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Abstract

Population-level diversity of natural microbiomes represent a biotechnological resource for biomining, biorefining
and synthetic biology but requires the recovery of the exact DNA sequence (or “haplotype”) of the genes and
genomes of every individual present. Computational haplotype reconstruction is extremely difficult, complicated by
environmental sequencing data (metagenomics). Current approaches cannot choose between alternative haplotype
reconstructions and fail to provide biological evidence of correct predictions. To overcome this, we present Hansel
and Gretel: a novel probabilistic framework that reconstructs the most likely haplotypes from complex microbiomes,
is robust to sequencing error and uses all available evidence from aligned reads, without altering or discarding
observed variation. We provide the first formalisation of this problem and propose “metahaplome” as a definition for
the set of haplotypes for any genomic region of interest within a metagenomic dataset. Finally, we demonstrate using
long-read sequencing, biological evidence of novel haplotypes of industrially important enzymes computationally
predicted from a natural microbiome.
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It has become clear that population-level genetic vari-
ation drives competitiveness and niche specialisation in
microbial communities [1]. Novel combinations of vari-
ants in individuals (haplotypes) are filtered by natural
selection so that those that confer an advantage are re-
tained [2]. Recovering the haplotypes of enzyme iso-
forms for a given gene across all organisms in a micro-
biome (the “metahaplome”) would offer great biotech-
nological potential [3, 4] and allow unprecedented in-
sights into microbial ecosystems [5].

Similar goals in humans are being achieved by the
International HapMap Project which aims to describe
the common patterns of human genetic variation that
affect health, disease, responses to drugs and environ-
mental factors [6]. However, microbial research has
so far focused on higher-level characterisations of di-
versity, for example: the gene-set of all strains of a
species (the pangenome) [7], or quantification of indi-
vidual SNPs found in microbial communities (variome)
[8] or in viruses, the strains related by mutations in a
highly mutagenic environment (the quasispecies) [9].

Reconstructing population-level variation in micro-
bial communities is limited by our inability to culture in
vitro many microbes from the environment. Researchers
must instead rely on DNA isolated and sequenced di-
rectly from an environment (metagenomics) which gen-
erally results in highly fragmented and incomplete data
containing sequencing errors. This complicates the al-
ready computationally difficult (NP-hard) [10] problem
of haplotyping [11]. The generation of haplotypes from
metagenomes is particularly difficult as existing de novo
analysis pipelines for DNA sequence data generally as-
sume a single individual of origin and, when applied
to metagenomic datasets, remove low level variation
and produce single consensus sequences [12]. Further-
more, naive sequence partitioning approaches such as
contig binning or clustering cannot sufficiently distin-
guish strains or require many samples [13]. Even spe-
cialised metagenomic assemblers [12, 14, 15] do not aim
to solve the problem of recovering haplotypes.

To make the generation of approximate solutions
both computationally tractable and accurate, focus has
shifted towards the use of heuristics [16, 17, 18, 19, 20].
However, recent approaches for analogous problems typ-
ically produce a superset of many possible haplotypes
and leave it to the user to choose the best candidates.

Additionally, the problem of recovering haplotypes
from a metagenome has been left without a formal math-
ematical definition and methodologies are limited to
diploid species or for those with well-defined genomes
[21, 22]. Whilst researchers have identified the prob-
lem that consensus assembly poses for the downstream
analysis of variants [23] and are moving towards alterna-
tive assembly approaches, such as graph-based assembly
[24, 25], there are still no biologically validated methods
for the recovery of individual haplotypes for regions of
a metagenome.

We hypothesise that a probabilistic framework could
identify the true haplotype diversity of industrially im-
portant enzymes in a microbiome and allow ranking and
selection of the most likely haplotypes for further in-
vestigation. To test this, we have developed Hansel
and Gretel: a Bayesian framework capable of recov-
ering and ranking haplotypes using evidence of pairs
of single nucleotide polymorphisms (SNPs) observed on
sequenced reads. While specifically designed to extract
haplotypes from metagenomic data of microbial com-

munities, we show that the algorithm is general enough
to be applied to analogous haplotyping problems.

We characterize the performance of our approach
on simulated metagenomes, demonstrate its effective-
ness on data from a highly complex natural microbial
community and validate these results, using Sanger,
Illumina and Nanopore sequencing. We demonstrate
how, for the first time, the most likely haplotypes can
be recovered with high fidelity from complex metage-
nomic samples, enabling the characterisation of the true
population-level diversity of genes in microbiomes.

Results

The metahaplome

We provide the first formalisation of the problem of re-
covering haplotypes from a metagenome, and define the
metahaplome as the set of haplotypes for any partic-
ular genomic region of interest within a metagenomic
data set. The full mathematical definition is available
in Supplementary Section 1.

Hansel and Gretel

We have developed Hansel, a data structure designed
to efficiently store variation observed across sequenced
reads, and Gretel, an algorithm that leverages Hansel
for the recovery of haplotypes from a metagenome. Ad-
vantages include that our method:

• recovers haplotypes from metagenomic data

• does not need a priori knowledge of the number of
haplotypes

• makes no assumptions about the distribution of al-
leles at any variant site

• does not need to distinguish between sequence error
and variation

• uses all available evidence provided by the raw reads

• does not require any user-defined parameters

• does not require bootstrapping, model building or
pre-processing

• can confidently rank its own results based on calcu-
lated likelihoods

• can be executed on an ordinary computer

• has been verified in vitro

The details of the data structure and algorithm are pro-
vided in the Online Methods. We provide open source
implementations for the data structure API (Hansel)
and the haplotype recovery algorithm (Gretel) at
https://github.com/samstudio8/gretel.

We show in silico that recovery of haplotypes from
metahaplomes is possible even with data sets consisting
of short reads, and verify in vitro that our computational
predictions identify novel isoforms of enzymes found in
a natural microbial community. The following subsec-
tions describe the evaluation of Hansel and Gretel on
the following data:

• synthetic metahaplomes,

• a metagenomic mock community from Quince et al.
[26],

• enzymes from a real microbiome, validated using Ox-
ford Nanopore long-read sequencing.

