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Abstract  1 

Translating the ever-increasing wealth of information on microbiomes (environment, 2 

host, or built environment) to advance the understanding of system-level processes 3 

is proving to be an exceptional research challenge. One reason for this challenge is 4 

that relationships between characteristics of microbiomes and the system-level 5 

processes they influence are often evaluated in the absence of a robust conceptual 6 

framework and reported without elucidating the underlying causal mechanisms. The 7 

reliance on correlative approaches limits the potential to expand the inference of a 8 

single relationship to additional systems and advance the field. In this perspective 9 

piece we propose that research focused on how microbiomes influence the systems 10 

they inhabit should work within a common framework and target known microbial 11 

processes that contribute to the system-level process of interest. Here we identify 12 

three distinct categories of microbiome characteristics (microbial processes, 13 

microbial community properties, and microbial membership) and propose a 14 

framework to empirically link each of these categories to each other and the broader 15 

system level processes they affect. We posit that it is particularly important to 16 

distinguish microbial community properties that can be predicted from constituent 17 

taxa (community aggregated traits, CATs) from those properties that are currently 18 

unable to be predicted from constituent taxa (emergent properties, EPs). We discuss 19 

how a series of existing methods in microbial ecology can be applied to more 20 

explicitly elucidate properties within each of these categories and connect these 21 

three categories of microbial characteristics with each other. We view this proposed 22 

framework, gleaned from a breadth of research on environmental microbiomes and 23 

ecosystem processes, as a promising pathway with the potential to advance 24 

microbiome science across a broad range of disciplines.  25 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 1, 2018. ; https://doi.org/10.1101/065128doi: bioRxiv preprint 

https://doi.org/10.1101/065128
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

Current Approaches Linking Microbial Characteristics and Ecosystem 26 

Processes 27 

In all ecosystems, virtually all processes are influenced by microorganisms and 28 

many processes are carried out primarily/exclusively by microorganisms. This has 29 

sometimes led to the assumption that a better description of the microbiome 30 

(including its associated transcripts, proteins, and metabolic products) should lead to 31 

a better understanding and predictions of system level processes. However, such 32 

justifications assume that measureable characteristics of the microbiome (e.g. 16S 33 

rRNA gene libraries, metagenomes, enzymatic activities) can inform our ability to 34 

better understand and predict system-level processes. Unfortunately, additional 35 

information about the microbiome does not always provide a clearer understanding 36 

of ecosystem processes beyond what can be predicted by environmental factors 37 

alone1,2 .  38 

Two recent meta-analyses3,4 suggest that research at the intersection of 39 

ecosystem science and microbial ecology often rely on assumed correlations 40 

between microbiome characteristics and ecosystem processes and less frequently 41 

test to see if those correlations are present. The first, an examination of 415 studies, 42 

found little evidence that protein-encoding genes (sometimes referred to as 43 

“functional genes”) or gene transcripts correlate with associated biogeochemical 44 

processes3. Although all studies attempted (or presumed) to link microbial genes or 45 

transcripts with function, only 14% measured both the copy number of genes or 46 

transcripts and the corresponding process (n = 59 studies, comprising 224 individual 47 

effects as most studies had measured multiple gene-function relationships). Of the 48 

224 effects where both characteristics were measured, only 38% exhibited a positive 49 

relationship between molecular and process measurements that many assume to 50 
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exist. The effect size for the relationship between gene copy number and process 51 

rate had an approximately normal distribution with a mean near zero3.  This result 52 

was consistent whether functional gene or transcript abundance was used as the 53 

response variable. The second study, compiled a separate dataset of 148 studies 54 

that examined microbial membership and ecosystem processes in response to 55 

experimental manipulations4. Whereas 40% of included studies reported 56 

concomitant changes in microbial membership and an ecosystem process, only one 57 

third of those cases reported the relationship between microbial membership and an 58 

ecosystem process. Interestingly, of the 53 studies that posed a hypothesis or 59 

objective about links between microbial membership and ecosystem processes, 60 

more than half (53%) did not test for a statistical structure-function link4. 61 

Microbiomes are the engines that power system-level processes5. However the 62 

meta-analyses described above illustrate that the current approach to study the links 63 

between microbiome characteristics and ecosystem processes are not well 64 

formulated and relationships between microbiome characteristics and system level 65 

