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Abstract   1 

Goal-driven and feedforward-only convolutional neural networks (CNN) have been shown 2 

to be able to predict and decode cortical responses to natural images or videos. Here, we explored 3 

an alternative deep neural network, variational auto-encoder (VAE), as a computational model of 4 

the visual cortex. We trained a VAE with a five-layer encoder and a five-layer decoder to learn 5 

visual representations from a diverse set of unlabeled images. Inspired by the “free-energy” 6 

principle in neuroscience, we modeled the brain’s bottom-up and top-down pathways using the 7 

VAE’s encoder and decoder, respectively. Following such conceptual relationships, we used VAE 8 

to predict or decode cortical activity observed with functional magnetic resonance imaging (fMRI) 9 

from three human subjects passively watching natural videos. Compared to CNN, VAE resulted 10 

in relatively lower accuracies for predicting the fMRI responses to the video stimuli, especially for 11 

higher-order ventral visual areas. However, VAE offered a more convenient strategy for decoding 12 

the fMRI activity to reconstruct the video input, by first converting the fMRI activity to the VAE’s 13 

latent variables, and then converting the latent variables to the reconstructed video frames through 14 

the VAE’s decoder. This strategy was more advantageous than alternative decoding methods, e.g. 15 

partial least square regression, by reconstructing both the spatial structure and color of the visual 16 

input. Findings from this study support the notion that the brain, at least in part, bears a generative 17 

model of the visual world. 18 

Keywords: neural coding, variational autoencoder, Bayesian brain, visual reconstruction 19 
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 3 

Introduction  20 

Humans readily make sense of the visual surroundings through complex neuronal circuits. 21 

Understanding the human visual system requires not only measurements of brain activity but also 22 

computational models built upon hypotheses about neural computation and learning (Kietzmann 23 

et al., 2017). Models that truly reflect the brain’s mechanism of natural vision should be able to 24 

explain and predict brain activity given any visual input (encoding), and decode brain activity to 25 

infer visual input (decoding) (Naselaris et al., 2011). In this sense, evaluating the models’ encoding 26 

and decoding performance serves to test and compare hypotheses about how the brain learns and 27 

organizes visual representations (Wu et al., 2006).  28 

In one class of hypotheses, the visual system consists of feature detectors that progressively 29 

extract and integrate features for pattern recognition. For example, Gabor and wavelet filters model 30 

low-level features (Hubel and Wiesel, 1962; van Hateren and van der Schaaf, 1998), and explain 31 

responses in early visual areas (Kay et al., 2008; Nishimoto et al., 2011). In contrast, convolutional 32 

neural networks (CNNs) encode hierarchical features in a feedforward model (LeCun et al., 2015), 33 

and support high performance in image recognition (He et al., 2016; Krizhevsky et al., 2012; 34 

Simonyan and Zisserman, 2014). Recent studies have shown that CNNs bear similar 35 

representations as does the brain (Cichy et al., 2016; Khaligh-Razavi and Kriegeskorte, 2014), and 36 

yield high performance in neural encoding and decoding of natural vision (Eickenberg et al., 2017; 37 

Guclu and van Gerven, 2015; Horikawa and Kamitani, 2017; Wen et al., 2017b; Yamins et al., 38 

2014). For these reasons, supervised CNN models are gaining attention as favorable models of the 39 

visual cortex (Kriegeskorte, 2015; Yamins and DiCarlo, 2016). However, biological learning is 40 

not always supervised towards a single goal, but often unsupervised (Barlow, 1989). The visual 41 
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 4 

cortex has not only feedforward but also feedback pathways (Bastos et al., 2012; Salin and Bullier, 42 

1995). As such, CNNs are not an ideal computational account of human vision.     43 

In another class of hypotheses, the brain builds a causal model of the world, through which 44 

it tries to infer what generates the sensory input in order to make proper perceptual and behavioral 45 

decisions (Friston, 2010). In this scenario, the brain behaves as an inference machine: recognizing 46 

and predicting visual input through “analysis by synthesis” (Yuille and Kersten, 2006). The brain’s 47 

bottom-up process infers the “cause” of the input, and its top-down process predicts the input (Fig. 48 

1.A). Both processes are optimized by learning from visual experience in order to avoid the 49 

“surprise” or error of prediction (Friston and Kiebel, 2009; Rao and Ballard, 1999). This 50 

hypothesis takes into account both feedforward and feedback pathways. It aligns with the humans’ 51 

ability to construct mental images, and offers a basis for unsupervised learning. Thus, it is 52 

compelling for both computational neuroscience (Bastos et al., 2012; Friston, 2010; Rao and 53 

Ballard, 1999; Yuille and Kersten, 2006) and artificial intelligence (Hinton et al., 1995; Lotter et 54 

al., 2016; Mirza et al., 2016). 55 

In line with this notion, variational auto-encoder (VAE) uses independent “latent” variables 56 

to code the causes of the visual world (Kingma and Welling, 2013). VAE learns the latent variables 57 

from images via an encoder, and samples the latent variables to generate new images via a decoder. 58 

Both the encoder and the decoder are neural networks trainable without supervision from unlabeled 59 

images (Doersch, 2016). Hypothetically, VAE offers a potential model of the brain’s visual system, 60 

and may enable an effective way to decode brain activity during either visual perception or imagery 61 