2

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 13, 2018. ; https://doi.org/10.1101/223404doi: bioRxiv preprint 

https://github.com/samstudio8/gretel
https://doi.org/10.1101/223404
http://creativecommons.org/licenses/by/4.0/


Figure 1: Boxplots summarising the proportion of variants on an input haplotype correctly recovered (y-axes) from
groups of synthetic metahaplomes by Gretel. Single boxplots present recoveries from a set of five metahaplomes
generated with some per-haplotype mutation rate (column facets), over 10 different synthetic read sets with varying
read length (row facets) and per-haplotype read depth (colour fill). Each box-with-whiskers summarises the proportion
of correctly recovered variants over the 250 best recovered haplotypes (yielded from 50 Gretel runs (5 metahaplome
replicates × 10 read sets), each returning 5 best outputs). We demonstrate better haplotype recoveries can be achieved
with longer reads and more dense coverage, as well as the limitations of recovery on data exhibiting fewer SNPs/hb.
This figure may be used as a naive lookup table to assess potential recovery rates for one’s own data by estimating
the level of variation, with the average read length and per-haplotype depth.

Synthetic metahaplomes

We evaluated the fidelity of the haplotype reconstruc-
tions from Hansel and Gretel using synthetic meta-
haplomes. Each synthetic metahaplome consisted of five
3000 bp haplotypes generated by simulated evolution us-
ing seq-gen [27], with a fixed mutation rate and a star
phylogeny (see Methods). Five replicates of seven dif-
ferent mutation rates were generated for a total of 35
metahaplomes.

For each of the 35 metahaplomes simulated by seq-gen,
we generated 180 sets of uniformly distributed pseudo-
reads consisting of 10 replicates for each pairing of 3
read sizes and 6 per-haplotype depths. For the purpose
of read alignment and variant calling, we aligned each
read set against the 3000 nt starting sequence initially
provided to seq-gen. Variants were called by assum-
ing any heterogeneous genomic position over the aligned
reads was a SNP.

A single run of Gretel will repeatedly recover hap-
lotypes until the stopping criteria specified is met (see
Methods). For each synthetic metahaplome replicate,
we evaluated the fidelity of haplotypes reconstructed
by Gretel though comparison with the input sequences
used to generate the data. The reconstructed haplotype
sequence with the greatest proportion of heterozygous
positions in agreement with each of the original simu-
lated sequences were determined. We present this re-
covery rate for the seven mutation rates in combination
with the 3 read sizes and 6 per-haplotype read depths
used (Figure 1).

We found that haplotype recovery improves with
longer reads and greater coverage. We also observed
potential lower bounds on our ability to recover haplo-
types from a data set, as the facets with no successful
recoveries show. Unsuccessful recoveries are a result of
at least one pair of adjacent variants failing to be cov-
ered by any read, which is a requirement imposed on
Gretel for recovery (see Methods). For shorter reads,
low-level variation is more of a problem. 0.01 SNPs per
haplotype base (hb) over 100 bp would yield just one
SNP on average - insufficient evidence for Gretel.

Although one might expect high levels of variation
to make the recovery of haplotypes more challenging,
an abundance of variation actually provides more in-
formation for Gretel. We observe successful recoveries
from data sets with high variation (0.1 SNPs/hb over
five haplotypes of 3000 nt yields ≈ 1500 SNPs [Table
1]). With enough coverage (≥ 7x per-haplotype depth),
recoveries at a high level of variation are more accurate
than those in data sets with fewer SNPs.

For realistic levels of variation (0.01–0.02 SNPs/hb)
[8], with per-haplotype read depth of ≥ 7x, we can re-
cover haplotypes at a median accuracy of 80%. With
higher per-haplotype depth (≥ 25x), Gretel is capable
of recovering haplotypes with 100% accuracy (Figure 1).

Metahaplomes from a mock community

To show our method is capable at handling metagenomic
data at scale, we used a mock community from Quince et
al. (2017) [26]. A mock community is necessary as there
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are currently no metagenomes that have been annotated
with known haplotypes [28]. The community contains
5 Escherichia coli strains, and 15 other genomes com-
monly found in the human gut according to samples
from the Human Microbiome Project [29]. The authors
made available 16 million synthetic read pairs, gener-
ated from the 20 genomes to simulate a “typical HiSeq
2500 run”[26]. Additionally the original authors identi-
fied 982 single-copy core species genes (SCSGs) for E.
coli and provided DNA sequences of all SCSGs for the
five E. coli strains in the community.

We assembled the synthetic reads with MEGAHIT [30],
and we could map 814 of the 982 SCSGs back to our as-
sembly (see Methods). We executed Gretel over the 814
mapped SCSG sites with the aim to recover the haplo-
type for each of the five E. coli strains. The results are
shown in Figure 2. Gretel is capable of achieving results
with comparable accuracy to the current state-of-the-art
for the related problem of strain de-convolution (DESMAN
[26]). The binning step of the DESMAN pipeline led to
a majority of the SCSGs being discarded, leaving only
372 (of 982) for their own analysis. Whereas DESMAN
requires significant pre-processing, we show it is possi-
ble to achieve accurate haplotype recovery (over more
sites) without the need to perform any pre-processing.
We show that Gretel is capable of scaling to recover
strain-specific haplotypes from a microbial community,
for hundreds of highly variable E. coli genes with an
average accuracy of 99.5%.

Figure 2: The boxplot summarises the percentage se-
quence identity (y-axis) of Gretel haplotypes recovered
from each of the 814 gene sites, to five E. coli strains
(column facets) known to exist in the mock community.
Gretel was executed at 814 sites on an assembled mock
metagenome, consisting of short-reads generated from
five E. coli strain haplotypes, and 15 other genomes.
The y-axis is truncated at 90%.

Recovery from a real metahaplome

Finally, to validate our method empirically, we predicted
haplotypes from a natural microbial community, using
short-reads, and verified their existence by sequencing
isolated amplicons with Nanopore long-read technology.

As part of a previous experiment on the colonisation
of grass in the rumen [31], samples of rumen metatran-
scriptome were obtained from a 3 cows over a series
of timepoints after feeding (see Methods). 118M read-
pairs were generated with an Illumina HiSeq 2500 (100
bp). Reads were partitioned with khmer and assembled
with Velvet to generate an assembly which served as
a pseudo-reference. The previous study annotated the
assembly using MGKit[32] with the Uniprot database.