processes are rarely tested. When linkages are explicitly tested, significant 66 

correlations between microbiome characteristics and ecosystem processes are 67 

sometimes present, but more frequently not present 3,4. One reason for the ambiguity 68 

between microbiome characteristics and system level processes is that many studies 69 

are conducted in the absence of a conceptual framework that illustrates how different 70 

measurable microbial characteristics relate to one another and to the system level 71 

process of interest. 72 

Microbial characteristics can range in resolution from cellular abundance to the 73 

entire genetic potential of a species-rich community (i.e., a metagenome). Because 74 

all measureable microbial characteristics do not exist within the same plane of detail, 75 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 1, 2018. ; https://doi.org/10.1101/065128doi: bioRxiv preprint 

https://doi.org/10.1101/065128
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

a conceptual structure is required to clarify how various microbial characteristics are 76 

related to each other and to the processes they affect. Identifying correlations 77 

between a microbial characteristic and an ecosystem process in the absence a 78 

broader conceptual underpinning creates the potential for correlations to be 79 

mediated by a third (or more) unaccounted variable(s). The absence of an underlying 80 

mechanism also limits the potential for each result to be applied to additional 81 

systems or to expand to broader spatial and temporal scales, for additional testing, 82 

replication, and confirmation.  83 

Challenges in Linking Microbial Characteristics and Ecosystem Processes 84 

A key challenge in linking microbial information to a system-level process is that 85 

conceptual research frameworks often do not effectively align with the methods 86 

being applied or the data those methods generate. For example, environmental 87 

factors act on the physiology of individual organisms, which alters their competitive 88 

ability, abundance, collective physiology, and ultimately their contribution to an 89 

ecosystem process. However, designing an observational study or experiment from 90 

this framework assumes that environmental and microbial characteristics are 91 

measurable across multiple categories of ecological organization (i.e., individuals, 92 

populations, and communities) at the temporal and spatial scales at which they 93 

influence microorganisms (Figure 1a). In addition, the relationships between 94 

environmental variables and microbial characteristics can be decoupled in both time 95 

and space4, and are often non-linear6. Recent immigration, phenotypic plasticity, 96 

disequilibrium between the environment and the extant microbiome at the time of 97 

sampling, functional redundancy, and dormancy can all mask the relationship 98 

between measurable microbial characteristics and the processes microorganisms 99 

influence (Figure 1b). 4,7,8,9 As micrometer scale characteristics of microbiomes (10-6 100 
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m) are scaled to the level of ecosystems (m to km), we assume that our conceptual 101 

understanding is also scalable. However, each of the aforementioned confounding 102 

factors aggregate over multiple orders of magnitude often masking the very 103 

relationships we seek to elucidate (Figure 1b). To formalize how measureable 104 

microbiome characteristics are linked with system-level processes we have 105 

conceptually defined the intersection of microbial and ecosystem ecology and 106 

identified three categories of microbial characteristics that illustrate the relationship 107 

among each category of microbial characteristics and how they may contribute to an 108 

ecosystem process (Figure 2). 109 

Mapping Ecosystem Processes to Microbial Characteristics  110 

  Ecosystem processes are defined as a qualitative change in a pool or a flux from 111 

one pool to another (e.g. NH4
+ to NO3

-
, or dissolved organic matter to CO2). The first 112 

step to understand how the microbiome influences an ecosystem process, is to 113 

define the ecosystem process of interest and each sub-process that contributes to it 114 

(i.e., the set of constituent reactions that combine to determine net flux). Few, if any 115 

ecosystem processes involve a single metabolic pathway, or are carried out by a 116 

single organism (e.g., a notable exception being the recent discovery of commamox 117 

which can independently carry out nitrification, the conversion of NH4
+ to NO3

-)10,11. 118 

Rather, ecosystem processes are composites of complementary or antagonistic sub-119 

processes, carried out by phylogenetically and metabolically diverse 120 

microorganisms12. For example, net ecosystem productivity (NEP) is the balance 121 

between antagonistic processes of C-fixation and C-mineralization. Each sub-122 

process of NEP can be further partitioned into a series of metabolic pathways (e.g., 123 

chemoautotrophic nitrification and photoautotrophic C-fixation or heterotrophic 124 

fermentation and aerobic respiration). Partitioning each ecosystem process in this 125 
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hierarchical manner can continue until the sub-processes maps directly to specific 126 

microbial metabolic pathways (e.g., acetoclastic methanogenesis). Subsequently 127 

each of these metabolic pathways can be categorized as either phylogenetically 128 

broad or narrow13. Broad processes are phylogenetically common (i.e., widely 129 

distributed among taxa), whereas narrow processes are phylogenetically conserved 130 

