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ABSTRACT 

Genotype imputation is used to estimate unobserved genotypes from genome-wide 
maker data, to increase genome coverage and power for genome-wide association 
studies. Imputation has been most successful for European ancestry populations in 
which very large reference panels are available. Smaller subsets of African 
descent populations are available in 1000 Genomes (1000G), the Consortium on 
Asthma among African-Ancestry Populations in the Americas (CAAPA) and the 
Haplotype Reference Consortium (HRC). We aimed to compare the performance 
of these reference panels when imputing variation in 3,747 African Americans (AA) 
from 2 cohorts (HCV and COPDGene) genotyped using the Illumina Omni family of 
microarrays. The haplotypes of 2,504 individuals (from 1000G), 883 (from CAAPA) 
and 32,611 (from HRC) were used as reference. We compared the performance of 
these panels based on number of variants, imputation quality, imputation accuracy 
and coverage. In both cohorts, 1000G imputed 1.5-1.6x more variants compared to  
CAAPA and 1.2x  more variants than HRC. Similar findings were observed for 
variants with higher imputation quality (R2>0.5) and for rare, low frequency, and 
common variants. When merging the results of the three panels the total number of 
imputed variants was 62M-63M with 20M overlapping variants imputed by all three 
panels, and a range of 5 to 15M unique variants imputed exclusively with one of 
the three panels. For overlapping variants, imputation quality was highest for HRC, 
followed by 1000G, then CAAPA, and improved as the minor allele frequency 
increased. The 1000G, HRC and CAAPA participants of African ancestry provided 
high performance and accuracy for imputation of African American admixed 
individuals, increasing the total number of variants with high quality available for 
subsequent analyses. These three panels are complementary and would benefit 
from the development of an integrated African reference panel, including data from 
multiple sources and populations.   
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Introduction 

Over the past 10 years, genome-wide association studies (GWAS) have uncovered 
a large number of replicated associations for many complex human diseases [1–3]. 
These studies have used different genotyping arrays with 300,000 to 2.5 million 
single nucleotide polymorphisms (SNPs), varied genomic coverage, and a wide 
range of allelic frequencies across populations. In general, these arrays provide 
excellent genomic coverage and density for European ancestry populations.  
Despite efforts at enrichment, imputation remains modest at best for other 
ancestral populations, especially populations of African ancestry. Genotype 
imputation is a cost-effective method for statistically predicting un-typed genotypes 
not directly assayed in a sample of individuals based on a dense reference panel 
of haplotypes. Imputation methods estimate haplotypes of observed genotypes 
shared between genotyped individuals and a sequenced reference panel, and use 
this information to infer alleles at un-typed SNPs [1]. This process can increase the 
overall genome coverage of an array by increasing the number of testable single 
nucleotide variants (SNVs) across the entire genome and can improve fine-
mapping of a targeted region of interest. Imputation also facilitates the comparison 
and meta-analyses of studies originally done on different microarrays [1,2,4,5], 
potentially bridging the gap in coverage between various genome-wide SNP 
platforms [6].  

Imputation of rare SNVs is more challenging since rare alleles are often ethnicity or 
population-specific and reflect fine-scale linkage disequilibrium (LD) structure 
impacted by recent demographic events [7]. Options for imputing low-frequency 
and rare variants more accurately in any specific population include increasing the 
size of the imputation reference panel to capture more reference haplotypes, or 
increasing the sequencing depth in the reference samples to minimize error rates 
inherent in low-coverage sequencing [8]. Recently admixed populations, which 
have higher degrees of LD and greater heterogeneity in their haplotype block 
structure (reflect the dynamics of admixture), may also benefit from using more 
diverse or larger reference populations.  

Earlier available reference panels include the Human Genome Diversity Project [9], 
the HapMap Consortium [10] and the 1000 Genomes Project (1000G) [11]. More 
recently, the Haplotype Reference Consortium (HRC) [12] was constructed via a 
predominantly European ancestry consortium currently comprised of 32,611 
individuals with whole genome or exome sequences available. The HRC includes 
the Genome of The Netherlands (GoNL), 250 Dutch parent-offspring families 
sequenced at 12x depth [13], the UK10K project with nearly 10,000 individuals 
whose whole genome was sequenced at 7x, or exome sequenced at 80x [14] and 
1000G subjects among other cohorts (http://www.haplotype-reference-
consortium.org/participating-cohorts). Another project, funded by the UK 
government, plans to sequence 100,000 whole genomes from patients registered 
and treated by the National Health Service 
(http://www.genomicsengland.co.uk/the-100000-genomes-project/). These dense 
reference panels will allow better imputation of low frequency and rare variants [15] 
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and the discovery of new variants [14,16], but are generally focused on populations 
of European descent. 