To find isoforms of industrially relevant enzymes
we filtered annotations to classes of hydrolase (Enzyme
Classification (EC): 3.2, 3.4 and 5.3) known to be found
in the rumen [1]. As a proof of concept, a subset of 259
regions were selected by criteria including length and
distribution of variants over aligned reads (see Meth-
ods). Gretel was executed at each of the 259 sites to
recover haplotypes. Forward and reverse primers were
generated with pd5[33] using the recovered haplotypes
as template sequence. For laboratory analysis, 10 re-
gions were hand-selected according to criteria including
number of recovered haplotypes, gene length and to sat-
isfy primer design constraints.

For each of the ten regions, a cDNA library was
produced via gene-specific reverse transcription of the
pooled RNA samples. Amplicons were isolated via high-
fidelity PCR and extraction following gel electrophore-
sis. Five of the ten samples (Table 4) could be iso-
lated from the original cDNA in sufficient amount for
use with the protocol. Extracted DNA for the five suc-
cessful PCR reactions was used as template for another
round of high-fidelity PCR. DNA was isolated from ex-
cised gel bands, pooled and suspended with AMPure
beads. Isolated DNA was verified via Sanger sequenc-
ing. Sequencing library preparation was performed with
the Oxford Nanopore LSK108 ligation kit.

The library was loaded on an Oxford Nanopore
MinION. Sequencing generated 634,859 reads that
passed quality control (Albacore v2.02) in 1hr 28m.
Nanopore sequences were aligned against the corre-
sponding pseudo-references for the five targeted genes.
The identity of each long-read (discarding indels) ver-
sus each Gretel predicted haplotype was calculated for
the five genes. Supplementary Figure 1 shows the dis-
tribution of phred scores across reads. The mean score
of 10.53 corresponds to an error rate of 8.85%. Despite
this, we were able to identify individual molecules with
extremely high identity to recovered haplotypes. The
haplotype with the best likelihood for Gretel G123 (Ex-
oglucanase XynX ) region had an identity of 99.7%.

Figure 3 depicts, for G123, a comparison between
several of the highest likelihood Gretel recovered hap-
lotypes, and their associated highest identity sequenced
DNA molecules. We show that Gretel has predicted
novel isoforms of an exoglucanase enzyme, with poten-
tial biotechnical applications. Figures for the remaining
genes can be found in Supplementary Section 10.2.

We show for the first time with in vitro evidence
that a computational method is capable of recovering
sequences of co-occurring variants that actually exist in
nature, with high accuracy, from short read data.
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Figure 3: Comparison of our recovered haplotypes against Oxford Nanopore long-read data for Gretel G123 (Exoglucanase XynX ).
Outermost ring represents the metagenomic assembly (pseudo-reference). Grey banding represents coverage of original Illumina read data.
Line plot depicts Sanger sequencing chromatogram for G123 PCR amplicon. Pairs of tracks toward the center align a DNA molecule
sequenced by Oxford Nanopore MinION (outer, coloured) to a specific haplotype recovered by Gretel (inner). The haplotypes are masked
(black) at sites homozygous over the displayed haplotypes to ease comparison of predicted variants. Heterozygous sites on the haplotypes
are supported by Sanger sequencing peaks (eg. 347, 1238), and co-occurring variants are supported by the Nanopore reads. In several
positions (e.g. 347, 407) Gretel can be observed to correct the reference. Gretel can recover enzyme isoforms from a natural microbiome.

Discussion

Comparison to related work

In contrast to other methods, Gretel aims to make as
few assumptions as possible. More importantly, our
framework requires no configuration, has no parameters,
requires no pre-processing of reads, does not discard
observed information and is designed for metagenomic
data sets where the number of haplotypes is unknown.
Existing methods have one or more limitations which
make them unsuitable for metagenomic analysis:

• they assume that the solution is a pair of haplotypes
from diploid parents, and discard/alter observations
until a pair of haplotypes can be determined [17, 34]

• they discard SNP sites that feature three or more
alleles as errors [34]

• they can generate a unrealistically large number of
unordered potential haplotypes [4, 35]

• they are too computationally expensive for high-
depth short read data sets [36]

• they require a good quality reference genome [37]

• they are no longer maintained/are specific to certain
data/cannot be installed [38]

It is important to note that no other tool that claims
to recover haplotypes or strains from a microbial popu-
lation has attempted to validate their work biologically.

More recent advances in the recovery of sequences
from mixed populations are limited to ConStrains,
SAVAGE, and DESMAN. ConStrains [28] aims to resolve
strain-level differences within a set of metagenomic sam-
ples. It first uses MetaPhlAn to provide a species com-
position profile, and then chooses a corresponding set
of core gene markers against which to align reads. The
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frequencies of SNPs in this alignment are used to clus-
ter SNP combinations into profiles representing strains.
In contrast to Gretel, ConStrains is not designed to
resolve haplotypes of an enzyme or gene of interest, but
instead can track strains in samples by their profiles of
variation over a particular set of marker genes.

SAVAGE [39] is designed specifically for the re-
lated problem of viral quasi-species recovery [40], with
favourable comparison to the state-of-the-art for viral
genomes. However, we note that the tool recovers many
unordered haplotypes (>800 haplotypes for a lab mix-
ture that contained just 5 strains of HIV). Additionally,
as it uses an overlap assembly approach it is not partic-
ularly suited to the complexity of metagenomes. Over-
lap assembly approaches such as SAVAGE and Lens [4]
create large numbers of potential haplotypes by naively
branching at choices without long range information.

Gretel overcomes this by outputting each recovered
haplotype with a likelihood, given the observed read
data. Haplotypes can be ordered and filtered, and like-
lihoods are amenable to further statistical tests.

We evaluated Gretel on the same HIV data that
SAVAGE reported in order to demonstrate that our
method can also resolve highly variable viral quasi-
species genomes. Gretel makes almost perfect recov-
eries from this sequenced laboratory mix of five strains.
Our results are presented in Supplementary Section 11.

DESMAN [26] is a complex bioinformatics pipeline,
that relies on read-binning, availability of good refer-
ences, and a database of single-copy core species genes
(SCSGs) with which to perform clustering. DESMAN then
uses SNP frequencies to determine haplotypes. The
use of frequencies observed across samples means that
they only addressed single copy genes, as multiple copies
would distort the frequencies. Furthermore, it makes
use of binning software such as CONCOCT in order to fil-
ter reads before alignment to the SCSGs, and this bin-
ning process requires data from many samples (> 50
preferred). We were unable to run DESMAN on our syn-
thetic data, which represents the scenario of analyzing
genes that are not SCSGs, with diversity present in a
single microbial sample. However, Figure 2 shows we
were able to make excellent recoveries on the five E. coli
haplotypes for 814 SCSGs (of the 982 provided) for their
mock community, far more sites than DESMAN achieved.