(i.e., limited to a specific subset of taxa). For example, denitrification and 131 

photosynthesis are phylogenetically broad processes, while both methanogenesis 132 

and methanotrophy are phylogenetically narrow processes (with at least one notable 133 

exception14). 134 

The second step is to identify, the controls or constraints on each constituent sub-135 

process. For example, the kinetics of a single metabolic pathway in a model 136 

organism may help us understand the rate limiting steps of a narrow process, but 137 

insights from model organisms are much less likely to capture the full spectrum of 138 

responses of a broad process where phenotypic variation among phylogenetically 139 

diverse organisms is likely to be much greater15,16. Defining the ecosystem process, 140 

its critical sub-processes, and the known phylogenetic distribution of the metabolic 141 

pathways that drive those sub-processes creates an explicit conceptual pathway that 142 

links the ecosystem process to the microorganisms that contribute to it. Once the 143 

ecosystem process has been conceptually partitioned into its component parts and 144 

their primary controls, a concerted approach can be applied to investigate how 145 

characteristics of the microbiome influence the ecosystem process of interest within 146 

the complexity of a natural environment.  147 

Categories of Microbial Characteristics 148 

We propose that attempts to elucidate the microbial contribution to system-level 149 

processes needs to explicitly identify three distinct categories of microbial 150 
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characteristics: 1) microbial processes, 2) microbial community properties, and 3) 151 

microbial membership (Figure 2). The contribution of the microbiome to ecosystem 152 

processes is exerted through aggregate community properties that are shaped by 153 

both microbial membership and environmental factors. This proposed framework 154 

allows the researcher to clearly identify how different measurements used to 155 

characterize a microbiome interact with each other and identify the potential of each 156 

characteristic to elucidate the microbial contribution to the system level process. 157 

These categories are hierarchically connected (Fig. 2), but they represent distinct 158 

degrees of aggregation that are not simply an additive function of the previous 159 

category. Furthermore, each category is potentially subject to different modes of 160 

regulation, and, each category has different putative linkages to system-level 161 

processes (Fig. 2). All measureable characteristics of microbial communities (e.g., 162 

abundance of cells, sequence of genes, transcripts, or proteins; enzyme expression 163 

or activity) can be placed within one of the above categories, but most studies rarely 164 

articulate how these measurements differ in their specificity (i.e., the level of 165 

phylogenetic resolution at which they are applied), precision (i.e., the ability of the 166 

method to repeatedly describe the characteristic of interest), or context (i.e., how a 167 

characteristic relates to other characteristics or the ecosystem within which they 168 

were measured). This conceptual structure that orientates each microbial category 169 

within a broader context creates the opportunity to improve the design of 170 

observational and experimental studies in micobiome research.  171 

Microbial Processes - Microbial processes are the collective metabolism of the 172 

microbiome that contribute to changes in pools and fluxes of elements or compounds 173 

(i.e., Figure 2, Letter K). This is the level of microbial information that can most 174 

readily be incorporated into system-level models because many microbial processes 175 
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represent the key sub-processes that contribute to a particular ecosystem process 176 

(e.g., methanogenesis + methanotrophy ≈ methane efflux). Commonly measured 177 

microbial processes in ecosystem science include nitrogen fixation, denitrification, 178 

nitrification, phosphorus uptake and immobilization, carbon fixation, and organic 179 

carbon mineralization. The rates of many microbial processes can be approximated 180 

through physiological assays (e.g., biological oxygen demand to estimate microbial 181 

community respiration), and while they do not open the “black box” of the microbial 182 

community, they do directly quantify the microbial contribution (or at least the 183 

potential contribution) to changes in resources moving through the box. Microbial 184 

processes can be distinguished from other microbial characteristics because they 185 

are all rates (i.e., have time in the denominator) and require a bioassay to estimate. 186 