There are a only few reference panels available for imputation in African 
Americans, those include the 1000 Genomes Project (1000G) [11] and the 
Consortium on Asthma among African ancestry Populations in the Americas 
(CAAPA) [17]. The 1000G includes 661 individuals with African ancestry from 
Esan, Gambian, Luhya, Mende, Yoruba, Barbadian and African-American 
populations [11]. The CAAPA panel  is an additional resource completed on 
populations of African ancestry from the Americas [17]. CAAPA included 883 
unrelated individuals of African descent from 15 locations in North, Central, and 
South America, the Caribbean, and Yoruba-speaking individuals from Nigeria. 
Their relatively small size of these panels compared to the references populations 
for European ancestry, limits the ability to discover new variants beyond those 
already present on the commercially available chips for subjects of African 
descent. Other projects assessing genetic diversity through dense genotyping and 
at the WGS level in African populations are currently under development including 
African Genome Variation Project (AGVP) [18] and the African Genome Resources 
(AGR) reference panel (https://www.apcdr.org/).  

In this paper, we compared imputation performance using publicly available 
reference panels to evaluate imputation accuracy and quality in African or admixed 
populations of African descent. Imputation performance has been evaluated for 
African American populations comparing the 1000G, HapMap and the Exome 
Sequencing Project [5,19–22], and also using several combinations of populations 
from 1000G. Previous analyses suggest multi-ethnic panels in 1000G (primarily 
European (EUR) and African (AFR)) improve imputation performance compared to 
a reference panel from any single population (AFR) [21]. In previous studies of 
African Americans imputed with several combinations of 1000G populations, 
imputation accuracy (based on concordance and imputation quality score) was 
comparable across the reference panels. Imputation quality for SNPs with MAF 
between 0.02-0.50 was better when using more distantly related reference panels 
containing several continental African populations (AFR+EUR or ALL populations) 
in comparison with more closely related populations (Yoruba (YRI), CEPH 
European (CEU), and African Americans from the Southwest US (ASW)), but when 
analyzing all ranges of MAF including those with MAF < 0.02, the most closely 
related (YRI+CEU+ASW) panel produced better imputation results. On the other 
hand, genotype concordance was similar for both distant and closely related 
reference panels from 1000G [5].  

Imputation is standard part of all array-based genome-wide association analyses.  
However, the relative performance of these newer imputation reference panels – 
with varying total sample size and number of African individuals – is unknown. In 
this study, we extend these prior imputation comparisons beyond the 1000G 
populations by evaluating genotype imputation performance using CAAPA, HRC, 
and 1000G reference panels in two independent populations of African Americans 
[23–25].   
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Methods  

The current study includes a total of 3,747 African Americans participating in 
previous genome-wide association studies of spontaneous resolution of Hepatitis C 
viral infection (HCV cohort) and Chronic Obstructive Pulmonary Disease (COPD) 
from the COPDGene cohort, a multi-site study of heavy smokers [23–25]. Metrics 
of imputation performance, accuracy, genome coverage and annotation of variants 
were calculated in these two cohorts, separately.  

Study subjects 
African Americans from the HCV cohort: A genome-wide marker panel from 447 
African Americans was used, as previously described [23,24]. Briefly, 2,401 African 
American individuals participating in a longitudinal cohort study or identified 
through blood repositories as having HCV infection (spontaneously resolved or 
persistent) were enrolled, and were genotyped as part of the HCV Genetics 
Consortium. Each individual study obtained consent for genetic testing from their 
governing Institutional Review Board (IRB) and the Johns Hopkins School of 
Medicine Institutional Review Board.  

African Americans from the COPDGene cohort. This study included 3,300 African 
Americans participants in the COPDGene study. A complete study protocol for 
COPDGene had been described elsewhere [25]. Briefly, 10,280 self-identified Non-
Hispanic Whites and African Americans between the ages of 45 and 80 years with 
a minimum of 10 pack-years smoking history were enrolled at 21 centers across 
the US with the goal of identifying genetic causes of COPD. Each study site has 
obtained local IRB approval to enroll participants in this project, and all subjects 
provide informed consent [25].  

Genotyping and Quality Control 

African Americans from the HCV cohort: Genetic variants and their locations for the 
genotypic data, reference panels and whole genome sequencing data were 
specified based on The Genome Reference Consortium Human build 37 
(GRCh37) [26]. A total of 774,792 SNPs genotyped on the Illumina Omni Quad 
array (IIlumina, Inc. San Diego) met quality control criteria and were used for 
imputation. SNPs with MAF < 0.01, those with missing call rate ≥ 5% and those 
deviating from Hardy Weinberg equilibrium at p< 1×10−5 were removed from the 
analysis for quality control. Individuals cryptically related, duplicated replicates, and 
individuals with sex discrepancies were excluded [23].  

