α ; 100%) except GW and PHT (Supplementary Fig. S2B). However, 
after the removal of outlier individuals, DeepGS still yielded a higher 
prediction performance than it did by RR-BLUP for all tested five traits 
at different levels of α: GL (1% ; α ; 32%), GW (1% ; α ; 100%), 
TW (1% ; α ; 100%), GP (1% ; α ; 100%), and PHT (1% ; α ;15%) (Table 2; Fig. 4). The corresponding MNV improvement could be 
as high as 9.12%, 5.46%, 23.63%, 54.50%, and 199.48% at the level of α 
= 1% (Supplementary Fig. S2C). As expected, the integrated GS model 
always yielded a higher prediction performance than it did by RR-BLUP 

for all tested five traits at all possible levels of α (1% ; α ; 100%) 

except for PHT (1% ; α ; 15%) (Fig. 4; Supplementary Fig. S2C).  
These results indicate that, even after omitting the outlier individuals, 

DeepGS and the integrated GS model outperforms RR-BLUP in select-
ing individuals with high phenotypic values for all tested traits. 

3.4 Marker number effect on prediction performance 

Various technology platforms have been developed to generate genotyp-
ic markers with different sizes. The number of genotypic markers has 
been reported to have significant influences on the prediction perfor-
mance of GS models (Heffner, et al., 2011). In this analysis, we exam-

ined the effect of marker number on prediction performance of RR-
BLUP, DeepGS, and the integrated GS model. For each of the eight 
tested traits, the 10-fold cross validation experiment was performed 
using a different number of randomly selected markers at 5,000, 10,000, 
and 20,000. This process was repeated 10 times to generate 10 MNVs of 
a given α for each marker number. Their average served as the final 
prediction performance of the GS models. 
 When 20,000 markers were used, DeepGS outperformed RR-BLUP for 
the eight tested traits at different levels of α: GL (1% ; α ; 100%), 

GW (1% ; α ; 28%), GH (1% ; α ; 45%), TKW (1% ; α ;100%), 
TW (1% ; α ; 100%), SDS (1% ; α ; 1%), GP (1% ; α ; 3%), 
and PHT (1% ; α ; 3%) (Fig. 5A; Supplementary Fig. S3A). While 
for the integrated GS model, the MNV improvement over RR-BLUP 
could be observed for all tested traits except SDS. Interestingly, the 
MNV improvement reached 48.28% at top-ranked α = 1% for PHT (Fig. 
5A; Supplementary Fig. S3A). 
When the marker number decreased from 20,000 to 10,000, the MNV 

improvement of DeepGS over RR-BLUP was observed for GL (1% ;α ; 100% ), GW ( 1% ; α ; 2% ), TKW ( 1% ; α ; 49% ), GP 
(1% ; α ; 4%), and PHT (1% ; α ; 1%) (Fig. 5B; Supplementary 
Fig. S3B). While for the integrated GS model, the higher performance 
was generated for GL (1% ; α ; 100%), GW (1% ; α ; 26%), GH 
(1% ; α ; 29%), TKW (1% ; α ; 48%), TW (1% ; α ; 79%), and 
PHT (1% ; α ; 23%) (Fig. 5B; Supplementary Fig. S3B). 
 

Fig. 4. The MNVs of DeepGS and the integrated GS model compared with those of 

RR-BLUP for five tested traits after the removal of outlier individuals. Each point in 

red (or in green) represents a pair of MNVs from DeepGS and RR-BLUP (or from the 

integrated GS model and RR-BLUP) at a top-ranked level of α ranging from 1% to 100%. 

A dot in red (or in green) above diagonal means the DeepGS (or the integrated GS model) 

achieved a higher MNV compared with RR-BLUP. There were 100 dots above diagonal 

for DeepGS and the integrated GS model for all tested traits, with the exception of GL (32 

red dots) and PHT (15 red dots and 15 green dots). 

Fig. 5. Improvement of DeepGS and the integrated GS model over RR-BLUP for 

eight tested traits when subsets of markers were used. Black lines represent the medi-

ans. 
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  A further decrease of the number of markers also revealed the ad-

vantage of DeepGS over RR-BLUP in selecting individuals with high 
phenotypic values (Fig. 5C; Supplementary Fig. S3C). DeepGS yield-
ed a higher MNV than RR-BLUP for GL ( 1% ; α ; 100% ), GW 
(1% ; α ; 17%), TKW (1% ; α ; 47%), GP (α 
 1%), and PHT 
(1% ; α ; 2%). The integrated GS model further improved the predic-
tion performance for GW, GH, TKW, SDS, and GP at all possible levels 
of α ranging from 1% to 100%, and for PHT at the levels of  α ranging 
from 1% to 73% (Fig. 5C).  
These results indicated that DeepGS outperforms RR-BLUP even when 

a subset of 33,709 markers was used and could be used as a supplemen-
tary to RR-BLUP in selecting individuals with high phenotypic values 
for all tested eight traits. 