Recovering the variation observed at the gene iso-
form level in a sample of a microbial community is a
different problem to that of strain tracking, species bin-
ning or read clustering. Gretel provides the first prac-
tical solution to this important problem and at the same
time performs as well or better than SAVAGE and DESMAN,
on evaluation using their own benchmark data.

Performance and tractability

Our approach is influenced by the availability and qual-
ity of read alignments against the pseudo-reference, and
the choice of pseudo-reference itself. It should be noted
that the pseudo-reference is not used by Hansel or
Gretel, it serves only as a common sequence against
which to align raw reads. Sequences that happen to
share identity with the pseudo-reference are recovered
by Gretel from the evidence in the Hansel matrix, the
reference confers no advantage over any other haplo-
type. Very high recovery rates on sequences that share
identity with the pseudo-reference are a reflection of the
strength of our approach, and not a trivial recovery.

Ultimately, the tractability of the problem is bound
by the quality of the data available: both assemblers and
aligners will exert influence over how many and how ac-
curately haplotypes in a given metahaplome can be re-
covered. As stated by Lancia [11], it is entirely possible
that, even without error, there are scenarios where data
is insufficient to successfully recover haplotypes and the
problem is rendered impossible.

Our framework has been designed for the recovery
of haplotypes from a region of interest in a metagenome
(such as variants of a gene involved in a catalytic reac-
tion of interest, e.g. degradation of biomass), but given
sufficient coverage of SNPs, our approach could work on
regions significantly longer than that of a gene if desired
and with data consisting of significantly longer reads.

Regarding time and resource requirements, Gretel
is designed to work on all reads from a metagenome that
align to some region of interest on the pseudo-reference.
Typically these subsets are small (on the order of 10-
100K reads) and so our framework can be run on an or-
dinary desktop in minutes, without significant demands
on disk, memory or CPU. Run-times on data with very
deep coverage, or many thousands of SNPs, such as the
HIV 5-mix, run on the order of hours, but can still be
executed on an ordinary desktop computer.

Future work

Although we demonstrate Gretel’s capability to re-
cover haplotypes from a natural microbiome, there ex-
ists room for further work. We intend to revisit the
following aspects of our approach:

• Reweighting
The pairwise SNP observations that contributed to
the most recent haplotype are reweighted in the
Hansel matrix to permit new paths to be discov-
ered. A balance must be satisfied to prevent haplo-
type skipping or duplication. We are experimenting
with alternative reweighting schemes.

• Naive insertion handling
Due to a size constraint on the Hansel matrix, fur-
ther thought is needed to devise a practical method-
ology that permits proper consideration of inser-
tions. However, unlike many other approaches
Gretel does not discard reads containing insertions.

• Greedy Search
We assume the “best” haplotype is the most likely
haplotype, and that it can be recovered by selecting
the edge with the highest probability at each SNP.
However it is possible that Gretel could locate so-
lutions whose overall likelihood may be better with
an alternative search strategy.

• Stopping Criterion
Gretel generates haplotypes until a dead end in the
Hansel matrix is encountered, from which there is
no evidence for any further transitions. Although we
found that our approach can yield low-quality hap-
lotypes before this time, they have lower likelihoods.

• Unused Evidence
There remain sources of evidence not currently used
by our algorithm — namely paired end reads and
alignment base quality scores. Such data will cer-
tainly provide useful co-occurrence and confidence
information for SNPs that span some known insert,
however careful consideration on how to integrate
this data to our approach is necessary.
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Conclusion

In this work we offer the term metahaplome to rep-
resent the set of haplotypes for any particular region
of interest within a metagenomic data set. The recov-
ery of sequences from individuals within the metahap-
lome provides a rich resource of information, enabling
detailed study of microbial communities. Synthetic ex-
ploitation of the variation observed can be used to im-
prove industrial processes such as biorefining, biomining
and synthetic biology [41, 42].

To exploit this variation, we provided an implemen-
tation of Hansel: a data structure for the storage and
manipulation of evidence of variation observed across
reads in a sequenced metagenome. Hansel has value
outside of this work, and can provide future algorithms a
means to interact with the variation observed in a set of
sequenced reads. We also provide Gretel, an algorithm
for the recovery of haplotypes from a metahaplome.

For the first time, our work provides Nanopore and
Sanger sequence evidence for the existence of compu-
tationally predicted haplotypes from a natural micro-
bial community. We show with in vitro evidence that
a computational method is capable of recovering iso-
forms of enzymes from a microbiome, given only short-
read sequencing. Long-read sequencing identified in-
dividual DNA molecules consistent with our predicted
haplotypes. However, the error rate observed across our
Nanopore sequencing run shows that it is not currently
possible to recover haplotypes in a microbiome without
error using long-read sequencing alone.

Hansel and Gretel have the potential to discover
novel isoforms of enzymes responsible for catalytic re-
actions of biotechnological importance. This is not a
trivial task; many existing in silico and in vitro tech-
niques such as rational enzyme design have struggled to
achieve this goal. Our work lays the foundation for the
recovery of industrially relevant haplotypes from natural
microbiomes.

Code Availability and Data Access

Our Hansel and Gretel framework is freely avail-
able, open source software available online at
https://github.com/samstudio8/hansel and https:
//github.com/samstudio8/gretel, respectively.

The code used to generate metahaplomes and syn-
thetic reads for both the randomly generated and real-
gene haplotypes, and the testing data used to eval-
uate our methods is also available online via https:
//github.com/samstudio8/gretel-test

Nanopore sequence data are available via ENA study
PRJEB23483. RNA metatranscriptome data are avail-
able via ENA study PRJNA419191.
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tional Research Network for Low Carbon Energy and
Environment (NRN-LCEE). CJC was funded by the
Biotechnology and Biological Sciences Research Council
(BBSRC) Institute Strategic Programme Grant, Rumen
Systems Biology (BB/E/W/10964A01). In vitro work
was supported by the Aberystwyth University Research
Fund (URF12431).

SMN wishes to acknowledge Dr. Francesco Rubino
for his prior work on the assembly and annotation of the
rumen metatranscriptome data.