African Americans from the COPDGene cohort: A total of 624,564 SNPs 
genotyped on the Illumina Omni Express array (IIlumina Inc. San Diego, CA) were 
used for imputation. All SNPs with  MAF < 0.05, those with missing call rate ≥ 2%, 
those deviating from Hardy Weinberg equilibrium at p< 1×10−3 and individuals 
cryptically related, duplicated replicates and individuals with sex discrepancies 
were excluded [27].  
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Whole-Genome Sequencing: Library Preparation and Bioinformatic Analysis 

Whole genome sequencing data in a subgroup of 17 subjects of the HCV cohort 
was performed at the New York Genome Center. In brief, libraries of 350-bp 
fragments were generated from 1 µg sheared genomic DNA using the TruSeq 
PCR-Free library preparation kit (Illumina, San Diego, CA). WGS was performed at 
a coverage of 30x. Base calling and filtering were performed using current Illumina 
software; sequences were aligned to NCBI genome (build 37) using Burrows-
Wheeler Aligner [28]; Picard was used to remove duplicate reads [29]; base quality 
scores were recalibrated using GATK [30]. Assessment of reads not aligning fully 
to the reference genome was performed, locally realigning around indels to identify 
putative insertions or deletions in the region. Variants were called using GATK 
HaplotypeCaller tool, which generates single-sample Genomic VCF (GVCF) files. 
To improve variant call accuracy, multiple single-sample GVCF files were jointly 
genotyped using GATK Genotype GVCFs, which generates a multi-sample VCF. 
Variant Quality Score Recalibration (VQSR) was performed on the multi-sample 
VCF, which adds quality metrics to each variant that can be used in downstream 
variant filtering [31]. Quality control of all variants included filtering out based on 
genotyping quality score <20, read depth <10 and removing variants in genomic 
duplicated segments. 

Estimation of Genetic African American Ancestry 
 

Genetic ancestry for both cohorts was determined by principal components using 
the smartpca program in EIGENSOFT [32].  A subset of independent SNPs across 
the genome were selected by pruning the full dataset for markers with an r2 < 0.01 
to insure independence between SNPs. Chromosomal regions known to be 
associated with ethnicity were removed (including the lactase regions on 
chromosomes 2, 8, and the HLA region on chromosome 6). African-American 
ancestry groups were determined based on tight clustering of the first 2 principal 
components. Outliers were removed based on heterozygosity, and if the subjects 
were 6 standard deviations from either of the 2 first principal components [23,25] 
The average percent of African ancestry was estimated at 79.5% and 80.1% in the 
HCV and COPDGene cohorts, respectively.  

Phasing and Imputation 
 
For both cohorts, Eagle v2.3, a reference-based phasing algorithm was used to 
phase genotypes prior to imputation [33,34]. Imputation was performed for 
chromosomes 1 to 22 using the Minimac3 software through the publicly available 
Michigan Imputation Server [4]. Minimac3 is a Markov Chain based haplotyper that 
can resolve long haplotypes or infer missing genotypes in samples of unrelated 
individuals [35]. Imputation of genotypes was performed using 3 different reference 
panels:  

a) 1000 Genomes Phase 3, Version 5 (referred to here as “1000G”) 
included 49,143,605 sites located in chromosomes 1 to 22 for the complete set of 
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2,504 individuals representing 5 continental and sub-continental populations: East 
Asian (EAS= 504), European (EUR=503), South Asian (SAS=489), African (AFR= 
661) and Mixed American (AMR= 347) [11]. The 1000G uses a combination of low-
coverage whole-genome sequencing (WGS) (mean depth of 7.4x), deep exome 
sequencing (mean depth of 65.7x) and dense microarray genotyping;  

b) The CAAPA reference panel (“CAAPA”) comprising 883 individuals from 
19 case-control studies of asthma with 31,163,897 variants identified on 
chromosomes 1-22 by high coverage WGS (30x). The populations for this panel 
include individuals from Barbados (N=39), Jamaica (N=45), Dominican Republic 
(N=47), Honduras (N=41), Colombia (N=31), Puerto Rico (N= 53), Brazil (N=33) 
and Nigeria (N=25) and African Americans (N=328) [17]; 

c) The Haplotype Reference Consortium (“HRC”) reference panel 
combining data sets from 20 different studies with low-coverage WGS (4–8x 
coverage) of subjects with predominantly European ancestry. The first release of 
this reference panel consists of 32,611 individuals with 64,976 haplotypes including 
39,235,157 SNPs, each with a minor allele count (MAC) greater or equal to 5 [12]. 