(Du et al., 2017; Güçlütürk et al., 2017; Shen et al., 2017; van Gerven et al., 2010a). In this study, 62 

we explored the relationships between the VAE’s learning objective and the “free-energy” 63 

principle in neuroscience (Friston, 2010). To test VAE as a model of the visual cortex, we built 64 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 15, 2018. ; https://doi.org/10.1101/214247doi: bioRxiv preprint 

https://doi.org/10.1101/214247


 5 

and trained a VAE for unsupervised learning of visual representations, and evaluated the use of 65 

VAE for encoding and decoding functional magnetic resonance imaging (fMRI) responses to 66 

naturalistic movie stimuli (Fig. 1B).  67 

 68 

Methods and Materials 69 

Theory: variational auto-encoder  70 

In general, VAE is a type of deep neural networks that learns representations from complex 71 

data without supervision (Kingma and Welling, 2013). A VAE includes an encoder and a decoder, 72 

both of which are neural nets. The encoder learns latent variables from the input, and the decoder 73 

generates outputs similar to the input from samples of the latent variables. Given large training 74 

datasets, the encoder and the decoder are trained altogether by minimizing the reconstruction loss 75 

and the Kullback-Leibler (KL) divergence between the distributions of the latent variables and 76 

independent standard normal distributions (Doersch, 2016). When the input data are natural 77 

images, the latent variables represent the hidden causes or attributes of the images.  78 

Mathematically, let 𝒛 be the latent variables and 𝒙 be an image. The encoder parameterized 79 

with 𝝋 infers 𝒛 from 𝒙, and the decoder parameterized with 𝜽 generates 𝒙 from 𝒛. In VAE, both 𝒛 80 

and 𝒙 are random variables. The likelihood of 𝒙 given 𝒛 under the generative model 𝜽 is denoted 81 

as 𝑝𝜽(𝒙|𝒛). The probability of 𝒛 given 𝒙 under the inference model 𝝋 is denoted as 𝑞𝝋(𝒛|𝒙). The 82 

marginal likelihood of data can be written as the following form. 83 

log 𝑝𝜽(𝒙) = 𝐷𝐾𝐿[𝑞𝝋(𝒛|𝒙)||𝑝𝜽(𝒛|𝒙)] +  𝐿(𝜽, 𝝋; 𝒙)                                   (1) 84 
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 6 

Since the KL divergence in Equation (1) is non-negative, 𝐿(𝜽, 𝝋; 𝒙) can be regarded as the 85 

lower-bound of data likelihood and also be rewritten as Eq. (2). For VAE, the learning rule is to 86 

optimize 𝜽 and 𝝋 by maximizing 𝐿(𝜽, 𝝋; 𝒙) given the training samples of 𝒙. 87 

𝐿(𝜽, 𝝋; 𝒙) = −𝐷𝐾𝐿[𝑞𝝋(𝒛|𝒙)||𝑝𝜽(𝒛)] + 𝐸𝒛~𝑞𝝋(𝒛|𝒙)[log(𝑝𝜽(𝒙|𝒛))]                        (2) 88 

In this objective function, the first term is the KL divergence between the distribution of 𝒛 89 

inferred from 𝒙 and the prior distribution of 𝒛, both of which are assumed to follow a multivariate 90 

normal distribution. The second term is the expectation of the log-likelihood that the input image 91 

can be generated by the sampled values of 𝒛 from the inferred distribution 𝑞𝝋(𝒛|𝒙). When 𝑞𝝋(𝒛|𝒙) 92 

is a multivariate normal distribution with unknown expectations 𝝁 and variances 𝝈2, the objective 93 

function is differentiable with respect to (𝜽, 𝝋, 𝝁, 𝝈) with the re-parameterization trick (Kingma 94 

and Welling, 2013). The parameters in VAE could be optimized iteratively using gradient-descent 95 

algorithms with the Adam optimizer (Kingma and Ba, 2014).  96 

Similar concepts have been put forth in computational neuroscience theories, for example 97 

the free-energy principle (Friston, 2010). In the free-energy principle, the brain’s perceptual 98 

system includes bottom-up and top-down pathways. Like the encoder in VAE, the bottom-up 99 

pathway infers the causes of sensation as probabilistic representations. Like the decoder in VAE, 100 

the top-down pathway predicts the sensation from its causes inferred by the brain. Both the bottom-101 

up and top-down pathways are shaped by experiences, such that the brain infers the causes of the 102 

sensory input, and generates the sensory prediction that matches the input with the minimal error 103 

or surprise. Mathematically, the learning objectives in both VAE and the free energy principle are 104 

similar, both aiming to minimize the lower bound of the marginal likelihood (or the free energy), 105 
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 7 

which depends on the difference (or the KL divergence) between the inferred and hidden causes 106 

of sensory data while maximizing the likelihood of the sensory data given the inferred causes. 107 