4 Discussion 
GS is currently revolutionizing the applications of plant breeding, and 

novel prediction methods are crucial for accurately predicting pheno-
types from genotypes (Desta and Ortiz, 2014; Jannink, et al., 2010; Jonas 
and De Koning, 2013). DL is a recently developed machine-learning 
technique, which has the capability of capturing complex relationships 
hidden in big data. In this study, we explored the application of DL in the 
field of GS. The main contributions are the following: (1) We successful-
ly applied the DL technique to build a novel and robust GS model for 
predicting phenotypes from genotypes. (2) We implemented the DeepGS 
model as an open source R package “DeepGS”, thus providing a flexible 

framework to ease the application of DL techniques in GS. This R pack-
age also provides functions to calculate the MNV, and to implement the 
RR-BLUP model as well as the cross-validation procedure. (3) We pro-

posed an ensemble learning approach to get a better performance through 

combining the predictions of DeepGS and RR-BLUP. 
Nevertheless, there are several limitations to the use of DL. First, the 

design of appropriate network architectures is crucial to the prediction 
performance and requires considerable knowledge of DL and neural 
network. Second, the convolutional, sampling, dropout, and fully-
connected layers have different sets of hyper-parameters each and thus 
handle different parts of the data characteristics (Angermueller, et al., 
2016; Chen, et al., 2016; Min, et al., 2017), resulting in a challenge of 
interpreting and exploring biological significances. Yet, this is a general 

limitation of DL in the application of computational biology and bioin-
formatics  (Min, et al., 2017). Recently developed network visualization 
systems, such as ReVACNN (https://github.com/davianlab/deepVis) and 
deepViz (https://github.com/bruckner/deepViz), may be helpful for 
providing insight into this problem. Third, extensive computational time 
is required to train DeepGS. Although DeepGS was implemented on a 
GPU server equipped with NVIDIA GeForce TITAN-X GPUs, it still 
required about 3.5 hours to perform the 10-fold cross-validation proce-
dure for a single trait in the wheat GS dataset under study. To improve 

the running efficiency, the user could run DeepGS on a GPU-based 
cloud platform, e.g., Amazon Elastic Compute Cloud (Amazon EC2; 
https://aws.amazon.com/ec2) or Google App Engine 
(https://cloud.google.com/gpu).  
  In summary, this research work opens up a new avenue for the applica-
tion of the DL technique in the field of GS. In the future, we will cooper-
ate with population geneticists and continue to amend our DeepGS to 
enable it to explain the detected relationships between phenotypes and 
genotypes. In addition, we will cooperate with crop breeders and carry 

Table 1. Prediction performance of DeepGS and RR-BLUP for eight tested traits. “integrated” indicates the integrated GS model. “p-value” repre-
sents the significance level of MNV improvement. 

Trait 
MNVs   DeepGS vs RR-BLUP  integrated vs RR-BLUP 

RR-BLUP DeepGS integrated  
MNV improvement (%) 

(median) 
p-value  

MNV improvement (%) 
(median) 

p-value 

GL 0.35~0.67 0.43~0.68 0.39~0.69  1.06~19.94 (3.39) 2.15E-59  0.38~9.08 (3.52) 3.84E-73 

GW 0.62~0.77  0.75~0.80  0.71~0.79   1.71~23.72 (1.97) 3.18E-21  1.65~14.68 (1.88) 7.52E-32 

GH 0.70~0.76  0.70~0.78  0.71~0.78   0.10~3.60 (1.00) 3.48E-25  1.39~3.49 (1.94) 1.97E-63 

TKW 0.47~0.66  0.64~0.68  0.64~0.69   2.62~36.11 (3.13) 7.48E-23  3.58~36.51 (3.91) 8.05E-29 

TW 0.23~0.61  0.32~0.62  0.31~0.62   1.44~37.34 (2.24) 1.55E-31  2.19~33.30 (2.95) 2.08E-45 

SDS 0.56~0.74  0.56~0.78  0.57~0.76   -1.36~6.15 (-0.20) 9.71E-04  1.09~3.77 (1.75) 2.07E-45 

GP 0.27~0.50  0.31~0.50  0.35~0.51   0.21~15.70 (1.04) 1.29E-17  3.25~29.48 (3.89) 1.27E-44 

PHT 0.26~0.31  0.25~0.42  0.27~0.43   -10.68~65.24 (-8.75) 1.00E-00  -1.53~67.04 (-0.35) 3.68E-03 

Table 2. Prediction performance of DeepGS and RR-BLUP for five tested traits after the removal of outlier individuals. “integrated” indicates the inte-
grated GS model. “p-value” represents the significance level of MNV improvement. 

 Trait 
MNVs  DeepGS vs RR-BLUP     integrated vs RR-BLUP 

RR-BLUP DeepGS integrated  
MNV improvement (%) 

(median) 
p-value  

MNV improvement (%) 
(median) 

p-value 

GL 0.53~0.69  0.58~0.70 0.59~0.70   -0.30~9.12(0.39) 5.24E-07  1.07~11.49 (1.51) 1.18E-26 

GW 0.66~0.75  0.70~0.76  0.69~0.76  0.01~5.46(0.46) 2.64E-14  0.81~4.50 (1.24) 1.05E-51 

TW 0.36~0.63  0.44~0.64 0.44~0.65   0.97~23.63(2.63) 2.00E-29  2.11~24.10 (3.38) 2.18E-41 

GP 0.31~0.49  0.46~0.50  0.44~0.51   2.32~54.50(3.39) 1.87E-15  3.50~44.81 (4.20) 5.25E-24 

PHT 0.10~0.28  0.23~0.30 0.23~0.27   -5.12~199.48(-4.13) 7.52E-01  -2.30~153.26 (-1.15) 6.77E-02 
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out practical applications of DeepGS in the GS-based breeding programs 
of wheat and other vital crops.  
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