Assays used to estimate microbial processes are often logistically challenging, 187 

require manipulations that inevitably deviate from the in situ conditions, and often 188 

depend on the environment from which the microbiome was sampled. For example, 189 

the relationship between temperature and microbial processes such as enzyme 190 

activity and phosphorus use efficiency (PUE) vary across latitudinal gradients17 and 191 

among seasons18. Thus, observations of the effect of temperature on either enzyme 192 

activity or PUE depend on where (e.g., at what latitude) and when (e.g., during which 193 

season) they were measured. In the absence of an understanding of the underlying 194 

physiological mechanism (e.g., the physiological change that allows a community to 195 

perform differently at different temperatures), the relationship between and 196 

environmental driver (e.g., temperature) and a microbial process must be measured 197 

through a direct assay at each location and at each time. This limits the inference 198 

possible from relying only on measurements of microbial processes alone. 199 
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Microbial Community Properties - Microbial community properties include a broad 200 

set of microbial characteristics such as community biomass or biomass elemental 201 

ratios (e.g., biomass C:N or C:P ratios) and the majority of phylogenetically 202 

undifferentiated aggregate sequence based measurements (e.g., gene abundance, 203 

metagenomes, transcriptomes). Microbial community properties (Figure 2) represent 204 

an integrated characteristic of the microbiome that has the potential to predict or at 205 

least constrain the estimates of microbial processes. For example, microbial 206 

community biomass C:N (a community property) indicates a microbiome’s potential 207 

to mineralize or immobilize N.19 Community biomass stoichiometry has been shown 208 

to be a useful predictor of nutrient immobilization or mineralization during litter 209 

decomposition19, and in soils can predict both respiration and N-mineralization better 210 

than microbial biomass alone20. The power of biomass elemental ratios to explain 211 

nutrient cycling has also been shown in freshwater21 and marine ecosystems22 212 

including the seminal paper that demonstrated the similarities between the 213 

stoichiometry of marine algal biomass and that of the dissolved fraction of nutrients 214 

in the ocean23.  215 

Microbial community properties can be separated into two categories, emergent 216 

properties (EPs) and community aggregated traits (CATs). Emergent properties have 217 

been used to refer to a variety of phenomena in ecology, however here we use 218 

emergent properties as it has been defined by Salt (1979)24: “An emergent property 219 

of an ecological unit is one which is wholly unpredictable from observation of the 220 

components of that unit”, which is consistent with its contemporary use in microbial 221 

ecology.25 For example, the potential importance of emergent properties to influence 222 

ecosystem processes has been demonstrated in a series of experimental flow-223 

through flumes that mimicked development and metabolism of stream biofilms26. 224 
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Transient storage (i.e., an increase in residence time of the water and its solutes 225 

near the biofilm relative to the flow around it) increased as the microbial biofilm 226 

density increased26. Microbial biofilm formation is an EP27 that affects the important 227 

ecosystem process of hydrological transient storage26. Another example of an 228 

emergent property is the relative abundance of a certain traits within a microbiome. 229 

Trait based approaches have a rich history in ecology and have been increasingly 230 

applied to address questions in multiple areas of microbial ecology.28 For example, 231 

specific functions (i.e. uptake of an individual organic substrate) are associated with 232 

traits which can involve multiple genes, among different taxa, all capable of 233 

performing the function albeit with differences in the underlying physiology 234 

and efficiency. The distribution and expression of these functional gene variants 235 

generates a trait structure among microbiomes, which determines the overall 236 

performance of the microbiome for that given function (i.e. uptake of a given organic 237 

substrate), but which cannot be predicted simply from the presence of the taxa that 238 

carry the genes conferring that trait.29 While characterization of EPs may improve the 239 

understanding of microbial processes (Figure 2, Letter G) they cannot, in principle, 240 

be estimated or predicted on the basis of the constituent taxa (i.e. membership) 241 

alone (Figure 2, Letter F), and thus must remain as an intermediary between 242 

environmental drivers (Figure 2, Letter C) and microbial processes (Figure 2, Letter 243 