Training VAE with diverse natural images 108 

We designed a VAE with 1,024 latent variables, and the encoder and the decoder were both 109 

convolutional neural nets with five hidden layers (Fig. 2A). Each convolutional layer included 110 

nonlinear units with a Rectified Linear Unit (ReLU) function (Nair and Hinton, 2010), except the 111 

last layer in the decoder where a sigmoid function was used to generate normalized pixel values 112 

between 0 and 1. The model was trained on the ImageNet ILSVRC2012 dataset (Russakovsky et 113 

al., 2015). Training images were resized to 1281283. To enlarge the amount of training data, 114 

the original training images were randomly flipped in the horizontal direction, resulting in >2 115 

million training samples in total. The training data were divided into mini-batches with a batch 116 

size of 200. For each training example, the pixel intensities were normalized to [0, 1]; the 117 

normalized intensity was viewed as the probability of color emission (Gregor et al., 2015). To train 118 

the VAE, the Adam optimizer (Kingma and Ba, 2014) was used with a learning rate of 1e-4, as 119 

implemented in PyTorch (http://pytorch.org/). 120 

Experimental data 121 

Three healthy volunteers (all female, age: 23-26) participated in this study with informed 122 

written consent according to a research protocol approved by the Institutional Review Board at 123 

Purdue University. All experiments were performed according to the guidelines and regulations in 124 

the protocol. As described in detail elsewhere (Wen et al., 2017b), the experimental design and 125 

data were briefly summarized as below. Each subject watched a diverse set of natural videos for a 126 

total length up to 13.7 hours. The videos were downloaded from Videoblocks and YouTube, and 127 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 15, 2018. ; https://doi.org/10.1101/214247doi: bioRxiv preprint 

https://doi.org/10.1101/214247


 8 

then were separated into two independent sets. One data set was for training the models to predict 128 

the fMRI responses based on the input video (i.e. the encoding models) or the models to reconstruct 129 

the input video based on the measured fMRI responses (i.e. the decoding models). The other data 130 

set was for testing the trained encoding or decoding models. The videos in the training and testing 131 

datasets were independent for unbiased model evaluation. Both the training and testing movies 132 

were further split into 8-min segments. Each segment was used as visual stimulation (20.3o×20.3o) 133 

along with a central fixation cross (0.8o×0.8o) presented via an MRI-compatible binocular goggle 134 

during a single fMRI session. The training movie included 98 segments (13.1 hours) for Subject 135 

1, and 18 segments (1.6 hours) for Subject 2 & 3. The testing movie included 5 segments (40 mins 136 

in total). Each subject watched the testing movie 10 times. All five segments of the testing movie 137 

were used to test the encoding model. One of the five segments of the testing movie was used to 138 

test the decoding models for visual reconstruction, because this segment contained video clips that 139 

were continuous over relatively long periods (mean±std: 13.3±4.8 s).  140 

MRI/fMRI data were collected from a 3-T MRI system, including anatomical MRI (T1 and 141 

T2 weighted) of 1mm isotropic spatial resolution, and blood oxygenation level dependent (BOLD) 142 

fMRI with 2-s temporal resolution and 3.5mm isotropic spatial resolution. The fMRI data were 143 

registered onto anatomical MRI data, and were further co-registered on a cortical surface template 144 

(Glasser et al., 2013). The fMRI data were preprocessed with the minimal preprocessing pipeline 145 

released for the human connectome project (Glasser et al., 2013).  146 

VAE-based encoding models 147 

After training, VAE extracted the latent representation of any video by a feed-forward pass 148 

of every video frame into the encoder, and reconstructed every video frame by a feedback pass of 149 
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the latent representation into the decoder. To predict cortical fMRI responses to the video stimuli, 150 

an encoding model was defined separately for each voxel as a linear regression model. The voxel-151 

wise fMRI signal was estimated as a linear combination of all unit activities in both the encoder 152 

and the decoder given the input video. Every unit activity in VAE was convolved with a canonical 153 

hemodynamic response function (HRF). For dimension reduction, PCA was applied to the HRF-154 

convolved unit activity for each layer, keeping 99% of the variance of the layer-wise activity given 155 

the training movies. Then, the layer-wise activity was concatenated across layers; PCA was applied 156 

again to the concatenated activity to keep 99% of the variance of the activity from all layers given 157 

the training movies. See details in our earlier paper (Wen et al., 2017a). Following the dimension 158 

reduction, the principal components of unit-activity were down-sampled by the sampling rate of 159 

fMRI and were used as the regressors to predict the fMRI signal at each voxel through a linear 160 

regression model specifically estimated for the voxel.  161 

The voxel-wise regression model was trained with the fMRI data during the training movie. 162 

Mathematically, for any training sample, let 𝒙(𝑗) be the visual input at the j-th time point, 𝑦𝒊
(𝑗)

 be 163 

the fMRI response at the 𝑖-th voxel, 𝒛(𝑗) be a vector representing the predictors for the fMRI signal 164 

derived from 𝒙(𝑗) through VAE, as described above. The voxel-wise regression model is expressed 165 

as Eq. (4). 166 

                                                      𝑦𝑖
(𝑗)

=  𝒘𝑖
𝑇𝐳(𝑗) + 𝑏𝑖 + 𝜖𝑖                                                        (4) 167 

where 𝒘𝑖 is a column vector representing the regression coefficients, 𝒃𝑖 is the bias term, and 𝝐𝑖 is 168 

the error unexplained by the model. The linear regression coefficients were estimated using least-169 

squares estimation with L2-norm regularization, or minimizing the loss function as Eq. (5).  170 
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〈�̂�𝑖, �̂�𝑖〉 = argmin 
1

𝑁
𝑤𝑖,𝑏𝑖

∑ (𝑦𝑖
(𝑗)

− 𝒘𝑖
𝑇𝒛(𝑗) − 𝑏𝑖)