Imputation Performance Metrics 

Evaluation of imputed variants by reference panel: For each reference panel and 
cohort, we assessed imputation performance using the following criteria: 1) the 
total number of imputed variants; 2) the distribution of all variants based on MAF 
ranges; and 3) the relationship between imputation quality and MAF. Imputation 
quality was determined using the R2 score, or the estimated value of the squared 
correlation between imputed genotypes and true, unobserved genotypes basing its 
calculation in the population allelic frequencies [36]. 

Comparison of imputed variants between reference panels: To compare imputation 
results between panels, we analyzed variants imputed by all three panels 
(“overlapping” variants) and exclusively by each panel (“unique" variants). For 
overlapping variants, the imputation quality and genotype concordance between 
the panels was compared. Unique variants with R2 >0.5, were evaluated by their 
number and MAF and for its presence and MAF in the CEU, YRI and CHB 
populations from1000G as a method to evaluate the potential ancestral origin of 
them.  
 

Imputation accuracy  

Imputation accuracy is defined as the proportion of correctly imputed SNPs among 
all successfully imputed SNPs [37–40]. We calculated imputation accuracy using 
three separate approaches:   

a) A “masked analysis” where we removed genotypes of a subset of 25,000 
SNPs and then imputed them as though they were not genotyped. Imputed 
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genotypes of these SNPs then were compared back to their original 
genotypes [5,37,41]. The MAF of these SNPs ranged from 0.01 to 0.5;  

b) A comparison of the allelic dosage of the original genotypic data with the 
allelic dosage of imputed data. Given three genotypes AA, AB, and BB for 
each SNP, the allelic dosage for each individual can be calculated as 
probabilities (P) of each of three genotypes via 2∗P (AA) + 1∗P(AB) + 
0∗P(BB) to obtain the expected allelic dosage from the original genotypic 
data and from the observed allelic dosage for masked and imputed 
genotype at each SNP [42]. The metric EmpRsq obtained in Minimac3 is the 
correlation between the true genotyped values and the imputed dosages 
calculated by hiding all known genotypes for a given SNP [36], similar to the 
masked analysis described above. We calculated the mean of this EmpRsq 
by bins of 0.001-0.01 value of frequency of the minor allele. 

c) A comparison of the imputed genotypes with whole genome sequencing 
genotypes in a subgroup of 17 individuals from the HCV study. This analysis 
was restricted to variants located on chromosome 22, and was done 
independently for all the variants imputed with each reference panel. 

Genomic Coverage and Density of Imputed Variants  

The total proportion of genomic variation captured by an array, either directly or 
indirectly, is referred to as “genomic coverage.” Assessments of imputation-based 
genomic coverage leverages observed array SNPs which imputed from a more 
densely genotyped or sequenced reference panel, such as the HapMap Project3 or 
1000 Genomes Project [43,44]. In this study we based our calculations on the 
imputation R2 (calculated as squared correlation between the actual (discrete) 
allelic dosage at a SNP and the imputed (continuous) allelic dosage, over a defined 
set of samples). Genomic coverage was quantified as the proportion of variants 
with an imputation R2 ≥ 0.8, and the reference set of variants used to determine 
imputation-based genomic coverage was the total number of variants described in 
each imputation reference panel. This method has been described and used 
previously as one assessment of genomic coverage in imputation performance 
studies [45,46].  
 
We also calculated the density of imputed variants (represented as the number of 
variants with R2>0.8 per Kb) across all autosomes, by chromosomes and in 
chromosomal regions harboring known genes. We compared the results obtained 
with the three panels. Variants genotyped on the arrays were given imputation R2 = 
1 for all coverage and density calculations; chromosome sizes in base pairs were 
obtained from the UCSC Known Gene Human Annotation (GRCh37). Coordinates 
of the regions containing genes were obtained from the RefSeq database via 
UCSC genome browser (http://genome.ucsc.edu/). Plink version 1.90 beta [47], 
bcftools [48] and customized scripts in R [49] were used for the analyses with both 
cohorts.  
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Results 

Imputation Performance Metrics 

Evaluation of imputed variants by reference panel: The total number of imputed 
variants and their distribution by MAF was similar for both the HCV and 
COPDGene cohorts (Tables 1 and 2). In the HCV cohort, 1000G imputed 1.5x 
more variants than did CAAPA, and 1.2x more variants than did HRC (46,626,711 
vs. 29,850,712 and 39,019,013, respectively) regardless of imputation quality. This 
difference was similar for the COPDGene cohort at 1.6x and 1.2x, respectively. 
However, it is important to note the 1000G imputation includes small 
insertions/deletions (INDELS) that are not currently available in the HRC and 
CAAPA panels. These INDELS correspond to 3,109,956 variants for the HCV 
cohort (6.7% of total) and 3,303,782 for the COPDGene cohort (7.0 % of total).  

