bioRxiv preprint doi: https://doi.org/10.1101/248385; this version posted January 15, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Sampling Neuron Morphologies

Roozbeh Farhoodi %? Konrad Paul Kording?
ISharif University of Technology, 2University of Pennsylvania
roozbehfarhoudi@gmail.com, koerding@gmail.coml

Abstract

The intricate morphology of neurons has fascinated since the dawn of
neuroscience, and yet, it is hard to synthesize them. Current algorithms
typically define a growth process with parameters that allow matching
aspects of the morphologies. However, such algorithmic growth processes
are far simpler than the biological ones. What is needed is an algorithm
that, given a database of morphologies, produces more of those. Here, we
introduce a generator for neuron morphologies that is based on a statis-
tical sampling process. Our Reversible Jump Markov chain Monte Carlo
(RJIMCMC) method starts with a trivial neuron and iteratively perturbs
the morphology bringing the features close to those of the database. By
quantifying the statistics of the generated neurons, we find that it outper-
forms growth-based models for many features. Good generative models
for neuron morphologies promise to be important both for neural simula-
tions and for morphology reconstructions from imaging data.

1 Introduction

The morphology of neurons is beautiful and exhibits many regularities [I]. We
can see the morphology as being the result of a process that optimizes aspects of
wiring cost [2] [3]. Alternatively, we can see morphology as being the result of a
growth process [4]. There are also multiple other rule-like aspects. For example,
Pierrets rule tells that there is a correlation between the neuron size and length
of its axonal size[I] and Larkman’s rule tells us that diameter of segments in the
neuron are reversely correlated with their length [5]. There are also important
environmental influences on cellular morphologies [6] suggesting that neither
simple optimization nor simple growth-rule approaches can be sufficient. There
are many mechanisms at play in the process that generates neuron morphologies
suggesting that a meaningful generator for neuron morphologies needs to be
multifaceted.

The morphology of neurons is important as it affects the way neurons com-
pute. Different parts of the dendritic tree can produce different kinds of signals.
For example, the apical dendrite of layer 5 pyramidal neurons can produced
Calcium spikes [7]. Similarly basal dendrites are often able to produce NMDA
spikes [§]. Moreover, the travel of signals along the dendrites changes the signal
transmission from a synapse to the soma [9]. The morphology of neurons is im-
portant for any kind of precise neuron simulation [I0,T1]. As such, morphologies
are an important aspect of neuroscience.

Driven by recent interests in brain simulation as well as neuronal recon-
struction, there is renewed interest in generative models for morphologies. Sci-
entists may want to simulate more neurons than morphologies characterized

https://doi.org/10.1101/248385
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/248385; this version posted January 15, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

by anatomists. This produces a need for generating morphologies that are like
those that have been characterized[12]. Moreover, when trying to reconstruct
neurons from 3D imaging data [I3][14] [I5], 6] we could also benefit from good
generative models as a deviation may indicate a reconstruction mistake. Both
of these fields could benefit considerably from the existence of good generative
models for neuron morphologies.

Today’s generators use multiple different intuitions [I7]. One set of ap-
proaches uses a simple growth process. For example, they may start at the soma
and, at every potential branching point sample from statistical descriptors[18]
an idea which is used in popular tools [I9} 20, 2I]. In that approach, all decisions
about growth are strictly local at each subsequent branching point. A second set
of approaches tries to follow the growth process and utilizes knowledge about the
simultaneously developing segments [22, 23] 24]. These approaches effectively
bootstrap off the idea of optimization [2]; however decisions are still unaffected
by geometry. A third set of approaches includes knowledge of the geometry, e.g.
by simulating neurotrophic particles [25]. This approach allows fast generation
but ignores all aspects that are directly related to the growths process. All these
approaches are based on the idea of producing neurons based on insights into
the way neuron generation works, are conceptually beautiful, and successfully
describe important aspects of morphologies.

Neuron morphologies have many characterized properties. They have certain
shapes, certain distributions of branch angles, densities etc. Hence, it is hard
to know how well a given generator characterizes real neurons. Each method
may be good, or even provably optimal, at generating certain features. But if
we acknowledge that the real generative process is more complicated than these
generators we are faced with the problem of how we could generate neurons
that obey many of the aspects of real neuron morphologies. We want to have a
generator that can match many features from the dataset.

If we have a feature set that allows us to ask how probable a hypothesized
morphology is based on a model derived from a database of real morphologies
then we could generate neurons through a sampling process. Such an approach
could try lots of neuron morphologies and basically find out which ones are
more like those of real neurons and thus probable. In [26] such a process is used
for generating textures. Generalizing this idea to morphologies is hard because
the topological structure of the ambient space is nested. In fact, Markov chain
Monte Carlo (MCMC) is a set of generally applicable methods that can be used
to sample if we have a function that approximates the probability. In the case
of morphologies that could be the probability of the morphology induced from
a model fit to the feature set. What makes the problem complicated is the fact
that different morphologies are not just different in the settings of parameters
but about their number. In such cases Reversible jump MCMC is appropriate
for sampling [27]. Such an approach would come with the promise of satisfying
any number of features of the neuron morphology.

Here we present an approach based on Markov chain Monte Carlo methods
for generating morphologies. By iterating changes, the chain becomes closer and
closer to the generative distribution until it samples from a meaningful distri-
bution. The advantage of our approach is that it generates morphologies based
on a dataset of neurons, compared to other generative models which we can
only optimize a small number of generator parameters. In this setup by adding
more features or generally by making the generative model better, the resulting

https://doi.org/10.1101/248385
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/248385; this version posted January 15, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

morphologies gradually become more realistic. We study the convergence and
mixing time of the method and compare it with a recent model for generating
morphologies.

a)

SOOI

100

Scalar quantities Histogram of Branching Angles

number of
Initial Segments
number of
nodes
number of
branching nodes

degree

Histogram of Local Angles

7 7 Q E> 7

% . e 2 %

\, ratio N,
‘o, 2 degree

N
&
N

Histogram of segment Length Histogram of Vertical Distance from soma Histogram of Global Angles

density

density o
o

N il ...

%, &
%2 .
distance (nm) % distance (nm)

b)

Figure 1: Representing a neuron morphology by its geometrical and morpholog-
ical features. a) Morphology of a neuron is shown in the center, surrounding by
its extracted features. b) By putting all the features together we can construt a
long feature vector that describes is sectior({.3

PR % 2 2 7z
D% 2, % %, 2
N Q
2.
>

Resulting Feature Vector

2 Results

Morphologies are beautiful and important, raising the question of how they can
be synthesized. We thus introduce an approach that generates new samples
for a class of neurons by analyzing the morphologies in an existing database.
We first introduce a rich set of features for quantifying the morphologies of a
neuron class. Although the values of the features vary across the neurons, we
can extract their salient statistics and join all features into one vector. This,
along with a naive Bayes assumption, allows us to build a probabilistic model
that represents a neuron class. Having probability distribution over the space
of possible neurons enables us to use popular methods for extracting samples

https://doi.org/10.1101/248385
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/248385; this version posted January 15, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

such as Reversible Jump Markov Chain Monte Carlo (RIMCMC). We will thus
be able to construct morphologies that are statistically matched to those of the
database.

2.1 Generative model

The similarity of neurons can be readily defined in a relevant feature space.
Such a feature set could be learned from a large database [28], but here we use
a hand-engineered feature set. Relevant features may be a real number, e.g. the
total length of neuritis. They may be counts in a histogram, e.g. all the angles
at the branching nodes within a certain interval(figure a). They may also be
a vector, e.g. the density of neuritis in cylindrical coordinates. While some real
valued features reveal the global structure of a neuron, histograms and densities
can describe the arborizations and branching patterns. By concatenating all
the features, we represent each morphology by a long feature vector (figure
[Ib). The difference in the features and hence distance of feature vectors can be
used to compare two neurons.