Disclosure Declaration

Oxford Nanopore Technologies Ltd (ONT) have covered
costs for AS to attend and present at London Calling
2017 and AE to attend and present at Nanopore Com-
munity Meeting New York 2016 and 2017. ONT have
provided free-of-charge materials for an outreach project
by AE. We confirm ONT have had no role in the design,
execution or interpretation of the present study. The re-
maining authors have no conflicts of interest to declare.

Author contributions

SMN, AC, CJC, WA with collaboration from KG and
LS discussed and defined the theoretical problem. SMN,
CJC, AC and WA chose data and designed in silico ex-
periments. SMN wrote the code and documentation
and executed experiments. In vitro experiments were
designed by SMN and WA with collaboration from AE
and AS. SH provided rumen metatranscriptome RNA
and Illumina sequencing. SMN performed laboratory
work under the supervision of WA. AE performed Ox-
ford Nanopore library preparation with assistance of
SMN and AS. SMN analyzed and interpreted the re-
sults with AC, CJC and WA. All authors contributed
to the manuscript.

References
[1] Francesco Rubino, Ciara Carberry, Sinéad M Waters, David
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Methods

The metahaplome

We have provided a detailed mathematical definition of
the metahaplome in Supplementary Section 1.

To enable recovery of a metahaplome from a
metagenome with Gretel we require:

• g, a known DNA region (for example a gene), to be
identified by the user

• c[i : j], the region of contig c (from an assembly C)
which has been identified as having similarity to g

• Ac[i:j], the alignments of the set of reads R against
the contig region c[i : j]

• Sc[i:j], the genomic positions determined to be SNPs
over the region c[i : j]

A metagenomic assembly (which we refer to as a
‘pseudo-reference’, C) can be generated by assembling
sequenced reads, with an assembler such as Velvet [43].
One may identify a gene of interest g, on a contig c by
similarity search or gene prediction. We refer to gene g
as the target. We want to recover the most likely hap-
lotypes of g that exist in the metahaplome.

A subset of reads that align to the target region can
be determined using a short read alignment tool such
as bowtie2 [44]. Reads that fall outside the target of
interest (i.e. reads that do not cover any of the genomic
positions covered by the target) can be safely discarded:
they do not provide relevant evidence to SNPs that ap-
pear on the region of interest.

Variation at single nucleotide positions across reads
along the target, can then be called with a SNP call-
ing algorithm such as that provided by samtools [45]
or GATK [46]. To avoid loss of information arising from
the diploid bias of the majority of SNP callers [34], our
methodology aggressively considers any heterogeneous
site as a SNP.

The combination of aligned reads, and the locations
of single nucleotide variation on those reads can be ex-
ploited by Hansel and Gretel to recover real haplotypes
in the metagenome: the metahaplome.

Hansel: A novel data structure

We present Hansel, a probabilistically-weighted, graph-
inspired, novel data structure. Hansel is designed to
store the number of observed occurrences of a symbol
α appearing at some position in space or time i, co-
occurring with another symbol β at another position in
space or time j. For our approach, we use Hansel to
store the number of times a SNP α at the i’th variant
of some contig c, is observed to co-occur (appear on the
same read) with a SNP β at the j’th variant of the same
contig. Hansel is a four dimensional matrix whose in-
dividual elements H[α, β, i, j] record the number of ob-
servations of a co-occurring pair of symbols (αi, βj).

Different from the typical SNP matrix

Our representation differs from the typical SNP matrix
model [11] that forms the basis of many of the surveyed
approaches. Rather than a matrix of columns represent-
ing SNPs and rows representing reads, we discard the
concept of a read entirely and aggregate the evidence
seen across all reads by genomic position.

At first this structure may appear limited, but the
data in H can easily be exploited to build other struc-
tures. Consider H[α, β, 1, 2] for all symbol pairs (α, β).
One may enumerate the available transitions from space
or time point 1 to point 2. Extending this to consider
H[α, β, i, i+ 1] for all (α, β) over i, one can construct a
simple graph G of possible transitions between all sym-
bols. In our setting, G could represent a graph of tran-
sitions observed between SNPs on a genomic sequence,
across all reads. Figure 4 shows how the Hansel struc-
ture records information about SNP pairs, and shows a
simple graph constructed from this information.

Figure 4: Three corresponding representations, (a) a set
of aligned short read sequences, with called variants, (b)
the actual Hansel structure where each possible pair of
symbols (00, 01, 10, 11) has a matrix storing counts of
occurrences of that ordered symbol pair between two
genomic positions across all of the aligned reads, (c)
a simple graph that can be constructed by considering
the evidence provided by adjacent variants. Note this
representation ignores evidence from non-adjacent pairs,
which is overcome by the dynamic edge weighting of the
Hansel data structure’s interface.

Intuitively, one may traverse a path through G by se-
lecting edges with the highest weight in order to recover
a series of symbols that represent an ordered sequence
of SNPs that constitute a haplotype in the metahap-
lome. The weight of an edge between two nodes may
be defined as the number of reads that provide direct
evidence for that pair of SNP values occurring together.

Different from a graph

Although the analogy to a graph helps us to consider
paths through the structure, the available data cannot
be fully represented with a graph such as that seen
in Figure 4 alone. A graph representation defines a
constraint that only considers pairs of adjacent posi-
tions (i, i + 1) over i. Edges can only be drawn be-
tween adjacent SNPs and their weightings cannot con-
sider the evidence available in H between non-adjacent
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SNP symbols. Without considering information about
non-adjacent SNPs, one can traverse G to create paths
(sequences of SNPs) that do not exist in the observed
data set, as shown in Figure 5. To prevent construction
of such invalid paths and recover genuine paths more ac-
curately, one should consider evidence observed between
non-adjacent symbols when determining which edge to
traverse next.

Figure 5: Considering only adjacent SNPs, one may cre-
ate paths for which there was no actual observed evi-
dence. Here, the reads {0011, 0001, 0100} do not sup-
port either of the results {0000, 0101}, but both are
valid paths through a graph that permits edges between
pairs of adjacent SNPs.

Using information from non-adjacent SNPs, and
the path so far

The Hansel structure is designed to store pairwise co-
occurrences of all SNPs (not just those that are adja-
cent), across all reads. We may take advantage of the
additional information available in H and build upon
the graph G. Incorporating evidence of non-adjacent
SNPs in the formula for edge weights allows decisions
during traversal to consider previously visited nodes, as
well as merely the current node path, i.