For variants imputed with R2 > 0.5, 1000G imputed 1.4x and 1.3x more variants 
(26,310,578 vs. 18,584,433 and 20,643,333 for CAAPA and HRC, respectively) in 
the HCV cohort. This same observation was seen in the COPDGene cohort where 
1000G imputed 1.5x and 1.2x more variants than did either CAAPA or HRC. All 
three reference panels had a similar percent of variants imputed with R2 > 0.5 in 
both cohorts: HCV cohort (HRC, 53%; 1000G, 56%; CAAPA, 62%); COPDGene 
cohort (HRC, 60%, 1000G, 61%, CAAPA, 62%). For both cohorts and panels, the 
percentage of variants imputed with R2 > 0.5 increased with increasing MAF 
(Tables 1 and 2).  

Regardless of allele frequencies, the number of imputed variants was greater in 
1000G than for CAAPA: 1.8x more rare variants (MAF = 0.0001-0.01), 1.3x more 
low MAF variants (MAF=0.01-0.05) and 1.2x more common variants (MAF>0.05). 
These numbers were also higher for 1000G compared to HRC 1.4x, 1.1x and 1.2x, 
respectively. Similar values were observed in the COPDGene cohort, 1000G 
imputed 1.9x and 1.2x more rare variants than obtained with CAAPA and HRC, 
respectively. Those values were 1.1x more for low MAF variants and, 1.3x (1000G 
vs. CAAPA)  and 1.2x (1000G vs. HRC) for the comparisons of the panels for 
common variants (Table 2). The distribution of the number of variants with R2 > 0.5 
by MAF for each panel was similar between all reference panels with a high 
number of low frequency SNPs (i.e. those with MAF < 0.1) in the three panels for 
both cohorts. 

For both cohorts and all three panels, imputation quality improved as the MAF 
increased, reaching a mean quality score or R2 of 0.6 or higher for common 
variants (MAF>0.05). CAAPA imputed with slightly lower quality across all MAF 
followed by 1000G and HRC (Figure 1). The higher imputation quality observed 
with HRC and 1000G was particularly evident in low frequency variants (i.e. those 
with MAF from 0.002 to 0.05). In the COPDGene cohort, HRC had a better 
performance compared to 1000G for very rare variants (MAF < 0.001) but this was 
not observed in the HCV cohort, likely due to sample size differences in the two 
target populations.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 8, 2018. ; https://doi.org/10.1101/245035doi: bioRxiv preprint 

https://doi.org/10.1101/245035
http://creativecommons.org/licenses/by-nc-nd/4.0/


Comparison of imputed variants between reference panels:  When merging the 
variants imputed independently with each reference panel, the total number of 
imputed variants was 62,673,539 for the HCV cohort and 63,525,310 for 
COPDGene cohort, representing an increase of 20 - 30 million variants compared 
to the imputation of each panel separately (Figure 2 and Supplementary Table 1). 
In both cohorts, there were approximately 20 million overlapping variants imputed 
with all three reference panels and a range of 5 to 15 million unique variants 
imputed exclusively within one of the three panels.  

For overlapping variants, we compared the imputation quality obtained with each of 
the three panels (Figure 3). For the same variants, the imputation quality was 
higher for HRC and 1000G compared to imputation run against CAAPA. From 
approximately 20 million overlapping variants, HRC and 1000G imputed ~18-19 
million variants with R2 > 0.5, whereas CAAPA imputed ~15 million in both cohorts 
(Figure 2). Genotype calls of overlapping variants were 98-99% concordant 
between pairs of panels in both, COPDGene and HCV cohorts.  

In the HCV cohort, unique variants corresponded to 17.3%, 31.1% and 26.9% of all 
variants imputed with in CAAPA, 1000G and HRC, respectively. In the COPDGene 
cohort they were 17.9%, 32.1% and 27.3%, respectively. Most of them had MAF < 
0.01 (75%-90%) in both cohorts for the three panels (Supplementary Tables 2 and 
3), 5-24% of these rare variants were imputed with R2 > 0.5. There was a lower 
percentage (0.2-5%) of low frequency variants (MAF between 0.01-0.05) that were 
imputed with better quality (> 45% had R2> 0.5). The percentage of all unique 
variants imputed with R2 > 0.5 in the HCV cohorts was 27% for 1000G; 24% for 
CAAPA and 4% for HRC. A similar number of total unique imputed variants was 
observed in the COPDGene cohort:  34% for 1000G, 27% for CAAPA and 14% for 
HRC.  