To attain a generative model for a neuron type, we want to be able to ask how
representative a morphology is relative to those in a database. The morphologies
in the database will all be different from one another because of randomness in
the growth process, environmental conditions and, maybe disturbingly, details of
the imaging techniques. To obtain a simple generative model we can characterize
the database by the univariate means and variances of each feature (figure[2]a).
To calculate the probability of a neuron under this generative model, we simply
assume a normal model where each feature is assumed conditionally independent
on the others, an assumption that is called nédive Bayes. This gives a direct way
of calculating the log probability of a morphology under the Gaussian model
(figure 2ld) for each possible feature vector.

The number of possible neurons grows rapidly with the number of nodes.
The degrees of freedom are three times the number of nodes. This makes it
hard to know if the distribution of trees is meaningfully defined by the above
defined distribution of features. One possible approach is to fix the dimension
of the tree, e.g. by giving each neuron 1000 nodes. The other approach that
we take in this paper is to correct the probabilities by normalizing them with
a factor derived from the dimensionality of the tree (see Methods for details).
With this assumption we can obtain a meaningful distribution over trees.

https://doi.org/10.1101/248385
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/248385; this version posted January 15, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

a) Database mean and variance of the features: [/, 0

b) arbitrary neuron feature vector f
IIIIll ‘uL ______ aI'II _____ a-ll'l' m H]DIIID== - —ccoor T mﬂ[ﬂuH]Dn: ,,,,,,,,,, JI.I.IJ H
C) Residual for each features standard difference: f K
a

_ Database = II IIII||| [ECE— T I|| I-ll_nll Dnnn_umunnumnm DDDDDDUHD eclliocoe - u,mlll____._____nu_

- Database = I||I|.|_I“|“I._.______. I'|I|| |Il“||“ ||||I|" HDD - ElE||:||:|DD|:||:||:||:||:||]|:|DHHHHHHDDDDDDDDDDDD------|III. _______

Space of all possible neurons

—

1 f@ uz 2
P(Y) ~ Z ()

d)

Figure 2: Features can be used to define a generative model of a given database of
neuron: a) & samples of pyramidal neurons are shown on the left. On the right
side the mean and the variance of features across all the samples are shown.
b) An arbitrary neuron and its features are shown. c¢) By taking the standard
difference between the arbitrary neuron and the database the residual of features
for two neuron are computed. d) the square sum of all residuals (scaled by their
inverse std) defines a metric for the distance from database. Moreover by taking
the exponential of distance we can define a Gaussian probability distribution
over the space of all possible neurons. (for details of generative model look at

[-3-

https://doi.org/10.1101/248385
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/248385; this version posted January 15, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

&\(é\ 7/, 0/_
eQ foy;
o ’0/ Current ng
\e ' ~

| Y Neuron

=)
@ Co/b,oe’ . 3‘\)(65
/ ¢
min{1, r} V\ZQ P(f%) i/ Proposal
r= —— Neuron

P(%)

Space of all possible neuorns

*. % (IxE

2

Figure 3: Schematic illustrating of MCMC' algorithm for sampling neuron mor-
phologies. When the morphology of a class of neuron is modeled by a probability
distribution over the space of all possible morphologies, MCMC can sample. It
starts with an initial neuron; possibly a trivial neuron (only soma) or an ele-
ment of database. Iteratively, the current neuron is perturbed to make a proposal
neuron. If the proposal neuron is closer to the database compare to the current
neuron, it will replace it, otherwise it may be rejected. After many iterations
the neuron gradually move toward the database.

Once we have a generative model of trees based on feature similarity and
dimensionality, we need a method for sampling morphologies. Here we used
Monte Carlo Markov chain (MCMC) for sampling. MCMC is an efficient way
to sample from a potentially nontrivial space. MCMC starts with an initial
state and in each step, the current state will be perturbed to produce a proposal
state (ﬁgure. We choose the Metropolis Hastings algorithm. x and 2’ are the
current state and the proposal state, respectively, and P(x|y) is the probability
of jumping from state = to state y. The probability of acceptance of the proposal

is equal to:
P(z’ P !
min{1, &), Blelz)

B@) < B@l) @)

This allows sampling from a problem with fixed dimensionality.

https://doi.org/10.1101/248385
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/248385; this version posted January 15, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

To generate a diverse set of trees, the number of nodes needs to change during
sampling. Reversible jump MCMC (RJMCMC) can deal with this problem by
including the Jacobian matrix and correcting the acceptance probability ([29]).
In this case the second term in the expression [I] should be multiplied with
the determinant of the Jacobian of the mapping from the domain of the current
state to the proposed state. By iterating this process, the features of the current
neuron gradually becomes closer to those from the database during the so-called
burn-in. It then subsequently samples morphologies from the generative model.

o

\ / Extension

Sliding

Y N

Figure 4: Proposal distributions. Some perturbation change the topological struc-
ture of the neuron and some of them change it geometrically (e.g. location). In
the center an initial morphology is represented and around it are some possible
proposals. These proposals usually change only parts of the morphology (red).
In Sliding a part of the neuron moves over the morphology. This part is a con-
nected component that attaches to random point on the neuron. In Extension
a new node is added to an end point of the meuron. In Rotation one of the
connected component of the morphology is rotated in 3d space.

Since the space of all possible neurons is huge and the features are different,
mixing time, the time it takes for the chain to converge to the meaningful proba-
bility distribution, matters. To address mixing we tested different perturbation
method to change the neuron in each iterations and selected those that allowed
faster mixing. Our perturbations change the morphological structure (see figure

https://doi.org/10.1101/248385
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/248385; this version posted January 15, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

and doing so move the morphology towards the high probability region. Some
of our steps propose to add or remove nodes. Since the number of nodes changes
across iterations, this perturbation jumps between different dimensional space
and hence we have to implement RJIMCMC. Other steps propose rotations of
part of the neuron. This facilitates convergence of the geometrical picture of
the neuron in addition to the statistics of its segments. And yet further steps
propose sliding parts. This enhances the convergence of morphological features.
The combination of all of these proposals converges reasonably fast.

2.2 Simple objects

To sanity-check our algorithm we first used it to generate simple objects. Since
each neuron consists of segments we first test the algorithm to make a segment
that is slightly curved. To measure this, we define bending as the fraction of
the whole length of the object to the Euclidean distance between its endpoints.
The goal is to generate segments with a bending ratio in the vicinity of 1.15.
The algorithm starts with a straight line and in each step a random node of the
segments will be selected and all the nodes on one side of it rotate. We find
that the algorithm rapidly converges (Fig. a). The algorithm thus seems to
work well for simple problems of fixed dimensionality.

To further check our algorithm we ran it on a case where the number of nodes
does change. The objective is to both match the number of branching points,
the number of nodes and also match the bending ratio. During this process the
number of nodes can change. The algorithm readily achieves the defined objec-
tives(figure b). Asking for several features to be fit slows down convergence.
Both the Metropolis Hastings and the RIMCMC parts by themselves seem to
work well for simple, understandable, problems.