2
𝑁
𝑗=1 + 𝜆𝑖‖𝒘𝑖‖2

2                                 (5) 171 

where N is the number of training samples. The regularization parameter 𝜆𝑖 was optimized for each 172 

voxel to minimize the loss in three-fold cross-validation. Once the parameter 𝜆𝑖 was optimized, 173 

the model was refitted with the entire training dataset and the optimized parameter.  174 

Evaluation of encoding performance 175 

After the above model training, we tested the voxel-wise encoding models with the testing 176 

movies, which were different from the training movies to ensure unbiased model evaluation. For 177 

each voxel, the encoding performance was evaluated as the correlation between the measured and 178 

predicted fMRI responses to the testing movie. The significance of the correlation was assessed 179 

by using a block-wise permutation test with a block size of 24-sec and 100,000 permutations and 180 

corrected at false discovery rate (FDR) 𝑞 < 0.01, as described in our earlier papers (Shi et al., 181 

2017; Wen et al., 2017b). 182 

We compared the encoding performance against the so-called “noise ceiling”. It indicated 183 

the upper-limit of predictability given the presence of “noise” unrelated to the visual stimuli (David 184 

and Gallant, 2005; Nili et al., 2014). The noise ceiling was estimated using the method described 185 

elsewhere (Kay et al., 2013). Briefly, the noise was assumed to follow a Gaussian distribution with 186 

a zero mean and an unknown variance that varied across voxels. The response and the noise were 187 

assumed to be independent and additive. The variance of the noise was estimated as the squared 188 

standard error of the mean of fMRI signal (averaged across the 10 repeated sessions of each testing 189 

movie). The variance of the response was taken as the difference between the variance of the data 190 

and the variance of the noise. From the signal and noise distributions, the samples of the response 191 

and the noise were drawn by Monte Carlo simulation for 1,000 random trials. For each trial, the 192 
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signal was simulated as the sum of the simulated response and noise; its correlation coefficient 193 

with the simulated response was calculated. This resulted in an empirical distribution of the 194 

correlation coefficient for each voxel. We calculated the mean of the distribution as the noise 195 

ceiling 𝑟𝑁𝐶, and interpreted it as the upper limit of the prediction accuracy for any encoding model. 196 

In terms of the encoding performance, we compared the encoding models based on VAE 197 

against those based on CNN, which have been explored in recent studies (Eickenberg et al., 2017; 198 

Guclu and van Gerven, 2015; Wen et al., 2017b). For this purpose, we used a 18-layer residual 199 

network (ResNet-18) (He et al., 2016). Relative to AlexNet (Krizhevsky et al., 2012) or ResNet-200 

50 (He et al., 2016), ResNet-18 had an intermediate level of architectural complexity in terms of 201 

the number of layers and the total number of units. Thus, ResNet-18 was a suitable benchmark for 202 

comparison with VAE, which had a comparable level of complexity. Briefly, ResNet-18 consisted 203 

of 18 hidden layers organized into 6 blocks. The 1st block was a convolutional layer followed by 204 

max-pooling; the 2nd through 5th blocks were residual blocks, each being a stack of convolutional 205 

layers with a shortcut connection; the 6th block performed the multinomial logistic regression for 206 

classification. Typical to CNNs, ResNet-18 encoded increasingly complex visual features from 207 

lower to higher layers.  208 

We similarly built and trained voxel-wise regression models to project the representations 209 

in ResNet-18 to voxel responses in the brain, using the same training procedure and data as above 210 

for VAE-based encoding models. Then, we compared VAE against CNN (ResNet-18) in terms of 211 

the encoding performance evaluated in the level of voxels or regions of interest (ROI). In the voxel 212 

level, the encoding accuracy was converted from the correlation coefficient to the z score by the 213 

Fisher’s z-transform for the VAE or CNN-based encoding models. Their difference in the voxel-214 

wise z score was calculated by subtraction. For the ROI-level comparison, multiple ROIs were 215 
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selected from existing cortical parcellation (Glasser et al., 2016), including V1, V2, V3, V4, lateral 216 

occipital (LO), middle temporal (MT), fusiform face area (FFA), para-hippocampal place area 217 

(PPA) and temporo-parietal junction (TPJ). In each ROI, the correlation coefficient of each voxel 218 

was divided by the noise ceiling, and then averaged over all voxels in the ROI. The average 219 

prediction accuracy of each ROI was compared between VAE and ResNet-18.  220 

VAE-based decoding of fMRI for visual reconstruction 221 

We trained and tested the decoding model for reconstructing visual input from distributed 222 

fMRI responses. The model contained two steps: 1) transforming the fMRI response pattern to the 223 

latent variables in VAE through a linear regression model, and 2) transforming the latent variables 224 

to pixel patterns through the VAE’s decoder. Here we used a cortical mask that covered the visual 225 

cortex, and used the voxels within the mask as the input to the decoding model as in our previous 226 

study (Wen et al., 2017b). 227 

Let 𝒚(𝑗) be a column vector representing the measured fMRI map at the 𝑗-th time point, 228 

and 𝒛(𝑗) be a column vector representing the means of the latent variables given the visual input 229 

𝒙(𝑗). As Eq. (6), a multivariate linear regression model was defined to predict 𝒛(𝑗) given 𝒚(𝑗).  230 