We interrogated the three parental populations of 1000G (CEU, YRI and CHB) to 
estimate allele frequencies of unique variants imputed with R2 > 0.5 in each 
population. 31% of the variants imputed with CAAPA were present in parental 
populations of 1000G. Only a small percentage of those were polymorphic in the 
CEU and CHB (0.3%-6% in both cohorts) as compared to YRI (12% for HCV and 
22% for COPDGene - Supplementary Figure 1). Of those unique variants imputed 
using HRC, 34-35% were present in the parental populations; from those, 17-18% 
were polymorphic in CEU, in contrast with a 0.5-4% and 2% of variants that were 
polymorphic in YRI and CHB in both the HCV and COPDGene cohorts. All the 
unique variants with R2 > 0.5  imputed with 1000G in the HCV cohort were also 
present in the parental populations, and a large number were actually polymorphic 
(i.e. MAF > 0) in YRI (62%), CEU (36%), and CHB (31%). Similarly, in the 
COPDGene cohort, all unique variants imputed with 1000G were present in the 
three parental populations: YRI (56%), CEU (32%) and CHB (28%).   
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Imputation accuracy 

The concordance of genotype calls between the original genotype data and 
imputed data was quite high (96-97%) across all three panels using masked SNPs 
from both cohorts. The correlations between dosages of the imputed genotypes 
and actual genotypes ranged from 0.80-0.94, with higher correlations occurring 
when the MAF was greater than 1% (Supplementary Figure 2). In addition, we 
evaluated the concordance between whole genome sequenced and imputed data 
using variants on chromosome 22 in the HCV cohort. The genotype concordance 
for the three panels was 99% for 213,467, 190,005, and 195,591 variants 
overlapping between sequenced genotypes and imputed genotypes with 1000G, 
CAAPA and HRC, respectively.  

Genomic Coverage and Density of Imputed Variants  

We imputed 20,222,182 variants with R2> 0.8 using the 1000G panel, 11,684,700 
with CAAPA and 16,941,215 with HRC in the HCV cohort. In the COPDgene 
cohort, we obtained 19,645,517; 10,558,297 and 16,831,447 variants with those 
three panels, respectively. The genomic coverage was 0.41, 0.37 and 0.43 for 
1000G, CAAPA and HRC, respectively in the HCV cohort and 0.39, 0.33 and 0.42 
in the COPDGene Cohort. Genomic density of markers included in the genotype 
array was estimated to be at 0.3 and 0.2 marker/Kb in HCV cohort and COPDGene 
cohort respectively. In contrast, imputation with 1000G, CAAPA and HRC 
increased the genome density to 7, 4.1 and 5.9 markers per Kb, respectively. For 
both cohorts, the average density across chromosomes was ~6.8 variants/Kb for 
1000G, ~3.9 variants/Kb for CAAPA and ~5.7 variants/Kb for HRC. The density 
was considerably lower in gene regions with an average ~1.4, ~2.3 and ~1.9 
variants/Kb for CAAPA, 1000G and HRC, respectively (Supplementary Table 3 and 
4).  

Discussion  

In the current study, we used three reference panels to impute GWAS genotyping 
data in two independent cohorts of African American individuals with remarkably 
consistent results between the two studies. Imputation to three reference panels 
increased coverage and density of markers across all autosomal chromosomes 
and facilitated the accurate imputation of both rare and common alleles with R2 > 
0.5. Somewhat surprisingly, despite the smaller size of the reference panel and 
number of African-Americans, the 1000G reference panel resulted in a higher 
number of imputed variants (even after removing INDELS) than either the HRC or 
CAAPA cohorts alone. Additionally, while all three panels led to accurate estimated 
genotypes, the imputation quality was highest for HRC across all MAFs, but 
especially for low frequency and rare variants.  