2.3 Generating Neurons

We now turn to our real objective, generating a morphology from a database
of actual neuron morphologies. We start by analyzing layer 5 pyramidal cells
in the neuromorpho database@a). Every neuron is different from one another
but they share the morphological features of this neuron class.

https://doi.org/10.1101/248385
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/248385; this version posted January 15, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

a) Convergence Generated Objects
ey oo
\ N—— \
Bending = length
ending = distance __\ L /_f‘
1 > ~N- /-/\
0 1000 2000
iteration
b)
Convergence Convergence Generated Objects
A vy > s N R 2o S V ; ,1? ,
Sso PN e, WY .
2 -
E E R 37
g &
£
2. > , P 5, =
0 1000 2000 0 1000 2000
iteration iteration

Figure 5: Generating simple morphologies. Neurons are assembled by connect-
ing segments therefore generating them can be reduce to generating segments
and trees. a) To generate a segment, we started with straight line and each time
rotate a part of it using MCMC algorithm. The objection is to have the bending
ratio close to 1.15. The middle diagram shows the convergence during the itera-
tions. Nine samples are plotted on the right. b) To generate trees with segments,
we allowed changing the number of nodes during iterations. The objection here
is to generate a geometrical graph with around 50 nodes and 4 branching nodes
such that its segments have bending ratio around 1.15. Convergence of number
of nodes (red) and bending ratio (blue) for generating one object is plotted. Nine
samples are plotted on the right.

To understand how our algorithm can replicate such a neuron, we analyze
the evolution of the neuron over subsequent samples (@b) We start with a
trivial neuron, a soma with just seven equally spaced neurites. It takes the
algorithm roughly 1000 samples to produce a morphology that roughly looks
like a pyramidal neuron (upper). After another 25k iterations we obtain a
morphology that looks quite real (lower right). Quantifying the features of the
neuron reveals that some features converge quickly, e.g. distance @b upper)
and others that converge quite slowly, e.g. the number of branching nodes @b
lower). Importantly, when added across all features convergence happens, but
very slowly. Indeed, even after 25k iterations they are probably not perfectly
converged, which we share with most other real-world applications of MCMC.
We thus see how the accumulation of small changes can give rise to complex
tree morphologies.

https://doi.org/10.1101/248385
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/248385; this version posted January 15, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

a) Real Morphologies Generated Morphology
b) evolution during MCMC

1000

%%%%%%éééii
LILILLLLIL

Over all features Number of branching nodes bending ratio for segments

o -logp 1

a
1000 = 1000

-logp
o

.
1k 5k iteration 25k 1k 5k iteration 25k 1k 5k iteration 25k

Figure 6: Generating a Pyramidal neuron: a) 3 real morphologies from a
database of layer 5 pyramidal neuron are shown on left and a generated mor-
phologies with our algorithm is shown on the right. The algorithm is run for
25k iterations and to depict how it converges a few samples during the iteration
is plotted in (b). Above each neuron, the iteration’s number is written. Since
the general imagery of neuron did not change dramatically after 1000 iteration
we plotted more neurons for the initial running. To explore the convergence we
looked at the overall distance (left) as well a two features during the iterations
(left and middle). The onset is the convergence up to 1000 iteration.

10

https://doi.org/10.1101/248385
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/248385; this version posted January 15, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

a) Database Branching angles local angles global angles Vertical distance from soma

; g% ,||||||||||.. . ..|||||I|| ,,JL..._..J‘

b)
neuron
I anllbw

||||||||,|,||,,,|,|| Y .
e L Y
|||||..||I|.|.,||,.| nII ,jhli..h..ll
||||||.||||||.,I,,|| ..II thLJ..JL
|I|||I|I|||.||I| il I |||I ,,jLILJ-.JL
bl [I ¥
s | > B VY
|||I|||I|||||. at ..I ,,_,,__.-......||I|| ,JLIIL...Jl
III|I|I|.I||I,|...|. ..|| ----|I|||I ,,jLIL_...J.,
|IIIII|IIII|.|,||.., ..|I||||||I ,,lell_._.J,

0

200

500

700

2k

3k

7k

=)
=~

Bt el gt fhet far prer far o iy oK

o
=~

N
a
=~

Q) Convergence
30 30 30 60
¥
c
ot
]
2
0 0 0 0
0 iteration 25k 0 iteration 25k O iteration 25k 0 iteration 25k

Figure 7: Convergence of features. We continue generating pyramidal neuron
mn ﬁgure@ by plot four histogram during the iterations. a) the database and the
mean of each feature are shown. b) the histogram are shown during the a few
iteration number. c) the distance of feature from database if shown.

We then test our algorithm on relatively distinct classes of neurons. Pyra-
midal, Tripolar, Purkinje and Stellate, in the database are considered (ﬁgur
right). For each class there are about 1000 morphologies. As we see in the
figure the generated morphologies look similar to the real ones (ﬁgur left).
Some features are visually traceable in the generated neuron, like the density
in different locations of space, yet other features are hard to inspect visually,
e.g. the density of length of segments. Overall, the method works well across
distinct classes of neuron morphologies.

11

https://doi.org/10.1101/248385
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/248385; this version posted January 15, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Real Generated

Pyramidal cells ;g

Tripolar cells /%f % ﬂ*\%
Purkinje cells % %& %

Stellate neuron

Figure 8: Generated neurons from each of four classes in the database. For
each classes, three typical samples are plotted to the left and three gemerated
morphologies with our method are shown in the right. See supplement for addi-
tional information

2.4 Comparison with NeuGen

To conclude that our method is useful we need to compare to the current state
of the art. We thus compare with the NeuGen package. NeuGen is a growth
based model of generating morphologies that was developed in 2006 [19]. Al-
though the generated neuron for both method looks good but when we look at
a variety features RIMCMC shows its advantage @D Moreover, it looks like
RJMCMC produces a broader set of neurons. NeuGen also simulates the actual
neural growth process, which is interesting for developmental applications, but
our approach aims at just producing a matching morphology. RJMCMC pro-
duces morphologies that match the real ones in many ways and, in its focus on
morphology quality vs process it offers a new tool to generate morphologies.

12

https://doi.org/10.1101/248385
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/248385; this version posted January 15, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

NeuGen RJMCMC

3
<
i1t

Histogram of Global Angles

NeuGen MCMC Pyramidal neurons

Figure 9: Comparing with growth based algorithm. We compare the algorithm
that presented here with a state-of-art algorithm, NeuGen. It is designed for
specific classes of neurons and among them we generated layer 5 pyramidal
neurons. a few samples is shown on top left. A few samples from our algorithm
is shown on right. In middle a histogram of global angle is shown for NeuGen,
out method and Pyramidal cells. Global angles is one of the parameters that is
not explicitly used in the growth process of NeuGen and the figure shows that the
generated neuron failed to have it as their histogram is far from pyramidal cell.
One of the aspect of our method compare to other package (including NeuGen)
is that is fits better on the features and also it gives a degree of freedom to the
generated samples. On bottom we chose a few features and extract the mean
and variance from generated samples (for the angles, the mean over bins is
computed). The error bar shows that the samples generated by our method have
higher degree of freedom.

3 Discussion

We have introduced a method for generating dendrite morphologies. It extracts
human-chosen morphological features from a database. It then uses the means
and variances of these features to construct a simple generative model using the
naive Bayes assumption. Sampling from the resulting distribution is challenging
because morphologies may present with different number of nodes. Using the
neuromorpho.org for dataset and RIMCMC for sampling, we test our algorithm

13

https://doi.org/10.1101/248385
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/248385; this version posted January 15, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

and find that it meaningfully matches the statistical distribution of the train-
ing dataset and produces morphologies that look strikingly similar to us. We
find that our method properly matches the full feature set where a traditional
generator for morphologies only matched a subset of feature statistics.

Countless processes contribute to the generation of neuron morphologies but
we only use a limited number of features in our algorithm. Regulation happens
through countless molecular cascades [30], mechanical factors [31},[32] , electrical
activation [33] and geometrical limitations [34]. Each of these factors will be
different, even across neurons of the same class, producing a highly structured
multi-dimensional distribution[I7]. And yet, neurons in one class typically share
common characteristics, e.g. pyramidal neurons can be characterized by sever-
ally short basal dendrites and a large apical dendrite joined to an arborization
in the tuft [35]. We have used a long feature vector (around 600 features).
We can never be sure that there are no important features that we are miss-
ing. Future work, could use better features vectors to generate more meaningful
morphologies.