G).  244 

Unlike EPs, CATs can potentially be estimated from characteristics of their 245 

constituents and provide a pathway to link microbial community membership to the 246 

community properties that drive microbial processes (Figure 2, Letter E)30. For 247 

example, CATs may include commonly measured community properties such as 248 

functional gene abundance as estimated from qPCR (e.g., pmoA which encodes a 249 
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subunit of the enzyme involved in methane oxidation, can be used to estimate 250 

potential for methanotrophy and as a phylogenetic marker for methanotrophs)31. A 251 

recent perspective article discussed the role of CATs in microbial ecology and noted 252 

a series of additional CATs (e.g., maximum growth rate, dormancy, osmoregulation) 253 

that could be inferred from metagenomic data of the extant community30.  254 

Understanding when, and which, community properties that shape microbial 255 

processes can be predicted by membership is a critical research question, and an 256 

important step in understanding how the microbiome contributes to system level 257 

processes. Whether or not a community property is an EP or a CAT is an exciting 258 

area of research and provides an important framework to advance research at the 259 

microbial-ecosystem nexus. New approaches, like studying higher-level interactions 260 

in ecological communities could help understand how a microbiome’s constituents 261 

interact to from emergent properties.32 This is not a trivial task, yet a suite of existing 262 

methods, discussed below, already provides the ability to directly pursue this 263 

challenge. 264 

Microbial Community Membership - Although the now commonplace analysis of 265 

community membership by sequencing phylogenetic marker genes (e.g., regions of 266 

the 16S, 18S, or ITS genes) or suites of phylogenetically conserved protein 267 

sequences identifies constituent microbial taxa, the direct coupling of microbial 268 

phylogeny to physiology and ecology remains elusive (Figure 2, Letter H).33,34,35 In 269 

general the paucity of associated physiological data or information on population 270 

phenotypes that accompany phylogenetic sequence data limits the system-level 271 

inference that is possible from analyses of community membership. This constrains 272 

our ability to attribute microbial processes to community membership of even 273 

relatively simple environmental consortia. Whereas it is clear that microbial 274 
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populations are not randomly distributed in space and time35, and that some 275 

microbial traits are conserved at coarse taxonomic scales 28,36,37, the physiological 276 

mechanisms underlying non-random distributions of microbial taxa across 277 

environmental gradients is often unknown. The limited understanding of the 278 

metabolism of most bacterial phyla limits an explicit understanding between the 279 

organism’s abundance and its role in the microbial process that contributes to an 280 

ecosystem process.  281 

A Path Forward 282 

We suggest that a challenging but necessary step for microbiome science is to 283 

move away from identifying correlative relationships between characteristics of the 284 

microbiome and system level processes, and towards identifying more causative and 285 

mechanistic relationships. The conceptual diagram (Figure 2) is a road map to 286 

organize and link the diverse suite of measureable microbial characteristics that are 287 

currently available to researchers. Figure 2 does not represent how these 288 

components necessarily interact in the environment; rather it is a map that identifies 289 

potential links between measureable microbial and system-level characteristics that 290 

can help structure our exploration of how microorganisms influence the systems they 291 

inhabit. Ecosystem ecology has traditionally been confined to interactions between 292 

environmental parameters and ecosystem processes (depicted within the horizontal 293 

arrow, Figure 2). Similarly, microbial ecology (depicted within the vertical arrow, 294 

Figure 2) has historically focused on phylogenetically undefined aspects of microbial 295 

communities (e.g., bacterial abundance) and microbial processes (e.g., bacterial 296 

production) or on the physiology of microbial isolates (e.g., sulfate reducing bacteria) 297 

or the collective physiology of highly reduced communities with known membership 298 

(e.g., waste water treatment microbiome). The routine inclusion of sequence-based 299 
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approaches in studies of environmental microorganisms has lead to an increasingly 300 

detailed description of the world’s microbiomes and an increasing interest in how 301 

constituents of those communities interact to influence the system as a whole.  302 

The drive to include microbial characteristics into system-level science has led to a 303 

range of approaches for linking characteristics of the microbiome to ecosystem 304 

processes. Direct connections between microbial membership and ecosystem 305 

processes (Figure 2, Letter I), or community properties and ecosystem processes 306 

(Figure 2, Letter J), have proven consistently difficult to establish3,4. We propose 1) 307 

identifying which microbial processes are likely to contribute to ecosystem-level 308 

pools and fluxes a priori (Figure 2, Letter K), 2) determining which microbial 309 

community properties best describe and predict these microbial processes (Figure 2, 310 

Letter G), and 3) identifying whether the community properties that best describe 311 

each process are a CAT or an EP (Community Properties, Figure 2). If the 312 

community property is a CAT then exploring the link between microbial membership 313 

and community properties may lead to further understanding and perhaps an 314 

enhanced predictive power (Figure 2, Letter E). However, if the community property 315 

is an EP elucidating the microbial membership that contributes to the EP is unlikely 316 

to improve understanding of the drivers of that community property (Figure 2, Letter 317 