A greater number of variants were imputed with 1000G as compared to CAAPA. 
The substantially larger sample size of the 1000G panel may explain this difference 
by itself. Previous studies comparing references panels have shown larger 
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reference panels considerably increase the number of imputed variants, as well as 
their imputation quality and accuracy, particularly for low-frequency variants 
[8,12,15]. However, the composition of the reference population and similarity to 
the target population is also very important. Shriner et al. [41] imputed variants on 
chromosome 22 in African Americans from the Washington, D.C. metropolitan area 
participating in the Howard University Family Study [50] and concluded the YRI 
reference panel outperformed other HapMap reference panels, including ASW, as 
well as a combination of the CEU and YRI. Previous studies in European 
populations have indicated population specific panels can improve imputation 
quality and coverage [51,52] compared to broader panels. This improvement in the 
number of variants imputed and the accuracy using population specific panels 
argues that LD patterns of ethnic-specific variants may not be captured by different 
ethnic groups with distinct ancestral genetic background [53], which might include 
haplotypes from irrelevant populations. We would expect a population specific 
panel like CAAPA, where ~50% are African Americans with African ancestry 
estimates of 76% or higher [17], would be optimal for imputing more rare and 
common variants with higher quality in a target sample with similar high proportion 
of African ancestry (African ancestry estimates averaging 79.5%) [23,24]. 
However, in our study, the higher number of individuals from populations from 
continental Africa contained in 1000G compared to CAAPA (N=504 vs. N=25) may 
have outweighed the larger number of total African ancestry individuals in CAAPA, 
and provided more information on parental haplotype diversity [54,55] improving 
the chances of a rare variant being effectively tagged by a characteristic haplotype  
in admixed individuals [44].  

1000G also imputed more variants in our African American subjects than did HRC 
even after accounting for indels, (even though 1000G is contained within this larger 
reference panel). The predominantly European ancestry haplotypes of the HRC 
panel might impair the selection of optimal haplotypes for imputation of these 
populations with high proportion of African ancestry and consequently explain why 
there was a less of an increase in imputation success in them. Our sensitivity 
analysis investigating the potential ancestral origin of the unique variants indicated 
1000G was able to impute variants of European and African origin compared to the 
HRC panel alone where the unique variants were present mostly in the CEU 
population of 1000G indicating an exclusive European origin. This may also explain 
why HRC imputed more variants than obtained with the CAAPA reference panel 
alone, if the higher number of imputed variants obtained with HRC compared to 
CAAPA reflects underlying European haplotypes in admixed African Americans.  

Regardless of reference panel, imputation yielded accurate genotypes as shown in 
the analysis of correlation between true genotypes and imputed genotypes, the 
masked analysis and the concordance analysis comparing imputed SNPs and 
sequencing data in the HCV cohort. The accuracy reflected in the estimated 
correlation of true genotypes and imputed genotypes was comparable (but slightly 
higher) for 1000G when studied as a function of minor allele frequency. The lower 
accuracy found using the CAAPA and HRC reference panels separately might be 
due to the inclusion of admixed populations without a large African and European 
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ancestral panel in CAAPA or the predominance of European haplotypes in HRC. 
This could limit selection of the best reference haplotypes.  

In this study we used global concordance as a measure of imputation accuracy 
excluding variants with MAF < 0.01. Accuracy can be inflated when calculations of 
concordance rate include rare and low frequency variants, due to chance 
concordance or chance agreement [56,57]. Due to the baseline low allele 
frequency, there is a low probability of any rare allele being present in any imputed 
sample; therefore, when the major allele is assigned in imputation, this inference 
would be almost uniformly “correct” by chance alone. This inflation is increasingly 
problematic whenever studies are more interested in evaluating low frequency and 
rare variants. Since our study didn’t include rare variants in the estimate, we 
consider our obtained values reliable. Our global estimates of accuracy were 
higher than previous results obtained in a group of 40 African Americans imputed 
with MACH using CEU, YRI, MEX and JPT+CHB HapMap populations. Accuracy 
values (measured as percentage of most likely genotypes agreeing with the 
original genotypes) of 88.8, 87.9 and 87.2 were found when masking 50%, 70% 
and 100% of all high quality SNPs [58]. The differences between this study and the 
current analysis are likely due to our larger sample size and type of reference 
population (Hapmap vs 1000G, HRC and CAAPA, separately).    

Imputation resulted in several rare and common variants unique to CAAPA, 
although they are present in the 1000G database. These variants are 
predominantly of African origin even though a great number are monomorphic in 
YRI subjects. It is likely these unique variants may be derived from African 
genomes not included in the 1000G, and may be unique to African descent 
populations in the Americas (where there is also a small percentage of Native 
American genes included). Similarly, the unique variants imputed with HRC may 
correspond to European derived polymorphisms not captured by the haplotype 
structure of the other reference panels.  