An alternative to the human choice of features is to have algorithms choose
those features. The recently popular framework of Generative Adversarial Net-
works (GANs) allows doing just that [28]. In that framework one network would
figure out how realistic a neuron is by comparing the real and the simulated mor-
phologies, while another system generates simulated morphologies. In a way, the
system automatically finds the right features without human guidance. Using
this method, GANs could successfully be trained to produce images of simple
objects[36] or draw new paintings with the style of a given artist[37]. While ex-
citing, it has been shown to be hard to generate a good statistical distribution
using a GANs [38]. GANs may be a new hope for better generative models but
they may suffer from statistical issues.

To convert our set of features into a generative model, we implicitly modeled
them by an independent Gaussian distribution, which could not be further from
the truth. First, we expect correlations of the features within a group, e.g.
two close bins in the angular histogram (figure [L|), or between groups; bending
ratio (degree of straightness of the segments of a neuron) and the curvature. One
could model the joint distribution in a more meaningful way, but that would be a
hard statistical problem. Second, the assumption of Gaussian distribution might
be violated for some features, e.g. those that represent counts. To overcome
these issues, one can modify the generative model by using empirical distribution
of the features from a big database. The generated morphologies from our
method show that while assumption of independent distribution for features
are far from real it can still produce satisfactory results.

While in theory RIMCMC samples evenly from the distribution, in practice
we should expect it to have a large mixing time. Therefore, we should never
expect chains to mix. To check that the neuron are meaningfully generated,
we analyzed the convergence on the features presented (figure @ However,
this casual analysis cannot ensure that the chain properly mixes and generally
there is no real solution to the convergence of MCMC[39]. Using a wide set
of meaningful proposals enabled our technique to have a good acceptance rate
and relatively quickly converge to high probability solutions. There are many
ways how convergence behavior could be improved. For example, in the Ising
model, the Wolff algorithm collectively flips the spin of a cluster of units and
this can accelerate convergence by allowing the state to move non-locally [40].

14

https://doi.org/10.1101/248385
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/248385; this version posted January 15, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Moreover, by using Hamiltonian MCMC we can potentially avoid random walk
behavior in our sampling method [4I]. Running multiple chains at different
temperatures may also help improve mixing[42] 43] . Importantly, we do not
claim that we evenly sample from the generative model but the fact that we are
good at matching the features should be enough for many applications.

While the proposals are inspired by neuronal development, our method can
not speak to the issue of developmental neurobiology. Our approach is funda-
mentally different from previous approaches which they use an explicit growth
process [19} 20, 21} 22| 23], 24]. The biological inspiration of our proposals helped
us speed up convergence. Moreover, the approach presented in this paper and
previous growth-based works a may not be mutually exclusive. We could use
their growth rules as part of our feature set. Or alternatively, we could initialize
our algorithm with the results of their growth process, allowing a fine tuning of
the results. Here we focused on de-novo generation of morphologies.

A good morphology generator could be useful for simulating a realistic neu-
ral network. After all, there is heterogeneity in morphology across neurons, and
without a meaningful generator it is impossible to simulate networks of het-
erogeneous neurons. Sampled neurons could be used to find the link between
the function of a neuron and its morphology [44] or its connectivity with other
neurons [45]. With our methods its easy to generate samples of the morphology
of any neuron type, which can facilitate realistic simulations.

One could also foresee that a good generative model could be useful for the
segmentation of images. For example in electron macroscopy (EM) data a huge
dataset of images is produced but there extracting the skeleton of each neuron
is hard. Combining good generative models of neurons with current approaches
promises better segmentations.

4 Materials and Methods

Neurons have a variety of morphological structures; Dendritic trees come in all
shapes and sizes. They range from a total length of a few tens of micrometers
to a few millimeters and vary significantly even within one neuronal class. Be-
cause of this wide spectrum of morphological shapes, building a growth model is
usually difficult. On the other hand, the morphological structure can be charac-
terized by a feature set. In this section, we start by a quantitative representation
of neuron morphologies, a feature set. Based on these set, we construct a gen-
erative model and, using RIMCMC, sample from this generative model. This
allows us to sample new dendritic trees that are statistically similar to those in
the database.

4.1 Representation of a neuron’s morphology

The geometry of neuronal arborizations can be stored in swc format [46]. In
this format the morphology of a neuron is modeled by geometric graph where
the nodes and edges represent the point on the morphology and links between
the points, respectively (ﬁgura). For each node three pieces of information
is provided: its three-dimensional location, the radius of the biggest sphere
contained in the morphology and the neurite type at the location of the node

15

https://doi.org/10.1101/248385
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/248385; this version posted January 15, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

(soma, axon and dendrite). Computationally, it is easier to extract the features
of the morphologies and perturb them using this compact representation.

a) b)
id parent

number type X Y z radius id P
Original tree

1 soma | 0.0 0.0 0.0 91 -

2 axon | 06 | -14 09 21 1

3 axon | 1.0 23 12 15 2

4 axon | 1.9 -33 13 11 3

5 axon | 19 | 42 15 08 4

6 axon | 26 -49 17 05 5

Sub sampling

‘11

axon | -1.9 "53 ‘ 16 ‘ 04‘ 5 ‘
dendnls‘ -0.6 "14 ‘ 09 ‘ 19 ‘ 1 ‘

‘20

Initial neuron

threshold for - 1
distance

number of nodes 55 40 30 20 12

Figure 10: Representation of a neuron. a) neurons are constructed by a set of
cylinders and spheres which have locations and diameters with an underlying
tree structure (swc format). b) In this representation the distances between
two consecutive nodes is arbitrary. However, for calculating many features of
neuron, these distances should be roughly equal. As such we do sub sampling the
neuron to straighten it. In this process on each segments of the neuron, the nodes
that are closer to each other less that a certain threshold will be removed. c¢)
as the threshold for distance increases, the sub sampling approrimation become
coarser.

4.1.1 Sub-sampling of Nodes

Some morphological features depend on the number of nodes in the swc file.
To make them comparable across all neurons in a database, we use a sub-
sampling method. Our method preserves the terminals and branching nodes
and meanwhile selecting the nodes on a segment such that the distance between
two consecutive nodes is within a bound. More precisely, it starts from one end
node and greedy pick the maximum number of nodes that distance between the
consecutive nodes is bigger than the threshold (figure b). While the lower
bound increases the number of nodes in the sub-sampling method decreases and
the neuron is approximated poorer (figure ¢). By choosing a fixed bound
for the sub-sampling method, we can approximate all the neurons in a database
with the same quality, which facilitates feature extraction.

16

https://doi.org/10.1101/248385
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/248385; this version posted January 15, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

4.2 Features Extraction

Graphical representation of the morphologies of a neuron alongside with the
uniform sub-sampling of the nodes enables us to define their features. Some
features we used are previously described as L-measure[d7] and some of them
are novel. Generally speaking, the features can be classified into 3 kinds: scalar,
density and histogram. For the two later cases, we divide the whole range to
bins and calculate the values in each bins. The type of each of the features and
the size of feature (for the histogram the number of bin size) are written in the
table Here we shortly describe them:

index| name of feature type method of | size
quantification

1 Number of nodes scalar | value 1
2 Number of initial segments scalar | value 1
3 Number of branching nodes scalar | value 1
4 Number of end nodes scalar | value 1
5 Global angles vector | histogram 20
6 Local Angles vector | histogram 20
7 Segmental branching angles vector | histogram 20
8 Side branching angles vector | histogram 20
9 Curvature vector | histogram 20
10 Neural/Euclidean vector | histogram 20
11 Segmental Neural/Euclidean | vector | histogram 30
12 Neural length of segments vector | histogram 50
13 Self-avoidance vector | values at meshes | 50
14 Spatial distribution vector | values at meshes | 50
15 Fractal growth vector | values at meshes | 10

Table 1: Features of the neuron: the list of all the features

4.2.1 Number of nodes, branching, end nodes and initial segments

A neuron is built up by a binary tree except for the Soma. Four basic scalar
features of this graph are the number of nodes, number of branching nodes, the
number of end nodes and the number of nodes attached directly to the soma
i.e. initial segments.