F) and understanding how environmental drivers structure the EP will be more 318 

insightful. Formalizing microbiome research into a structured, conceptual framework 319 

will allow the research community to better focus on potential links between 320 

microbiome characteristics and system-level processes that are most likely to be 321 

detected empirically. This approach will also allow researchers working in different 322 

systems to test the same pathways among defined microbiome characteristics and 323 

thus increase the possibility of understanding the casual mechanism (or absence of 324 
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causality) for observed correlations. Equally as important, we suggest that 325 

attempting to link community membership (Figure 2, Letter I) or community 326 

properties (Figure 2, Letter J) directly to ecosystem processes is by definition 327 

correlative and therefore a less powerful approach to integrating microbiome 328 

characteristics into system-level science. Thus future research endeavors will be 329 

most powerful if they focus on elucidating connections through the complete path of 330 

microbial ecology (Figure 2, blue arrow, Letters E, F, and G) and not direct 331 

connections between microbial membership or community properties and ecosystem 332 

processes (Figure 2, Letter I and J). 333 

Applying and Testing the Proposed Framework   334 

Applying and testing the proposed framework will depend on the ability to more 335 

robustly evaluate each category of microbial characteristics and to directly measure 336 

the arrows that connect each category (Figure 2). Both labeling/sorting approaches 337 

and phenotypic description of isolates provide an opportunity to better understand 338 

how microbial membership contributes to community properties (Figure 2, Letter E or 339 

F). Labeling and cell sorting approaches (e.g., fluorescent in situ hybridization (FISH) 340 

coupled with flow cytometry cell sorting38, or immunocapture such as with 341 

bromodeosyuridine, BrdU)39 provide powerful tools to constrain the complexity of the 342 

microbiome and directly test hypotheses that link membership to community 343 

properties or microbial processes. Labeling and sorting techniques allow the cells 344 

that can be targeted with a stain or other label to be separated from the broader 345 

community and then assayed for membership or phenotypes such as activity or 346 

biomass composition. For example, a study of an Arctic Ocean bacterial community 347 

labeled the actively growing component of the community using BrdU and then 348 

separated those populations from the rest of the community using an immunocapture 349 
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technique to better understand the portion of the microbiome that was driving 350 

community dynamics39. By simplifying the community, researchers were able to link 351 

membership to secondary production (a microbial process, Figure 2, Letter H) and 352 

begin to better understand which members of the community were contributing to 353 

secondary production.  354 

In addition, physiological studies of isolates from a broader distribution of 355 

representative phyla are key to advancing our understanding of how membership 356 

contributes to community properties (Figure 2, Letter E). Finding isolates that are 357 

representative of important community properties has the potential to better 358 

understand phenotypic plasticity and how constituent populations do (CATs) or do 359 

not (EPs) contribute to a community property15. For example, work on the marine 360 

bacterioplankton SAR11 has led to an increased understanding of how this 361 

ubiquitous member of the marine microbiome interacts with elemental cycles in the 362 

open ocean40. Similarly, a rich body of work on multiple isolates of the comparably 363 

ubiquitous photoautotroph Prochlorococcus has advanced our understanding of the 364 

ecology and physiology of one of the most abundant phototrophs on the planet41. 365 

Detailed studies of isolates of common environmental OTUs have clearly 366 

demonstrated immense variation within a given OTU (i.e., “microdiversity”) that in 367 

part explains the challenge of linking membership to a community property16. For 368 

example, work on Prochlorococcus has led to a better understanding of how 369 

ecotypes within a single taxonomic unit (OTU) can lead to specialization in 370 

temperature and substrate affinity41. OTUs that form a substantial portion of the 371 

microbiome’s sequence abundance provide potential candidates for further 372 

investigation of possible phenotypic plasticity and or microdiversity16. For example, a 373 

single phylotype of the class Spartobacteria within the phyla Verrucomicrobia was 374 
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found to be present in a broad range of soil ecosystems and comprised as much as 375 