In this study, the total number of imputed variants increased when merging 
imputed variants obtained from each reference panel individually. However, 
although all panels are publicly available, we were not able to evaluate the 
imputation of a fully integrated reference panel. Previously integration of the 1000G 
and African Genome Variation Project panels markedly improved imputation 
accuracy across the entire allele frequency spectrum for populations poorly 
represented in the 1000G panel [18]. Similar results were found when merging the 
Estonian Biobank of the Estonian Genome Center, University of Tartu (EGCUT) 
and 1000G datasets [51] and the GoNL and 1000G [52] and when using a 
combined reference panel of 1,092 subjects from 1000G and 3,781 from UK10K 
Project for imputing rare variants in the Framingham Heart Study and the North 
Chinese Study [53]. We encourage development more publically available 
combined reference panels, like HRC, for African ancestry populations. This should 
also include the NHLBI funded Trans-Omics for Precision Medicine (TOPMed) 
project [59]. The 1000 Genomes Project will soon become “The International 
Genome Sample Resource” with all sequenced reads being re-mapped to the 
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GRCh38 map producing new variants calls specific to this assembly. It will also 
expand the global catalogue of freely available sequence information by 
incorporating Russian samples, new African populations and whole genome 
sequences from the Simons Genome Diversity Project [60]. Data from the CAAPA 
project is also available at the database of Genotypes and Phenotypes (dbGaP) 
and can be used to explore the option of “custom reference panels” for imputation 
in African Americans and other admixed populations from Latin America and the 
Caribbean. But as we show in this study, there is still a need for characterizing 
large, diverse parental populations such as those from sub-Saharan African to 
better capture populations such as those in the Americas.  

In summary, we found the 1000G, HRC and CAAPA reference panels provide high 
performance and accuracy for imputing dense marker panels for admixed African 
American individuals, increasing the total number of high quality imputed variants 
available for subsequent analyses. The 1000G panel also showed higher 
performance compared to the HRC and CAAPA reference populations likely 
because it included more diverse parental populations.  Finally, there are a large 
number of variants unique to these three reference panels, making them 
complementary to each other. We recommend directing efforts to the construction 
of an integrated African panel including data from multiple resources and 
populations.   
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Genotype Imputation Performance of Three Reference Panels Using African Ancestry Individuals 

Tables and Figures 

 

 
CAAPA 1000G HRC 

Minor allele 
frequency 

Number of 
variants R2 > 0.5 (%) Number of 

variants R2 > 0.5 (%) Number of 
variants R2 > 0.5 (%) 

0-0.0001 12,164 0 396,072 0 3,568,020 0 

0.0001-0.01 15,481,830 36.8 29,683,849 33.9 21,736,936 32.1 

0.01-0.05 6,343,792 83.9 7,050,809 97.4 6,055,818 99.3 

>0.05 8,012,926 94.2 9,495,981 98.6 7,658,238 99.7 

Total 29,850,712 62.3 46,626,711 56.4 39,019,012 52.9 

 

Table 1. Number of variants imputed by reference panel, minor allele frequency ranges and imputation quality for 
the HCV cohort.   
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CAAPA 1000G HRC 

Minor allele 
frequency 

Number of 
variants R2 > 0.5 (%) Number of variants R2 > 0.5 (%) 

Number of 
variants R2 > 0.5 (%) 

0-0.0001 374 0 60,632 0 1,119,183 0 

0.0001-0.01 15,528,412 38.4 30,331,067 41.52 24,294,755 41.1 

0.01-0.05 6,309,636 81.02 7,085,542 96.94 6,038,380 99.1 

>0.05 8,007,965 93.6 9,624,269 98.4 7,675,728 99.7 

Total 29,846,387 62.2 47,101,510 61.4 39,128,046 60.4 

 

Table 2. Number of variants imputed by reference panel, minor allele frequency ranges and imputation quality for 
the COPDGene Cohort.   
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Figure 1. Relationship between imputation quality and minor allele frequency for all variants imputed with 1000G, 
CAAPA and HRC in the HCV cohort (left) and COPDGene cohort (right). The graph represent the mean of 
imputation R2  by intervals of minor allele frequency (0.001-0.01). 

 

 

 

 

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

a
certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available under 

T
he copyright holder for this preprint (w

hich w
as not

this version posted January 8, 2018. 
; 

https://doi.org/10.1101/245035
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/245035
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

Figure 2.  Number of overlapping and unique variants imputed with 1000G, CAAPA and HRC for the HCV cohor
and COPDGene cohort. The intersection shows the number of variants imputed with the three reference panels
and the non-overlapping sections of the circles show the variants unique to each panel.  
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Figure 3. Comparison of imputation quality (R2) of all overlapping variants imputed with CAAPA, 1000G and HRC 
for the HCV cohort (left panel) and COPDGene cohort (right panel). The values on the gray line at imputation 
R2=0.5 correspond to the number of overlapping variants imputed with R2>= 0.5 with each panel. 

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

a
certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available under 

T
he copyright holder for this preprint (w

hich w
as not

this version posted January 8, 2018. 
; 

https://doi.org/10.1101/245035
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/245035
http://creativecommons.org/licenses/by-nc-nd/4.0/