𝒛(𝑗) = 𝐔𝒚(𝑗) + 𝒄 + 𝜺                                                          (6) 231 

where 𝐔 is a weighting matrix representing the regression coefficients to transform the fMRI map 232 

to the latent variables, c is the bias term, and 𝜺 is the error term unexplained by the model. This 233 

model was estimated based on the data during the training movie.  234 

To estimate parameters of the decoding model, we minimized the objective function as Eq. 235 

(7) with L1-regularized least-squares estimation to prevent over-fitting. 236 
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                        〈 �̂�, �̂�〉 = arg min
𝐔,𝒄

1

𝑁
∑ (𝒛(𝑗) − 𝐔𝒚(𝑗) − 𝒄)

2
+ 𝜆‖𝐔‖1

1𝑁
𝑗=1                               (7) 237 

where N is the number of data samples used for training the model. The regularization parameter, 238 

𝜆, was optimized to minimize the loss in three-fold cross-validation. To solve Eq. (7), we used the 239 

mini-batch stochastic gradient-descent algorithm with a batch size of 100 and a learning rate of 240 

1e-7.  241 

It follows that the testing movie was reconstructed frame by frame by passing the estimated 242 

latent variables through the decoder in VAE, as expressed by Eq. (8) 243 

�̂�(𝑗) =  𝛩(�̂�(𝑗)) =  𝛩(�̂�𝒚(𝑗) + �̂�)                                                   (8) 244 

where 𝛩 is the nonlinear mapping from latent variables to the visual reconstruction defined by the 245 

VAE decoder. 246 

Evaluation of decoding performance 247 

To evaluate the decoding performance in visual reconstruction, we calculated the Structural 248 

Similarity index (SSIM) (Wang et al., 2004) between every reconstructed video frame and the true 249 

video frame, yielding a measure of the similarity in the pattern of pixel intensity. The SSIM was 250 

further averaged across all video frames in the testing movie. 251 

In addition, we evaluated how well movie reconstruction preserved the color information 252 

in the original movie. For this purpose, the color information at each pixel was converted from the 253 

RGB values to a single hue value. The hue maps of the reconstructed movie frames were compared 254 

with those of the original movie frames. Their similarity was evaluated in terms of the circular 255 

correlation (Berens, 2009; Jammalamadaka and Sengupta, 2001). Hue values in the same frame 256 

were represented as a vector and the hue vectors were concatenated sequentially across all video 257 
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frames to represent the color information in the entire movie. The circular correlation in the 258 

concatenated hue vector between the original and reconstructed frames was calculated for each 259 

subject. The statistical significance of the circular correlation between the reconstructed and 260 

original color was tested by using the block-permutation test with 24-sec block size and 100,000 261 

times permutation (Adolf et al., 2014). 262 

We also compared the performance of the VAE-based decoding method with a previously 263 

published decoding method (Cowen et al., 2014). In this alternative method (Cowen et al., 2014), 264 

we applied PCA to the training movie and obtained its principal components (or eigen-images), 265 

which explained 99% of the variance in the pixel pattern of the movie. The partial least square 266 

regression (PLSR) (Tenenhaus et al., 2005) was used to estimate the linear transformation from 267 

fMRI maps to eigen-images given the training movie. Using the estimated PLSR model, the fMRI 268 

data during the testing movie was converted to representations in eigen-images, which in turn were 269 

recombined to reconstruct the visual stimuli (Cowen et al., 2014). As a variation of this PLSR-270 

based model, we also explored the use of L1-norm regularized optimization to estimate the linear 271 

transform from fMRI maps to eigen-images, in a similar way as used for the training of our 272 

decoding model (see Eq. (7)). As such, the training procedure was identical for both methods, 273 

except that the feature space for decoding was different: the latent variables for VAE, and eigen-274 

images for PLSR.  275 

Moreover, we also explored whether the VAE-based decoding models could be generalized 276 

across subjects. For this purpose, we used the decoding model trained from one subject to decode 277 

the fMRI data observed from the other subjects while watching the testing movie. 278 

 279 
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Results 280 

VAE provided vector representations of natural images 281 

By design, VAE aimed to form a compressed and generalized vector representation of any 282 

natural image. In VAE, the encoder converted any natural image into 1,024 independent latent 283 

variables; the decoder reconstructed the image from the latent variables (Fig. 2.A). After training 284 

it with >2 million natural images in a wide range of categories, the VAE could regenerate natural 285 

images without a significant loss in image content, structure and color, albeit blurred details (Fig. 286 

2B). The VAE-generated images showed comparable quality for different types of input images 287 

(Fig. 2.B). As such, the latent representations in VAE were generalizable across various types of 288 

visual objects, or their combinations. 289 

VAE predicted movie-induced cortical responses  290 

Given natural movies as visual input, we further asked to what extent the model dynamics 291 

in VAE could be used to model and predict the movie-induced cortical responses. Specifically, a 292 

linear regression model was trained separately for each voxel by fitting the voxel response to a 293 

training movie as a linear combination of the VAE’s unit responses to the same movie. Then, the 294 

trained voxel-wise encoding model was tested with a new testing movie (not used for training) to 295 

evaluate the model’s prediction accuracy (i.e. the correlation between the predicted and measured 296 

fMRI responses). For a large area in the visual cortex (Fig. 3), the VAE-based encoding models 297 

could predict the movie-evoked responses with statistically significant accuracy (FDR q<0.01). In 298 

particular, early visual areas (V1/V2/V3) showed the highest prediction accuracy, whereas the 299 

prediction accuracy was relatively lower for higher visual areas along the ventral or dorsal stream 300 