4.2.2 Global Angles

Global angles measure how straight the segments of the neuron are grown away
from the soma. It is computed for each node by the angle between the direction
that neurite has grown with respect to position of the soma as the origin and are
defined by measuring the vector connecting the node to its parent and the vector
connecting it to the Soma. Since the neurons have the tendency to explore the
surrounding space, it is expected that in many nodes this angle is obtuse.

17

https://doi.org/10.1101/248385
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/248385; this version posted January 15, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

4.2.3 Local Angles

Local angles measure the straightness of the neurites by calculating the angles
between two vectors: the vector connecting the node to its parent and the
vector connecting the node to its child. Notice that the node has only one child
to define the local angle. If the segment of the neuron is a flat line locally at
the node, this value would be 180 degree. Lower values indicates the curvature
of the neurite.

4.2.4 Branching Angles

At each branching node, we can be calculate the branching angle by computing
the angle between the vectors connecting the branching node to its children

(figure |4.2.12)). Usually this is an acute angle.

4.2.5 Side Branching Angles

Since the neuron are 3d object, the branching angle itself can not describe the
local shape of neuron around the branching node and we need to look at the
side angles; the angle between the vector connecting a branching node to its
children, and the angle connecting it to its parent(figure . Similar to the
branching angle, we can approximate the side angle locally or segmentally.

4.2.6 Curvature

Local angles describe the directional changing in the segments in each interme-
diate node, however these changes are correlated for close-by immediate nodes.
The curvature measures between the difference in two consecutive local angles.
In[48] the author used the same measure for analyzing the curvature of the
segments of the neurons of drosophila.

4.2.7 Spatial Distribution

Although neurons vary in the way they distribute in space, neurons from the
same class usually share a similar spatial distribution. To quantify the spatial
distribution, we rescale the neuron to put it in the unit 3d box. Then by meshing
this box with a regular latices, the number of nodes that occupy a in every mesh
can be counted. A schematic way of meshing is plotted in the figure This
feature is containing a rough approximation of Sholl analysis in particular[49]
which first used to distinguish the visual and motor cortices of cats. In Sholl
analysis the number of crossing for a circle of given radius is studied. We use
a polar coordinate system to take into account symmetry orthogonal to the
surface of many structures.

4.2.8 Self-Avoidances

Neurites spread in space but usually avoid self-intersections. Similar to the
spatial distribution we can measure self avoidances of the neurites by makeing
a regular lattice and counting the number of nodes in each box. We count the
number of boxes that only contains one node.

18

https://doi.org/10.1101/248385
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/248385; this version posted January 15, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

4.2.9 Fractal growth

Similarly to the previous feature, we count the number of boxes that cover the
neuron. This measure represent the fractal geometry of the the neuron [50].
4.2.10 Length of Neural Segments

The length of each segment is an important property of a class of neurons.

4.2.11 Bending

For each node the shortest neural path that connect it to the soma is usually
close to a straight line. To make it concrete, for each node the ratio of its
shortest path through the neuron to soma divided by the Euclidean distance
between the node and Soma are calculated. By subtracting one and taking
mean square of this ratio for all node we get the Neuronal/Euclidean ratio.

4.2.12 Segmental bending

Similar to the previous feature, we can measure the flatness of each segment of
neuron by dividing the neural distance and its Euclidean distance.

19

https://doi.org/10.1101/248385
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/248385; this version posted January 15, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

List of Feature Set

Number of nodes: the total number of
node for representating neuron.

Number of initial the
number of nodes connecting directly
to soma.

Number of branching nodes: the
number of non-soma node with two
children.

Number of end nodes: the number of
nodes without children.

Global Angle: The angle between
connecting vector to soma and
tangantical vector: 0]

Local Angle: the angle between two
tangantical vector at a node: (),

Branching Angle: The angle between
two segment at branching node.
segmental: (5 side: 0,

Curvature: the difference between
two consecuative local angles: (g— (5

Neural/Euclidean: The ratio of Neural
distance to Euclidian distance: N

Iy
Neural Length of Segments : The
Neural distance between: [,

Segmental Neural/Euclidean: The
ratio of Neural distance to euclidian
distance for segments: ly

ly

Diameter/Euclidean: The mean of
radius of node versus distance from

soma

Self-avoidance: The number of boxes
with more than one nodes for a mesh-
grid as a function of the width of mesh.

Fractal growth: The number of ocup-
pied box for a meshgrid as a function
of the width of the mesh.

Spatial Distribution: The number of
nodes in each box for given mesh.

Figure 11: Features of neuron.

4.3 Generative model of the morphology

In this section, we define a probability distribution on the set of all possible
morphologies given a database. In the previous section we defined a set of
features for one neuron. We calculate the mean (p;) and variance (o;) of the
features. Here we want to define a probability distribution over the space of
all possible neurons such it concentrates around the points with the features of
closing to those of the database . To fix translation invariant, we set the location
of root (soma) to be at the origin. Suppose a neuron is made of n nodes and
(1; ;)3 is the vector in R® that connect jth node to its parent (1< j <n-—1).
Also, a;, is the ith feature of the neuron. The probability distribution of the

20

https://doi.org/10.1101/248385
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/248385; this version posted January 15, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

neuron is then proportional to:

% 11 fli;

§={1,....n—1}i={1,2,3}

mav)~Hf(ai|Mi7Ui) (2)

Where m, v are two predefined values and:

f@lp, o) = e T 3)
Notice that the probability distribution is made of two products; the first factor
is independent of the features and is defined such that if no feature is defined,
then integration of equation [2| over all possible neuron is finite (and is equal to
one) and therefore the proposed probability distribution is well-defined. Keep
in mind that once the length [;’s are fixed, then there are n! possibilities for
connecting them to make a graph of tree. The second factor ensures that a
neuron with the features close to the database has high probability value and
therefore it has higher chance to be sampled.

Finally we have to define ¢;’s. Naively, we would like to choose it to be the
standard deviation of feature ¢ in the database. However, if we do so, we obtain
a rather bizarre problem. The effective measure of models is not independent
of the o; for two reasons. First, features are not actually independent of one
another which could be ameliorated by introducing extra parameters. Second,
the number of possible trees co-varies with the ;. There could be potential
mathematically beautiful solutions to this problem. However, here we chose a
simple pragmatic solution. We multiplied each o; with 5 and each histogram
feature we also divided by the number of bins. We find that this ad-hoc strategy
reasonably corrects for the two mentioned biases.

4.3.1 Markov chain Monte Carlo

To use the generative model it is necessary to have a way to draw samples form
the distribution. Here we use Markov chain Mote Carlo method to generate
samples of neuron morphology. It start from an initial neuron and in each
iteration one of the perturbations is selected randomly (the perturbations are
explained in the next section) to obtain a proposal morphology. In Metropolis
Hasting, if the probability value of the proposal neuron is higher, it will replace
the current neuron otherwise with the probability of their ratio (proposal to
ratio) the proposal will be accepted. When the Markov chain is not symmetric,
the acceptance probability should be modified to:

P(Proposal Neuron) P(Proposal = Current)

A t Probability =
ceeptance Tobablity P(Current Neuron) — P(Current = Proposal)

(4)
or in other words:
Acceptance Probability = Bayesian posterior x Symmetric ratio (5)

The first ratio indeed compare two states and is called Bayesian posterior. The
second ratio, symmetric ratio, is added to make the Markov chain symmetric
and it should be calculated for each perturbation individually. For many of
perturbation this ratio is 1 but especially for the perturbation that changes the
dimension of the neuron (increase or decrease the number of compartments) it
should be elaborately calculated.