That is, given a node i, the decision to move to a
symbol at i+1 can be informed not only by observations
in the reads covering positions (i, i+ 1), but also (i− 1,
i + 1), (i − 2, i + 1), and so on. Such a scheme allows
for the efficient storage of some of the most pertinent
information from the reads, and allows edge weights to
dynamically change in response to the path as it has
been constructed thus far. Outward edges between (i,
i + 1) that would lead to the construction of a path
that does not exist in the data can now be influenced
by observations in the reads beyond that of the current
node and the next. Our method mitigates the risk of
constructing paths which do not truly exist.

The consideration and storage of pairwise SNPs fits
well with the Naive Bayes model employed to sim-
plify the potentially expensive calculation of conditional
probabilities (Supplementary Section 4).

Although we describe Hansel as “graph-inspired”,
allowing edge weights to depend on the current path
through G itself leads to several differences between the
Hansel structure and a weighted directed acyclic graph.
Whilst these differences are not necessarily disadvan-
tageous, they do change what we can infer about the
structure.

A dynamic structure

The structure of the graph is effectively unknown in ad-
vance. That is, not only are the weights of the edges
not known ahead of traversal (as they depend on that

traversal), but the entire layout of nodes and edges is
also unknown until the graph is explored (although, ar-
guably this would be true of very large simple graphs
too). Indeed, this means it is also unknown whether or
not the graph can even be successfully traversed.

Also of note is the fact that the graph is dynamically
weighted. The current path represents a memory that
affects the availability and weights of outgoing edges at
each node. Edge weights are calculated probabilistically
during traversal. They depend on the observation of
SNP pairs between some number of the already selected
nodes in the path, and any potential next node. Supple-
mentary Section 3 provides the equation and intuition
for the probabilistic calculation of edge weights.

In exchange for these minor caveats, we have a data
structure that permits graph-like traversal that is intrin-
sic to our problem definition, whilst utilising informative
pairwise SNP information collected from observations
on raw metagenomic reads. Hansel fuses the advan-
tages of a graph’s simple representation (and its inher-
ent traversability) with the ability to efficiently store
pertinent information by considering only pairs of SNPs
across all reads.

Gretel: An algorithm for recovering hap-
lotypes from metagenomes

We introduce Gretel, an algorithm designed to interface
with the Hansel data structure to recover the most likely
haplotypes from a metahaplome. To obtain likely haplo-
types, Gretel traverses the probabilistic graph structure
provided by Hansel, selecting the most likely SNPs at
each possible node (i.e. traversing edges with the great-
est probability), given some subset of the most recently
selected nodes in the path so far. At each node, an L’th
order Markov chain model is employed to predict which
of the possible variants for the next SNP is most likely,
given the last L variants in the current path. Execution
of Gretel can be broken into the following steps:

1. Parse the read alignments and retain only the
bases that cover SNP sites, discarding any con-
served base positions as they provide no haplotype
information.

2. Populate the Hansel structure with all pairwise
observations from each of the reads.

3. Exploit the Hansel graph API to incrementally
recover a path until a variant has been selected at
each SNP position:

• Query for the available transitions from the
current position in the graph to the next SNP

• Calculate the probabilities of each of the po-
tential next variants appearing in the path
given the last L variants

• Append the most likely variant to the path
and traverse the edge

4. Report this path as a haplotype and then remove
the information for this path from the data by
reweighting observations that contributed to this
path. This will allow for new paths to be retrieved
next.

5. Repeat (3-4) until the graph can no longer be tra-
versed or an optional additional stopping criterion
has been reached.
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Greedy path construction

Haplotypes are reconstructed as a path through the
Hansel structure, one SNP at a time, linearly, from the
beginning of the sequence. At each SNP position, the
Hansel structure is queried for the variants that were
observed on the raw reads at the next position. Hansel
also calculates the conditional probabilities of each of
those variants appearing as the next SNP in the se-
quence, using a Markov chain of order L that makes
its predictions given the current state of the observa-
tions in the Hansel matrix and the last L selected SNPs.
Gretel’s approach is greedy: we only consider the prob-
abilities of the next variant. Our razor is to assume that
the best haplotypes are those that can be constructed
by selecting the most likely edges at every opportunity.

Reweighting to find multiple haplotypes

Whilst our framework is probabilistic, it is not stochas-
tic. Given the same Hansel structure and operating
parameters, Gretel will behave deterministically and
return the same set of haplotypes every time. However,
we are interested in recovering the metahaplome of mul-
tiple, real haplotypes from the set of reads, not just one
haplotype. Hansel exposes a function in its interface for
the reweighting of observations. Once a path through
the graph is completed (a variant has been chosen for all
SNP sites), the observations in the Hansel matrix are
reweighted by Gretel.

Currently, Gretel reduces the weight of each pair-
wise observation that forms a component of a completed
path - in an attempt to reduce evidence for that hap-
lotype existing in the metahaplome at all, allowing evi-
dence for other haplotypes to now direct the probabilis-
tic search strategy.

Gretel’s outputs

Finally, Gretel outputs recovered sequences as FASTA,
requiring no special parsing of results to be able to
conduct further analyses. In addition to the sequences
themselves, Gretel outputs a ‘crumbs’ file, which con-
tains metadata for each of the recovered sequences: log
probability of that sequence existing given the reads,
how much of the evidence in Hansel the sequence
was supported by, and how much of the evidence was
reweighted as a result of that path being chosen.

Currently, Gretel will continuously recover paths
out of the remaining evidence until it encounters a node
from which there is no evidence that can inform the next
decision.

In silico testing methodology

We describe our approach for initial evaluation of our
work, using simulated data. We evaluate the perfor-
mance of our framework against metahaplomes consist-
ing of synthetic reads derived from randomly generated
haplotypes.

Read generation and variant calling

Reads are generated in silico with our Python tool:
(shredder). Our synthetic reads are designed to be
simplistic; errorless and of uniform length and cover-
age. The synthetic read sets form a basis for testing the
Hansel and Gretel packages during development, as

well as providing a platform on which to investigate the
influence that parameters such as read length, number
of haplotypes, and mutation rate have on recovery.

For a given FASTA file, our tool generates reads of
a uniform user-defined length and coverage, for each of
the sequences in the file. The tool calculates the number
of reads to generate to achieve the approximate cover-
age, given the length of the sequence, and the selected
read length. A BED file can be used to mask particular
areas of one or more of the input FASTA sequences.