(Fig. 3). The VAE-predictable areas were relatively larger when more data (~12-hour movie) were 301 
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used for training the encoding models in Subject 1 than Subject 2 & 3 for whom less training data 302 

(2.5-hour movie) were available.  303 

Comparing encoding performance for VAE vs. CNN  304 

We further compared VAE against CNN, which was found to predict cortical responses to 305 

natural picture or video stimuli (Eickenberg et al., 2017; Guclu and van Gerven, 2015; Wen et al., 306 

2017b). Fig. 4 shows the prediction accuracies at different ROIs, given the encoding models based 307 

on VAE and ResNet-18 – a particular type of CNN. For VAE, the encoding performance was the 308 

highest in V1, and decreased progressively towards higher visual areas. ResNet outperformed 309 

VAE in all ROIs, especially for higher visual areas along the ventral stream (e.g. FFA/PPA/TPJ), 310 

but marginally for early visual areas. Similar findings were observable in the voxel level. Fig. 5 311 

shows the voxel-wise prediction accuracy for VAE or ResNet. ResNet outperformed VAE for most 312 

of the visual cortex. Their difference (by subtraction) was much more notable in the ventral-stream 313 

areas than early visual areas or those in the dorsal-stream areas. In sum, VAE was in general less 314 

predictive of visual cortical activity than was CNN.   315 

Direct visual reconstruction by decoding fMRI activity 316 

We further explored the use of VAE for decoding the fMRI activity to reconstruct the visual 317 

input. For this purpose, a decoding model was trained and used to convert the fMRI activity to the 318 

VAE’s latent-variable representation, which was in turn converted to a pixel pattern through the 319 

VAE’s decoder. In comparison with the original videos, Fig. 6 shows the visual input reconstructed 320 

from fMRI activity based on VAE and the decoding models, which were trained and tested with 321 

data from either the same or different subjects. Although the visual reconstruction was too blurry 322 

to fully resolve details or discern visual objects, it captured basic information about the dynamic 323 
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visual scenes, including the coarse position and shape of objects, and the rough color and contrast. 324 

The quality of visual reconstruction was better when the decoding models were trained and tested 325 

for the same subject than for different subjects.  326 

We assessed the quality of visual reconstruction by quantifying the structural similarity (as 327 

SSIM) (Wang et al., 2004) between the reconstructed and original movies. The VAE-based 328 

decoding method yielded a much higher SSIM (about 0.5) than the eigen-image-based benchmark 329 

models with either partial least squares regression (Cowen et al., 2014) or L1-regularized linear 330 

regression (Fig. 7A). Moreover, the VAE-based visual reconstruction preserved the color 331 

information and its dynamics in the movie, showing statistically significant (permutation test, p <332 

0.001) correlations in color index (Hue-value) around 0.25. 333 

Lastly, we decoded the fMRI activity of Subject 2 or 3 based on the decoding model trained 334 

from Subject 1 (Fig. 6). By visual inspection, the quality of reconstruction was lower as the model 335 

was trained and tested with different subjects. Nevertheless, the reconstruction was qualitatively 336 

similar to what was attained with the decoding models trained/tested with the same subject, while 337 

preserving basic patterns in the original video frames (Fig. 6). Therefore, the VAE-based decoding 338 

model was transferable across subjects. 339 

 340 

Discussion 341 

We designed and trained a variational autoencoder (VAE) to learn visual representations 342 

by reconstructing diverse natural images. Unlike CNN, VAE does not require labeled samples, 343 

and can be trained by unsupervised learning based on variational inference (Kingma and Welling, 344 

2013). Non-observable causes of visual input are inferred through joint optimization of bottom-up 345 
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and top-down components in VAE. In line with the notion of Bayesian brain (Yuille and Kersten, 346 

2006), the bottom-up process infers the causes of any given visual input, and the top-down process 347 

generates a “virtual version” of the visual input based on the inferred cause. As a candidate model 348 

of the visual cortex, VAE is able to decode fMRI scans for visual reconstruction, and predict fMRI 349 

responses to video stimuli. The decoding strategy is generative in nature, yielding encouraging 350 

performance in reconstructing videos, while it is likely applicable to decoding of mental images. 351 

The encoding performance of VAE is relatively higher in early visual areas than higher visual 352 

areas, but overall not as high as the performance of CNN. In summary, the findings in this paper 353 

support the Bayesian brain hypothesis, and highlight a generative strategy for decoding naturalistic 354 

and diverse visual experiences. 355 

Bayesian Brain and Free energy.  356 

This work is inspired by the Bayesian brain theory (Ma et al., 2006; Yuille and Kersten, 357 

2006). This theory has been used to model the brain in various functional domains, including 358 

cognitive development (Perfors et al., 2011; Tenenbaum et al., 2011), perception (Knill and 359 

Pouget, 2004; Lee and Mumford, 2003), and action (Friston, 2010). This theory assumes that the 360 

brain learns a generative model of the world and uses it to infer the hidden cause of sensation 361 

(Friston, 2012). Under this theory, the brain runs computation similar to Bayesian inference (Knill 362 

and Richards, 1996); visual perception is viewed as a probabilistic process (Pouget et al., 2013), 363 

capable of dealing with noisy, incomplete, or ambiguous visual input (Tenenbaum et al., 2011; 364 