21

https://doi.org/10.1101/248385
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/248385; this version posted January 15, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

4.3.2 Reversible jump Markov chain Monte Carlo:

When the dimension of current and proposal neuron are different, neither of
the ratios in equation [o| are well defined. Reversible jump Markov chain Monte
Carlo is a way to get around this problem by replacing the first ratio with the
ratio of the probability density function of two probabilities and the second ratio
with the Jacobian of the mapping between the two space([29] and [27]). In the
list of proposals below, the first one needs this modification and we calculate
and simplify the ratio there.

4.3.3 Initialization

An initial neuron is required to run the algorithm. We need a simple neuron
with one node as soma and a chain of connecting nodes. For certain questions,
generating neurons de-novo is not necessary and initializing with real neurons
could leads to better results. To validate the method, we tried both ways of
initialization.

4.4 list of proposals

To preform MCMC on neurons, we need a set of actions to perturb the neurons.
When they act on a neuron, the shape of a neuron changes and therefore the
features of the resulted neuron are different. Based on the probability density of
the two neurons and the RIMCMC factor, the new neuron may be replaced with
the initial one. Here we present the list of all perturbations on a neuron. Some
of the perturbations change the neuron geometrically, for example rotating a
part of neuron, some of them also change the graphical structure of neuron, for
example by perturbing the connectivity between nodes. The perturbations used
in this paper can be classified into three categories.

22

https://doi.org/10.1101/248385
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/248385; this version posted January 15, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Adding new node to a Adding an intermediate Removing an intermediate

Removing an end-node
initial tree non-branching node 9 node node
Nnode — Nbranch-node Nend-node Niode Ninter-node
b) initial neuron 4] initial neuron

N N

Sliding over branch node Sliding over non-branch Rotation on a branch node Rotation on any non-soma

node node
2N ranch-node Niode = 2Nbranch-node — Noranch-node Nuode

Figure 12: The list of all proposals a) flowchart of Extension/Reduction of a
neuron. Starting from an initial tree, here we used two forms of perturbations.
On the left side, an end node is added or removed while on the right side,
an intermediate node is added or removed. The new or removed nodes are
chosen randomly among all the possibilities which is written on the last line. The
notations: Neng number of end nodes, Nipier intermediate nodes and Nyranch
number of branching nodes. Hence the number of all nodes of the neuron is equal
to: Npode = 1+ Ninter + Neng + Nena- Notice that there is not any limitation
on the number of nodes that attach to the soma, but other nodes can at most
have 2 children. b) The flowchart of sliding perturbation of a neuron. To slide
the neuron over itself we need to select a non-soma node for detaching and non-
branch node for reattaching. When the non-soma node is selected, neuron is
detached from the parent of this node and this two sections parallel transport
and would be reattached in non-branch node. In the figure the gray part is the
old position of one of the section and red one is the new position. The non-soma
node can be the children of a branching node (left neuron) or any other non-soma
node (right). Also the sliding distance (1 in the figure) is forced to be less than a
threshold. c) rotation along a random node. To rotate a part of neuron we have
to select a non-soma node and rotate the part of neuron which is connected to it
and does not contain the soma. The unitary matriz for rotation is coming from
a symmetric distribution on the set of all unitary matriz. The selected node for
rotation can be a node in general (left) or branching node (right)

23

https://doi.org/10.1101/248385
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/248385; this version posted January 15, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

4.4.1 Extending or Reducing the neuron

The neuron is made of a set of nodes and in this perturbation a node is added or
removed. There are different ways to do this perturbation. When one of these
sub perturbations are chosen, the node in selected uniformly from all possible
nodes. The probability of selecting one of these perturbations and the possible
way of choosing one node is shown schematically in the figurdd.2.12la. When
the new node is created its location is drawn from a 3 dimensional Gaussian
(with m and v as the mean and variance). When the created/removed node is
an intermediate node, all the nodes after the created node are shifted by the
location of the new node. Notice that the jumping from one space to another
is made by projection onto multiple Euclidean spaces and therefore the RJM-
CMC ratio for each of these perturbations are computed based on the number
of possibilities and the reverse perturbations; and their ratio is generally not
one. We define the number of possibilities of each neuron to be the number of

potential jumps in figurd4.2.12}a:

S(neuron) = Nnodes — Nbranching nodes T Nend nodes + Nnodes + Nintermediate nodes

(6)

Then by using the equation [2| the probability of acceptance for extension is
equal to:

, - LT, £ glma). TL £(a2™ P i,))
acceptance —
pranee =L T £ i glmav) x Fem,). TT, £(as™ ™ |z, 07)

S(current neuron) x f(I"V|m,v)

S(proposal neuron)

1 S(current neuron) [T, f(a? % |1, o)

= X X
n+1 S(proposal neuron) [T, f(a§™**™|p;, 0y)

Where ["Vis the new vector added to the current neuron. Hence for example if
the perturbation ” Removing one end-node from the set of nodes” is selected, the
RJMCMC ratio is equal to number of possibility for proposal neuron divided
by the number of possibility for the current neuron.

4.4.2 Sliding a part of the neuron over itself

In this perturbation, the neuron is detached from a node to turn to two separate
parts, then these two parts parallel transport and reattach in the another node
of the neuron(figurdd.4lb). As the result the topology of the neuron changes.
The detached node can be any non-soma node and the reattached node should
be a non-branch node. These two nodes can randomly be chosen from all the
possible nodes of the neuron but to boost the MCMC, we used two ideas. First,
the distance between the these two nodes are less than a certain limit. Second,
in many neuron classes it gives a better result when the neuron is detached
from one of the two outgoing segments of a branching node of the morphology.
Because of that we put a different probability for choosing the detached parts of
the morphology among the branching nodes verses non-branching nodes. Notice
that this perturbation is symmetric and hence the relevant ratio is one.

24

https://doi.org/10.1101/248385
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/248385; this version posted January 15, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

4.4.3 Rotation

In this perturbation a part of neuron will be rotated along one node (figure
c). Specifically, a nodes will be selected and the part of the connected
component which is not containing the soma would be rotated with a random
unitary matrix in 3d. Similar to the previous perturbation, to boost MCMC we
put different probability for selecting a uniformly random nodes of a neuron or
a branching node.

The unitary random 3d matrix should be selected randomly from all unitary
matrices. For boosting MCMC, it is better that the selected rotation be close
to identity matrix and the probability distribution on all unitary matrix being
symmetric. For doing that, we put a symmetric distribution on the space of 3d
rotations which concentrate mostly around the identity. Since every rotation
can be expressed as

R = Ry (01)Ry(02) R-(63) = (7)
1 0 0 cosfly 0 sinfy| |cosf3 —sinflz 0
0 costh —sin; 0 1 0 sinf3 cosfs 0O (8)
0 sinfy cosf —sinfly 0 cosfs 0 0 1

we can set a probability distribution on the 6;’s and hence make a probability
distribution on the space of 3d rotations. The probability distributions on the
0;’s are coming from one of the Von Mieses distributions which are symmetric
distribution on the one dimensional circle. To symmetrize the 3d rotation, we
use a simple trick of multiplying them in the form of:

R = Rx(Ql)Ry(02)Rz(03)R2(04)Ry(05)Rx(96) (9)

Notice that by doing that the probability density at the matrix R is the same
as R~L.