Uniform coverage is approximated by randomly gen-
erating the start positions of all of the reads across the
input sequence (and also allowing for up to half of a read
to fall off either end of the sequence).

As our tool is aware of the start position of every
read that it generates, it is possible to also produce an
alignment of those reads in SAM format. This allows us
to align reads without introducing biases and assump-
tions from external tools.

Pileups of our generated reads typically feature many
tri- or tetra-allelic sites (especially as mutation rate in-
creases). To avoid diploid tool bias, our evaluation
repository also contains a simple snpper tool that gen-
erates a VCF for a given BAM. snpper outputs a VCF
record for any heterogeneous site. Our haplotype recov-
ery approach is robust to noise arising from sequencing
error (see Results). As such we can aggressively call
variants by assuming any heterogeneous site is a SNP.

All tools, documentation, and data for evaluation
are open source and freely available via our data and
testing repository: https://github.com/samstudio8/
gretel-test

Evaluating recovery accuracy

To evaluate the accuracy of a run of Gretel, each known
input haplotype is compared pairwise to each of the
recovered output haplotypes. Each input haplotype is
matched to a corresponding “best” recovered haplotype.
Best is defined as the output haplotype that yields the
smallest Hamming distance from a given input haplo-
type. For each synthetic metahaplome, we perform a
multiple sequence alignment with MUSCLE [47] to deter-
mine the definitive SNP positions. When calculating
Hamming distance, we consider only these correspond-
ing positions. That is, we exclude the comparison of
homogeneous sites from the evaluation metric, to en-
sure we only consider our accuracy on positions that
require recovery. For our results we report the propor-
tion of SNPs that were correctly recovered by Gretel,
expressed as a percentage.

Comparing sites enumerated by the multiple se-
quence alignment of the original haplotypes, as opposed
to the VCF of each individual read set ensures Gretel
is penalised when a SNP has not been called from the
read set.

Regardless of quality, all input haplotypes are as-
signed a best output haplotype. An output haplotype
may be the best haplotype for more than one input. If
more than one output haplotype has the same Hamming
distance, the first that was found is chosen. If Gretel
could not complete at least one haplotype (i.e. a pair
of adjacent SNP positions were not covered by at least
one read), all input haplotypes are awarded 0%.
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Synthetic (seq-gen) metahaplomes

With the desire to first test our approach on data sets
with well-defined and controllable read properties, but
still posing a recovery problem, seq-gen [27] was used
to generate sets of DNA sequences that would serve as
haplotypes of a synthetic metahaplome.

seq-gen simulates the evolution of a nucleotide se-
quence along a given phylogeny. For testing Gretel, we
provided a star shaped guide tree with uniform branch
lengths, such that all haplotypes would be equally dis-
similar to each other. These uniform branch lengths
correspond to the rate of per haplotype base (hb) nu-
cleotide heterogeneity. Thus, each taxa in the tree has
a DNA sequence based upon the evolution of the given
starting sequence, following simulated evolution at the
given rate.

Mutation Rate Average number of
(SNPs/hb) variants called

0.001 17.25
0.005 71.20
0.010 141.54
0.015 209.25
0.020 277.28
0.050 640.63
0.100 1159.62

Table 1: Mean number of variants called over the 900
generated synthetic read sets, for each per-haplotype
base (hb) mutation rate. The generated sequences for
each metahaplome were 3000 nt long.

The same starting sequence was shared by all of
our generated trees. We used a randomly generated se-
quence of 3000 nt with 50% GC content. We fixed the
number of taxa in the trees at five, but varied the mu-
tation rate across seven levels (Table 1. 35 trees were
generated (7 mutation rates and 5 replicates), each con-
taining five sequences mutated at the same rate, from
the original 3000 nt sequence. Each of the resulting 35
sets of five mutated DNA sequences represent a meta-
haplome from which the five haplotypes must be recov-
ered by Gretel.

As per our described read generation and variant
calling protocol, we generated synthetic reads from each
of the five sequences in the metahaplome, varying both
the read length and per-haplotype read depth (i.e. the
average coverage of each haplotype). For each read
length and depth parameter pair, ten read sets were gen-
erated, to amortise any effect on haplotype recovery in-
troduced by the alignments of the reads themselves. We
generated 6300 read sets (3 read sizes, 6 per-haplotype
depth levels, 7 mutation rates, 10 read replicates, 5 tree
replicates).

Metahaplomes from a mock community

In lieu of a true, annotated metagenome, we sourced
a benchmark microbial community from Quince et al.
(2017)[26]. The community consists of 5 Escherichia
coli strains, and 15 other genomes commonly found in
the human gut according to the Human Microbiome
Project (HMP). The community is defined in the supple-
ment to the author’s original manuscript. In their work,
1.504× 109 reads were generated from the 20 genomes,
distributed across 64 paired-end samples (11.75 million

read pairs per sample). Reads were configured to simu-
late a “typical HiSeq 2500 run”.

As part of their preprint, the authors made
available a subset of the generated mock commu-
nity. The subset contains 16 samples, with 1
million read pairs each, for a total of 32 mil-
lion reads. Reads were assembled with MEGAHIT
[30], using default parameters, as per the author’s
recommendations (github.com/chrisquince/DESMAN/
blob/master/complete_example/README.md, commit
9045fe2). Following the example, we discarded assem-
bled contigs shorter than 1 kbp, to yield an assembly
described by Table 2.

Raw Assembly ≥ 1kbp
Contigs 17,066 6,357

Total bp 67,189,963 61,651,258
Min 200 1,000

Average 3,937 9,698
Max 689,365 689,365
N50 53,290 63,517

Time 4605 s -

Table 2: Statistics for our MEGAHIT assembled from read
data provided by Quince et al.

The original Quince et al. paper also identified 982
single-copy core species genes (SCSGs) for E. coli. Ad-
ditionally the work provided DNA sequences for all 982
genes, for each of the five different E. coli strains found
in the mock community. SCSGs were mapped to the
pseudo-reference with blastn, with alignments requir-
ing a threshold of at least 75% of the average length of
the five haplotypes for each SCSG. We found that for
814 of the 982 genes, all five strains could be aligned
against the pseudo-reference.

Reads across the 16 samples were concatenated to
create one paired-end sample containing 16 million read
pairs. The reads were then also mapped to the pseudo-
reference with bowtie2 (--sensitive-local).