31% of all 16S sequences returned from prairie soils42, making it an excellent 376 

candidate for targeted isolation and physiological studies. Whereas it is challenging 377 

to isolate and culture many microorganisms from the environment, existing 378 

approaches to isolation have been led to successful isolation of both abundant and 379 

rare members of environmental microbiomes. A recent study isolated members of an 380 

apple orchard soil microbiome where most isolates were from the least abundant 381 

members of the community43. Previous studies have had success isolating members 382 

of the pelagic marine microbiome by using filter-sterilized seawater with a dilution to 383 

extinction approach44. Thus there is a potential to target both abundant40,41 and rare43 384 

members of diverse microbiomes to learn more about their influence on community 385 

level properties. Studies of environmental isolates are essential in building a broader 386 

understanding of how community membership does or does not contribute to 387 

community properties (H2, Letter E and F).  388 

The most commonly measured microbial characteristics can be associated with 389 

one of the three categories of microbial characteristics defined here. However, the 390 

key to moving from a correlative and descriptive approach to a causative and 391 

mechanistic approach comes in measuring the arrows represented by letters in 392 

Figure 2. There is a suite of powerful methods already being employed in microbial 393 

ecology that can actively measure many of the arrows illustrated in Figure 2. These 394 

include: stable isotope probing of mixed communities45, single cell methods that can 395 

assay cells in the physiological state they occur in in the environment46, and labeling 396 

individual cells with stable isotopes for single cell analyses46. Studies that use stable 397 

isotope probing or any form of tracking stable isotopes into a population have been 398 

successful in linking microbial membership to microbial processes (Figure 2, Letter 399 
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H). For example, a study of sulfate reduction in a Scottish peatland using SIP 400 

revealed that a single species of Desulfosporosinus was most likely responsible for 401 

the totality of sulfate reduction within the peatland even though it only comprised 402 

0.006% of the retrieved 16S rRNA gene sequences47. In this case, the 403 

Desulfosporosinus species represented the only known sulfate reducer within the 404 

community and thus the kinetics of this organism seemingly defined the kinetics of 405 

sulfate reduction for the entire system. Whereas this is a single example of using SIP 406 

to link microbial membership to microbial processes (Figure 2, Letter H), there is a 407 

suite of culture-free techniques (such as Raman microspectroscopy (MS), 408 

NanoSIMS, or X-ray microanalysis, XRMA) that complement sequence-based 409 

microbiome analyses by reporting on the physiological and phenotypic 410 

characteristics of individual cells in situ 46,48,49. For example, Raman MS has the 411 

ability to elucidate the macromolecular composition of uncultured individual cells in 412 

situ46. Incorporation of stable isotopes into a cell’s macromolecules can be visualized 413 

as a shift in the Raman spectra. This provides information not only on which cells are 414 

incorporating the substrate but what macromolecular pool those substrates are being 415 

allocated to. Similarly, NanoSims allows for visualization of isotopes within a cell, 416 

and while it cannot be used to identify which macromolecule pool an isotopic label 417 

went into, it can visualize which cells are actively incorporating isotopically labeled 418 

substrates. Both Raman and NanoSims can be coupled with a range of in situ 419 

hybridization techniques (e.g., fluorescent in situ hybridization, FISH) to identify 420 

which populations are contributing to community properties (Figure 2, Letter E) or 421 

microbial processes (Figure 2, Letter H). For example, the study of a microbial 422 

consortia from the Sippewissett Salt Marsh on the coast of Massachusetts, USA 423 

used a combination of FISH and NanoSIMs to confirm a syntrophic association 424 
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between a population of autotrophic purple sulfur bacteria and heterotrophic sulfate 425 

reducing bacteria (SRB)50. Whereas several pieces of evidence pointed to a 426 

syntrophic association, the authors confirmed the association by first using FISH to 427 

visualize the physical association of each population. Further analysis with 428 

NanoSIMS after incubation with 34S enriched sulfate and 14C enriched bicarbonate 429 

confirmed the presence of carbon fixation by the purple photosynthetic bacteria with 430 

sulfide as the electron donor was coupled to the reduction of sulfate by the SRB. 431 

Using existing methods of confirmatory ecophysiology allows for direct 432 

measurements of the arrows connecting membership with microbial processes in a 433 

stable microbial consortia (in this case both carbon fixation and sulfate reduction, 434 

Figure 2, Letter H). These approaches applied in concert with sequence-based 435 

analyses have the potential to empirically link the categories of microbial information 436 

defined here (Figure 2), moving microbiome science from a descriptive and 437 

correlative approach to a mechanistic and causative approach. 438 

 These culture free approaches also create the potential to begin to determine 439 

which community properties are EPs, and which are CATs. For example, microbial 440 

community biomass stoichiometry (e.g., biomass C:N or C:P) cannot currently be 441 

predicted (or even constrained) from a list of it’s constituent taxa (Figure 2, Letter F). 442 