4.5 Ergodicity

At the end, it should be taken into account that MCMC works only when the
Markov chain is transitive, and here it can be checked easily it is the case. For
example by removing the nodes from a given neuron we can produce a single
node neuron (with p > 0) and by adding nodes we can go from single-node
neuron to any neuron (again with p > 0).

4.6 Implementation Detalils

The algorithm implemented in python with three main classes. Neuron class
gives a neuron object containing nodes. Each node has geometrical attributes
(location and type) in addition to topological ones (parent and children). More-
over it calculates the features indicated above once the object is called. The
second class take a database of neurons and extracts the parameters for the
algorithm. The third class does MCMC sampling starting from a simple neuron
and by applying the proposals perturbations on the initial neuron in each itera-
tion shapes the neuron closer to the database. The code is available at: Neuron
Generator

25

https://github.com/NeuronGenerator/MCMC
https://github.com/NeuronGenerator/MCMC
https://doi.org/10.1101/248385
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/248385; this version posted January 15, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

5 Acknowledgments

The authors thank Pavan Ramkumar and Hugo Fernandes for their signifi-
cant discussion. Roozbeh Farhoodi was supported by Cognitive Sciences and
Technologies Council (COGC) and National Foundation of Elites of Iran. Kon-
rad Kording and Roozbeh Farhoodi were supported by NIH (U01MH109100,
RO1MH103910). KK initiated the first idea. KK and RF the mathemati-
cal foundations of idea. RF developed the software. KK and RF wrote the
manuscript.

6 Supporting Information

Here we will give more details on the generation of various aspects of the simula-
tions. Figure|lf The neuron was chosen from the Chen contribution (pyramidal
neocortex) with neuromorpho id of 32114. It was then sub-sampled such that
the distance between two consecutive nodes is around 20um. The histogram
figures are normalized such that the summation of densities over all the bins is
equal to one. For each histogram related to the angles we chose 18 bins. For
others the bin length is selected such that the number of bins is between 20 to
30 (see code-base for details).

Figure[2} 3 samples from Chen contribution (pyramidal neocortex) is shown.
The mean and deviation is computed over the whole database. The features that
presented here are the same as the feature in fig
(E;U%E)Q + (N;UA%VN)Q + (B;UA%B)Q where E,
N and B are bending ratio for segment (see the method section for definition),
number of nodes and number of branching, respectively, and u, and o, are
constant values representing the mean and deviation of the feature x (up =
1.15,0p = 0.05,uny = 50,0n = 5,up = 4,05 = 0.5). The proposal for first
simulation (a) is the rotation around random node and for the second simulation
(b) is the general sliding and the rotation around random node (see the method
section for definition of proposals). The initial state for the first simulation (a)
is a straight line made of 50 nodes with equal distant from parent. The initial
state for the first simulation (a) is one node. Both simulations run for 2000
iterations.

Figure [6] and [T} pyramidal neocortex from Chen’s lab was selected and sub-
sampled such that the distance between two consecutive nodes is around 20pum
. The initial neuron of the algorithm is a 2D star shape neuron with 7 wings
and 70 nodes on each wing and one node for soma. The probably distribution
for selecting the preturbations is: ’rotation for any node’ : 3/13, 'rotation for
branching’ : 4/13, ’sliding general’ : .5/13, ’sliding certain in distance’ : 1/13,
'sliding for branching node’ : .5/13, ’sliding for branching node certain distance’
: 1/13, ’sliding for end nodes’: 2/13. The kappa for rotations are set to 400. the
interval for sliding has the length 100. The MCMC is run for 25000 iterations.

Figure|8 Four different class of neuron morphology are selected: 1) Pyrami-
dal cells of rat hippocampus from Chen database, 2) Tripolar cell of rat neocor-
tex from Brown archive, 3) Purkinje cells of mouse cerebellum from Kengaku
archive and 4) Stellate cells of mouse neocortex from Ballester-Rosado archive.
For each database the features are extracted based on the table[d2l The initial

Figure The objective function is

26

https://doi.org/10.1101/248385
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/248385; this version posted January 15, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

neurons are star-like neuron with 7 wings. all the samples run for 25k iteration.
The detail of selecting perturbation is the same as [6]

Figure [0} The neurons that generated from NeuGen are pyramidal L5. To
generate them, we changed the seed number to a range of different values. The
output of the software are .hoc files. We converted them it to .swc file by finding
the location of the mean of each component in the *.hoc file.

References

[1] S. R. y Cajal, Histology of the nervous system of man and vertebrates,
vol. 1. Oxford University Press, USA, 1995.

[2] H. Cuntz, F. Forstner, A. Borst, and M. Hausser, “One rule to grow them
all: a general theory of neuronal branching and its practical application,”
PLoS Comput Biol, vol. 6, no. 8, p. e1000877, 2010.

[3] G. M. Shepherd, A. Stepanyants, I. Bureau, D. Chklovskii, and K. Svo-
boda, “Geometric and functional organization of cortical circuits,” Nature
neuroscience, vol. 8, no. 6, pp. 782-790, 2005.

[4] Q. Wen and D. B. Chklovskii, “A cost—benefit analysis of neuronal mor-
phology,” Journal of neurophysiology, vol. 99, no. 5, pp. 2320-2328, 2008.

[5] A.U. Larkman, “Dendritic morphology of pyramidal neurones of the visual
cortex of the rat: Iii. spine distributions,” Journal of comparative neurology,
vol. 306, no. 2, pp. 332-343, 1991.

[6] T. Tallinen, J. Y. Chung, F. Rousseau, N. Girard, J. Leféevre, and L. Ma-
hadevan, “On the growth and form of cortical convolutions,” Nature
Physics, 2016.

[7] M. E. Larkum, K. Kaiser, and B. Sakmann, “Calcium electrogenesis in
distal apical dendrites of layer 5 pyramidal cells at a critical frequency of
back-propagating action potentials,” Proceedings of the National Academy
of Sciences, vol. 96, no. 25, pp. 14600-14604, 1999.

[8] J. Schiller, G. Major, H. J. Koester, and Y. Schiller, “Nmda spikes in
basal dendrites of cortical pyramidal neurons,” Nature, vol. 404, no. 6775,
pp- 285289, 2000.

[9] D. A. Henze, W. E. Cameron, and G. Barrionuevo, “Dendritic morphol-
ogy and its effects on the amplitude and rise-time of synaptic signals in
hippocampal ca3 pyramidal cells,” The Journal of comparative neurology,
vol. 369, no. 3, pp. 331-334, 1996.

[10] M. L. Hines and N. T. Carnevale, “The neuron simulation environment,”
NEURON, vol. 9, no. 6, 2006.

[11] J. M. Bower, D. Beeman, and M. Hucka, “The genesis simulation system,”
2003.

[12] H. Markram, “The blue brain project,” Nature Reviews Neuroscience,
vol. 7, no. 2, pp. 153-160, 2006.

27

https://doi.org/10.1101/248385
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/248385; this version posted January 15, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

[13] M. Helmstaedter, K. L. Briggman, S. C. Turaga, V. Jain, H. S. Seung, and
W. Denk, “Connectomic reconstruction of the inner plexiform layer in the
mouse retina,” Nature, vol. 500, no. 7461, pp. 168-174, 2013.

[14] Z. Zheng, J. S. Lauritzen, E. Perlman, C. G. Robinson, M. Nichols,
D. Milkie, O. Torrens, J. Price, C. B. Fisher, N. Sharifi, et al., “A complete
electron microscopy volume of the brain of adult drosophila melanogaster,”
bioRzxiv, p. 140905, 2017.