Yuille and Kersten, 2006).  365 

VAE rests on a very similar notion. The encoder computes latent variables as Gaussian 366 

distributions, from which the samples are drawn by the decoder. The latent variable distribution 367 

can be used to generate not only the samples already learned, but also samples that are unknown 368 
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to the model. VAE also embodies the inference strategy called “analysis by synthesis” (Yuille and 369 

Kersten, 2006). In this regard, the top-down generative component is important for optimizing the 370 

bottom-up component, to find what cause the input. Given the sensory input, the bottom-up process 371 

makes proposals of possible causes that generate the sensation (Yuille and Kersten, 2006), and 372 

then the proposals are updated by the top-down generative model with the direct comparison 373 

between sensory input and its generated “virtual version” (Friston and Kiebel, 2009). In VAE, this 374 

notion is represented by the learning rule of minimizing the reconstruction error – the difference 375 

between the input to the encoder and the output from the decoder. This learning rule allows the 376 

(bottom-up) encoder and the (top-down) decoder to be trained all together (Kingma and Welling, 377 

2013). 378 

VAE also contributes to the computational approximation of “free-energy”, a neuroscience 379 

concept to measure the discrepancy between how the sensation is represented by the model, and 380 

the way it actually is (Friston, 2010; Hinton and Zemel, 1994). In Bayesian inference, minimizing 381 

this discrepancy (also called “surprise”) is important for updating the model but is difficult to 382 

calculate. Therefore free-energy is proposed as the upper-bound of the sensory surprise which can 383 

be minimized coherently by minimizing free-energy (Friston, 2009). Mathematically, free-energy 384 

is expressed as the sensory surprise plus the non-negative KL divergence between the inferred 385 

causes given the input, and the true hidden causes. This formulation simplifies the inference 386 

process to an easier optimization problem by approximating the posterior distributions of visual 387 

causes (Friston, 2010). VAE bears the same idea in an artificial neural network. As shown in Eq. 388 

(1), the learning objective 𝐿(𝜽, 𝝋; 𝒙) can be decomposed into two parts: the marginal likelihood 389 

of the data log 𝑝𝜽(𝒙), minus the KL divergence between inferred latent variables and its ground 390 

truth 𝐷𝐾𝐿[𝑞𝝋(𝒛|𝒙)||𝑝𝜽(𝒛|𝒙)]. As the marginal likelihood is the negative format of “surprise” 391 
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(Friston et al., 2012), VAE is actually optimizing the probability of generated data through 392 

minimizing “free-energy”.  393 

VAE vs. CNN 394 

Our results suggest that VAE, as an implementation of Bayesian brain, turns out to partially 395 

explain and decode brain responses to natural videos. Therefore, it lends support to the Bayesian 396 

brain theory. However, its encoding and decoding performance is not perfect, or even worse than 397 

CNN, which outperforms VAE in nearly all visual areas. While both trained with the same data 398 

with different learning objective, the difference in encoding performance between VAE and CNN 399 

was most notable in higher visual areas in the ventral stream, which has been known to play an 400 

essential role in object/scene recognition (Ungerleider and Haxby, 1994). CNN is explicitly driven 401 

by object categorization, because its training is supervised by categorical labels of images. VAE 402 

is trained without using any label, thereby with unsupervised learning.  403 

It is likely that supervised learning is required for a model to fully explain ventral-stream 404 

activity. A previous study has reached a similar conclusion with different models and an analysis 405 

method based on representational similarity (Khaligh-Razavi and Kriegeskorte, 2014). However, 406 

this conclusion should be taken with caution. There are many potential learning objectives that can 407 

be used for unsupervised learning. The argument on unsupervised versus supervised learning still 408 

awaits future studies to fully resolve.  409 

Towards Robust and Generalizable Natural Visual Reconstruction 410 

Researchers have long been trying to render evoked brain activities into the sensory input, 411 

including edge orientation (Kamitani and Tong, 2005), face images (Cowen et al., 2014; Güçlütürk 412 

et al., 2017; Nestor et al., 2016), contrast patterns (Miyawaki et al., 2008), digits (Du et al., 2017; 413 
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Qiao et al., 2018; van Gerven et al., 2010b) and handwritten characters (Schoenmakers et al., 414 

2013). Other studies have tried to extend the reconstruction from artificial stimuli to diverse natural 415 

stimuli. The reconstruction of diverse natural images or movies has been shown by using the 416 

Bayesian reconstruction method (Naselaris et al., 2009; Nishimoto et al., 2011), where the 417 

reconstruction is matched to the images or movies in the prior dataset. Recently deep generative 418 

models have been used for decoding natural vision. A deep convolutional generative adversarial 419 

network (DCGAN) (Radford et al., 2015) enables the reconstruction of handwritten characters and 420 

natural images (Seeliger et al., 2017). Besides, a deep generator network (DGN) (Nguyen et al., 421 

2016) has been introduced to add naturalistic constraints to image reconstruction based on decoded 422 

human fMRI data (Shen et al., 2017).  423 

Our method is different by its training strategy. Unlike the Bayesian reconstruction method, 424 

VAE-based decoding model is generalizable without relying on the natural image prior. Besides, 425 

both DCGAN and DGN are optimized with adversarial training (Goodfellow et al., 2014). 426 