However, microbial biomass stoichiometry is a community property with power to 443 

predict the microbial contribution to nutrient cycling (Figure 2, Letter G).19-22 444 

Independently, the biomass stoichiometry of microbial isolates grown on the same 445 

media has been shown to differ among different taxa suggesting a relationship 446 

between an organisms’ identity and the elemental composition of its biomass. 51,52  447 

However, there is an abundance of evidence that suggests that the biomass 448 

stoichiometry of many isolates is a function of the stoichiometry of the media they 449 
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were cultured on52. Electron dispersal spectroscopy (EDS) has the power to 450 

measure the C:N:P of  individual bacterial cells growing in situ (i.e. not in culture)49. 451 

The potential to couple EDS analysis with a phylogenetic label presents the 452 

opportunity to assay mixed microbial communities and assess the link between 453 

phylogenetic identity and biomass stoichiometry under natural conditions53. Thus, 454 

community biomass stoichiometry can potentially be deconstructed into the biomass 455 

stoichiometry of its constituent taxa53. This approach would provide a direct link 456 

between community membership and a community property (e.g., biomass C:N, 457 

Figure 2, Letter E), that influences an important microbial process (i.e. nutrient 458 

recycling).  459 

Designing microbiome research  460 

It is critical that we recognize the influence of the taxonomic and functional 461 

composition of the microbiome is exerted through multiple pathways, some that are 462 

direct and can be readily identified, some that are indirect, and mediated by complex 463 

interactions at the community level. We must also recognize that the influence of 464 

microbiomes will vary depending on the system-level process in question, because 465 

analysis of microbial characteristics may simply not improve the environmentally-466 

based prediction of certain processes (Figure 2, Letter A), whereas other system-467 

level processes may indeed benefit from the inclusion of microbial characteristics 468 

including membership. For the latter, the challenge then is to determine which 469 

microbial category is the most relevant predictor of the system level process of 470 

interest: microbial processes, community properties, or microbial membership. 471 

Establishing the links between these microbial dimensions (Figure 2, Letters E, F, 472 

and G) further contributes to our understanding of the mechanistic underpinnings 473 
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that affect system level processes and thus will have greater explanatory power in a 474 

broader range of systems.  475 

The framework presented here provides one approach to formalize inquiry across 476 

microbiome science and encourages empirical linkages between the presence of 477 

organisms in a system and the processes that characterize that system. Whereas we 478 

draw examples from environmental microbiomes and the ecosystems they inhabit, 479 

this structured approach has the potential to benefit the analysis of microbiomes 480 

associated with other systems such as host organisms and those of the built 481 

environment. As important as establishing causal links among microbial 482 

membership, community properties, microbial processes, and ecosystem processes, 483 

is determining when these links are unlikely to be present. Research that 484 

indiscriminately seeks to identify correlations, which does not recognize the 485 

hierarchy of effects, and that places all metrics on an equal plane are susceptible to 486 

confirmation bias and will continue to yield conflicting and ambiguous results that not 487 

only fail to provide new insight into ecosystem processes, but also blurs the 488 

connections that do exist. We suggest that rather than looking for linkages among 489 

microbiome membership and system-level processes in every study, research efforts 490 

would benefit from strategically targeting the linkages and processes for which an a 491 

priori understanding of microbial physiology should allow us to improve our 492 

understanding of the ecosystem process.   493 
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Figures 

  
Figure 1 Diagram of microbial-ecosystem linkages A) how linkages are commonly 
conceptualized across levels of ecological organization and B) the series of 
ecological phenomena that create challenges when attempting to link metrics from 
one level of ecological organization to the other. 
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Figure 2 Shown is a conceptual map of the intersection between microbial (vertical) 
and ecosystem (horizontal) ecology with each of the three categories of microbial 
characteristics (microbial processes, community properties, and microbial 
membership) as defined in the text. We argue for an increased focus on studies that 
elucidate pathways E, F, and G. In addition, we note that pathways I and J are less 
likely to effectively incorporate microbiome characteristics into system-level science. 
The delta symbol in each category indicates an emphasis on how changes within a 
category may lead to a change in a connected category. The dotted arrow for letter F 
denotes that many emergent properties cannot currently be linked to membership 
and is an important area for active research. 
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