Gretel was then executed on the aligned reads, once
for each of the 814 identified SCSG regions with the aim
of recovering the five strain haplotypes from the syn-
thetic short-reads. SNPs were called over each region
using the snpper method previously described. Perfor-
mance was measured with a blastn alignment between
the known five strain haplotypes, and the Gretel recov-
ered haplotypes. In the same fashion as our synthetic
evaluation, each input haplotype is assigned a best out-
put haplotype, and an output haplotype may be the best
haplotype for more than one input. For each strain, we
report the sequence identity of the best haplotype, for
each of the 814 SCSG regions.
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Recovery from a real metahaplome

A previous experiment [31] isolated RNA from 32 ru-
men samples from 3 cows over 6 timepoints (0, 1, 2, 4, 6
and 8 hours) after feeding. In preparation for metatran-
scriptomic sequencing, the polyA fraction was removed
(MicroPoly(A)Purist, Ambion). 18S rRNA was also re-
moved (both RiboMinus Plant Kit and Eukaryote Kit,
Invitrogen). 16S rRNA was removed (Ribo-Zero rRNA
removal kit (bacteria), Epicentre) all according to the
manufacturer’s protocols. The resulting enriched micro-
bial mRNA was prepared for sequencing using TruSeq
Stranded mRNA Library Prep kit (Illumina). Subse-
quently, the library was sequenced using an Illumina
HiSeq 2500 (100bp paired end sequencing). 118 million
paired-end reads were generated and are deposited un-
der the ENA study PRJNA419191.

As part of the previous work, reads were parti-
tioned with khmer, assembled with Velvet and proteins
were predicted and annotated with Enzyme Commission
(EC) numbers using MGKit with the Uniprot database.

Recovery of haplotypes with Gretel

To recover industrially relevant enzyme isoforms from
the metatranscriptome, we focused our attention on hy-
drolases known to be found in the rumen [1]. The ex-
isting GFF was filtered to create a subset of all entries
with Enzyme Commission (EC) numbers 3.2, 3.4 and
5.3. 3,419 regions from the GFF were identified and
were cross-referenced to the new read alignment. Re-
gions were filtered with the following criteria:

• minimum coverage ≥ mean minimum coverage
(19.7x)

• length ≥ new mean region length (615.7)

• standard deviation of coverage ≤ average standard
deviation of coverage over remaining regions (76.79x)

Filtering returned 259 possible candidates. Each
sample’s original short-reads were re-aligned to the ex-
isting assembly with bowtie2 (--local) before merging
all samples with samtools merge to create one canon-
ical alignment of all reads (248,092,426 alignments).
Gretel was individually executed over the 259 regions,
using the aligned reads to recover haplotypes.

Each set of recovered haplotypes was sorted by de-
scending likelihood. For each haplotype, a correspond-
ing “flattened” consensus was calculated by flipping any
base that disagreed with the base call of any haplotype
with a better likelihood, to an ‘N’. pd5[33] was executed
on each consensus with the goal to find a forward and
reverse primer that covered the most number of recov-
ered haplotypes, whilst attempting to keep the selected
template region as long as possible. Primers could be be-
tween 25 and 40 nt, with an annealing temperature be-
tween 55 and 65◦C. For laboratory analysis, 10 regions
were hand-selected (and ThermoFisher Custom Value
Oligos were synthesized) considering the criteria:

• gene length

• primer template length

• number of predicted haplotypes

• distribution of haplotype likelihoods

• evidence of similar gene sequence in databases

• number of haplotypes that could be captured by gen-
erated primers

PCR Amplicons

Stock RNA from the 32 samples was pooled in propor-
tion with the density of read coverage to the 10 regions
from each sample’s corresponding Illumina data. Gene-
specific reverse transcription for the ten chosen genes
(Table 4) was performed with a Qiagen QuantiTect R©
Reverse Transcription Kit. Thus, each selected region
had an individual corresponding cDNA library.

Gene-specific PCR (30 cycles, 65◦C annealing tem-
perature, 20s) was performed for each of the 10 genes
with New England Biolabs Phusion R© High-Fidelity
DNA Polymerase, using the corresponding cDNA (1:10
dilution) and primer pair. Bands were excised following
gel electrophoresis and DNA extracted with a Qiagen
QIAquick R© Gel Extraction Kit. PCR, gel electrophore-
sis and extraction were repeated to manufacture a suf-
ficient number of amplicons for the Oxford Nanopore
ligation protocol.

Five of the 10 sequences (G11, G31, G90, G123 and
G251) could be produced at the expected length and
adequate amount for Nanopore sequencing. However,
G11 was contaminated with rRNA carryover from the
reverse transcription and no haplotypes could be deter-
mined. Isolated DNA was verified via Sanger sequencing
at the Translational Genomics Facility, Aberystwyth.

Nanopore Sequencing

Amplicons were pooled in an attempt to equalize the
molarity of the five inputs in the required 1500 ng. The
pooled DNA volume was 433.8 µl and required concen-
trating. DNA was recovered by following an AMPure
Bead Cleanup protocol (60% bead concentration) and
resuspended in 46 µl nuclease-free water. We followed
the Oxford Nanopore SQK-LSK108 laboratory protocol
to prepare a library for sequencing.

The DNA was loaded onto a FLO-MIN106
flowcell. The platform test returned 1,402 vi-
able single cell pores. Sequencing was per-
formed with MinKNOW (v1.7.14) running an unmodi-
fied NC 48Hr sequencing FLO-MIN106 LSK108 protocol.
The run was manually terminated after 1h 28m 35s and
yielded 672,388 reads. Base calling was completed with
Albacore (v2.02). 634,859 reads passed quality control.
Supplementary Figure 1 plots mean phred score and
read length, against frequency.

G11 G31 G90 G123 G251
Mapped 0 70,359 150,860 96,411 9,419

Table 3: Number of Nanopore reads mapped back to
the pseudo-reference for the five sequenced genes.

Haplotype Verification

Nanopore reads were aligned to the original five
regions of the pseudo-reference (Table 3) with
bowtie2 (--sensitive-local). Our Python script
(hamming reads.py) was used to parse the CIGAR
strings of the alignment, and calculate the Hamming
distance of all reads against recovered haplotypes for
each gene. Due to the abundance of homopolymer runs
and slippage in the sequenced Nanopore reads, we chose
to ignore indels when calculating Hamming distance.
Our Circos plots align several single molecule DNA se-
quences against Gretel’s recovered haplotypes.
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