Whereas adversarial training may constrain visual reconstruction to be naturalistic (Shen et al., 427 

2017), the VAE-based decoding model is purely rooted in variational inference. In addition, our 428 

goal is not only to optimize neural decoding for visual reconstruction, but also to test the 429 

plausibility of using VAE to model the brain. Although VAE and GAN are both emerging 430 

techniques for learning deep generative models (Dumoulin et al., 2016), these two types of 431 

networks are not mutually exclusive; instead, they might be combined for potentially better and 432 

more generalizable visual reconstruction.  433 

Limitations and Future Directions 434 

Although our results support the Bayesian brain theory, some limitations of VAE should 435 

be noted. VAE offers a computational account of Bayesian inference and free-energy minimization 436 
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in the brain. However, the biological inference might be implemented in a more complex and 437 

dynamic process. In this sense, the brain infers hierarchically organized sensory causes possibly 438 

with predictive coding (Huang and Rao, 2011; Rao and Ballard, 1999). Higher-level neural 439 

systems attempt to predict the inputs to lower-level ones, and prediction errors of the lower-level 440 

are propagated to adapt higher-level systems to reduce the prediction discrepancy (Clark, 2013). 441 

Therefore, hierarchical message passing with recurrent and feedback connections might be 442 

essential for effective implementation of Bayesian inference in the brain (Bastos et al., 2012; 443 

Friston, 2010; Friston and Kiebel, 2009). While VAE cannot offer hierarchically organized sensory 444 

causes and temporal processing, these properties might be important and should be incorporated 445 

into the future development of similar models.  446 
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Figure Captions 452 

 

Figure 1 | A Bayesian model of human vision. (A) The brain models the causal structure of 

the world for visual inference. The brain analyzes the sensory input to infer the hidden causes of 

the input through its bottom-up processes, and predicts the sensory input through its top-down 

processes. (B) Encoding and decoding visually-evoked cortical fMRI responses by using VAE 

as a model of the visual cortex. For encoding, cortical responses to any visual stimuli are 

predicted as a linear projection of the VAE responses to the same stimuli. For decoding, visual 

stimuli were reconstructed by first estimating the VAE’s latent variables as a linear function of the 

fMRI responses, and then generating pixel patterns from the estimated through the VAE’s decoder. 
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Figure 2 | Variational auto-encoder. (A) The architecture of VAE for natural images. The 

encoder and the decoder both contained 5 layers. The dimension of latent variables was 1024. 

Operations were defined as: *1 convolution (kernel size=4, stride=2, padding=1), *2 rectified 

nonlinearity, *3 fully connected layer, *4 re-parameterization, *5 transposed convolution (kernel 

size = 4, stride = 2, padding = 1), *6 sigmoid nonlinearity. (B) Reconstruction of natural images 

by VAE. For any image (left), its information was encoded by 1024 latent variables by passing it 

through the VAE encoder. From the latent variables, the VAE decoder generated an image (right) 

as the reconstruction of the input image, despite blurred details. 
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Figure 3 | Prediction accuracy with VAE-based encoding models. The accuracy was measured 

by the Pearson’s correlation coefficient (r) between the model-predicted response and the actual 

fMRI response. The map shows the r value averaged across the five testing movies. The map was 

thresholded by statistical significance (FDR q<0.01). The results are shown on the flattened (only 

for Subject 1) and inflated cortical surfaces for every subject.   
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Figure 4 | The ROI-level encoding performance of VAE vs. ResNet-18. For either VAE (light 

array) or ResNet-18 (dark gray), the encoding model’s accuracy in predicting the fMRI response 

to the testing movie was normalized by the noise ceiling and summarized for each of the nine pre-

defined ROIs. Arranged from the left to the right, individual ROIs are located in increasingly 

higher levels of the visual hierarchy. The bar chart was based on the mean±SEM (standard error 

of the mean) of the voxel-wise prediction accuracy (divided by the noise ceiling) averaged across 

all the voxels in each ROI, and across different testing movies and subjects. 
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Figure 5 | Encoding performance with VAE vs. ResNet-18. The prediction accuracy (the z-

transformed correlation between the predicted and measured fMRI responses) is displayed on 

inflated cortical surfaces for the encoding models based on VAE (top-left) and ResNet-18 (top-

middle). Their difference (ResNet – VAE) in the prediction accuracy is displayed on both inflated 

(top-right) and flattened (bottom) cortex. 
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Figure 6 | Visual reconstruction based on VAE and fMRI. For each of the 6 example video 

clips in the testing movie, the top row shows the original video frames, the middle or bottom rows 

show the frames reconstructed from the measured fMRI responses, based on VAE and the 

decoding model trained and tested within the same subject (Subject 1), or across different subjects, 

respectively. The cross-subject decoding models were trained with data from Subject 1, but tested 

on data from Subject 2 (the top 3 clips) or Subject 3 (the bottom 3 clips).  
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Figure 7 | Quantitative evaluation of visual reconstruction. (A) Comparison of structural 

similarity index (SSIM). SSIM scores of VAE-based decoding model and eigen-image-based 

models were compared for all 3 subjects. Each bar shows the mean±SE SSIM score over all frames 

in the testing movie. (B) Correlation in color (hue-value). The (circular) correlation between the 

original and reconstructed hue components was calculated and evaluated for statistical significance 

with permutation test (*, p<0.001).  
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