[15] H. Peng, Z. Ruan, F. Long, J. H. Simpson, and E. W. Myers, “V3d enables
real-time 3d visualization and quantitative analysis of large-scale biological
image data sets,” Nature biotechnology, vol. 28, no. 4, pp. 348-353, 2010.

[16] A. R. Jones, C. C. Overly, and S. M. Sunkin, “The allen brain atlas: 5
years and beyond,” Nature reviews. Neuroscience, vol. 10, no. 11, p. 821,
2009.

[17] B. Torben-Nielsen and H. Cuntz, “Introduction to dendritic morphology,”
in The Computing Dendrite, pp. 3-22, Springer, 2014.

[18] R. Burke, W. Marks, and B. Ulfhake, “A parsimonious description of mo-
toneuron dendritic morphology using computer simulation,” Journal of
Neuroscience, vol. 12, no. 6, pp. 2403-2416, 1992.

[19] J. P. Eberhard, A. Wanner, and G. Wittum, “Neugen: a tool for the gen-
eration of realistic morphology of cortical neurons and neural networks in
3d,” Neurocomputing, vol. 70, no. 1, pp. 327-342, 2006.

[20] R. A. Koene, B. Tijms, P. van Hees, F. Postma, A. de Ridder, G. J. Ra-
makers, J. van Pelt, and A. van Ooyen, “Netmorph: a framework for the
stochastic generation of large scale neuronal networks with realistic neuron
morphologies,” Neuroinformatics, vol. 7, no. 3, pp. 195-210, 2009.

[21] G. A. Ascoli and J. L. Krichmar, “L-neuron: a modeling tool for the ef-
ficient generation and parsimonious description of dendritic morphology,”
Neurocomputing, vol. 32, pp. 1003-1011, 2000.

[22] B. Torben-Nielsen and E. De Schutter, “Context-aware modeling of neu-
ronal morphologies,” Frontiers in neuroanatomy, vol. 8, p. 92, 2014.

[23] F. Zubler and R. Douglas, “A framework for modeling the growth and
development of neurons and networks,” Frontiers in computational neuro-
science, vol. 3, p. 25, 2009.

[24] P. Gleeson, V. Steuber, and R. A. Silver, “neuroconstruct: a tool for mod-
eling networks of neurons in 3d space,” Neuron, vol. 54, no. 2, pp. 219-235,
2007.

[25] A. Luczak, “Measuring neuronal branching patterns using model-based ap-
proach,” Frontiers in computational neuroscience, vol. 4, 2010.

[26] J. Portilla and E. P. Simoncelli, “A parametric texture model based on
joint statistics of complex wavelet coefficients,” International journal of
computer vision, vol. 40, no. 1, pp. 49-70, 2000.

28

https://doi.org/10.1101/248385
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/248385; this version posted January 15, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

[27] P. J. Green and D. I. Hastie, “Reversible jump meme,” Genetics, vol. 155,
no. 3, pp. 1391-1403, 2009.

[28] 1. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ogzair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, pp. 26722680, 2014.

[29] P. J. Green, “Reversible jump markov chain monte carlo computation and
bayesian model determination,” Biometrika, vol. 82, no. 4, pp. 711-732,
1995.

[30] J. Henley and M.-m. Poo, “Guiding neuronal growth cones using ca 2+
signals,” Trends in cell biology, vol. 14, no. 6, pp. 320-330, 2004.

[31] E. V. Romanova, K. A. Fosser, S. S. Rubakhin, R. G. Nuzzo, and J. V.
Sweedler, “Engineering the morphology and electrophysiological parame-
ters of cultured neurons by microfluidic surface patterning,” The FASEB
journal, vol. 18, no. 11, pp. 1267-1269, 2004.

[32] M. Gétz, E. Hartfuss, and P. Malatesta, “Radial glial cells as neuronal
precursors: a new perspective on the correlation of morphology and lin-
eage restriction in the developing cerebral cortex of mice,” Brain research
bulletin, vol. 57, no. 6, pp. 777-788, 2002.

[33] B. Kaehr, R. Allen, D. J. Javier, J. Currie, and J. B. Shear, “Guiding
neuronal development with in situ microfabrication,” Proceedings of the
National Academy of Sciences of the United States of America, vol. 101,
no. 46, pp. 16104-16108, 2004.

[34] P. Clark, S. Britland, and P. Connolly, “Growth cone guidance and neuron
morphology on micropatterned laminin surfaces,” Journal of cell science,
vol. 105, no. 1, pp. 203-212, 1993.

[35] N. Spruston, “Pyramidal neurons: dendritic structure and synaptic inte-
gration,” Nature Reviews Neuroscience, vol. 9, no. 3, pp. 206-221, 2008.

[36] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” arXiv
preprint arXiw:1511.06434, 2015.

[37] L. A. Gatys, A. S. Ecker, and M. Bethge, “A neural algorithm of artistic
style,” arXiv preprint arXiv:1508.06576, 2015.

[38] M. Arjovsky and L. Bottou, “Towards principled methods for training gen-
erative adversarial networks,” arXiv preprint arXiv:1701.04862, 2017.

[39] K. L. Mengersen, C. P. Robert, and C. Guihenneuc-Jouyaux, “Mcme con-
vergence diagnostics: a reviewww,” Bayesian statistics, vol. 6, pp. 415-440,
1999.

[40] U. Wolff, “Collective monte carlo updating for spin systems,” Physical Re-
view Letters, vol. 62, no. 4, p. 361, 1989.

[41] R. M. Neal et al., “Mcmc using hamiltonian dynamics,” Handbook of
Markov Chain Monte Carlo, vol. 2, no. 11, 2011.

29

https://doi.org/10.1101/248385
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/248385; this version posted January 15, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

[42] R. H. Swendsen and J.-S. Wang, “Replica monte carlo simulation of spin-
glasses,” Physical Review Letters, vol. 57, no. 21, p. 2607, 1986.

[43] D. J. Earl and M. W. Deem, “Parallel tempering: Theory, applications, and
new perspectives,” Physical Chemistry Chemical Physics, vol. 7, no. 23,
pp- 3910-3916, 2005.

[44] K. M. Stiefel and T. J. Sejnowski, “Mapping function onto neuronal mor-
phology,” Journal of neurophysiology, vol. 98, no. 1, pp. 513-526, 2007.

[45] S. L. Hill, Y. Wang, I. Riachi, F. Schiirmann, and H. Markram, “Statisti-
cal connectivity provides a sufficient foundation for specific functional con-
nectivity in neocortical neural microcircuits,” Proceedings of the National
Academy of Sciences, vol. 109, no. 42, pp. E2885-E2894, 2012.

[46] E. Stockley, H. Cole, A. Brown, and H. Wheal, “A system for quantitative
morphological measurement and electrotonic modelling of neurons: three-
dimensional reconstruction,” Journal of neuroscience methods, vol. 47,
no. 1, pp. 39-51, 1993.

[47] R. Scorcioni, S. Polavaram, and G. A. Ascoli, “L-measure: a web-accessible
tool for the analysis, comparison and search of digital reconstructions of
neuronal morphologies,” Nature protocols, vol. 3, no. 5, pp. 866-876, 2008.

[48] R. Kraft, M. M. Escobar, M. L. Narro, J. L. Kurtis, A. Efrat, K. Barnard,
and L. L. Restifo, “Phenotypes of drosophila brain neurons in primary
culture reveal a role for fascin in neurite shape and trajectory,” Journal of
Neuroscience, vol. 26, no. 34, pp. 8734-8747, 2006.

[49] D. A. Sholl, “Dendritic organization in the neurons of the visual and motor
cortices of the cat,” Journal of anatomy, vol. 87, no. Pt 4, p. 387, 1953.

[50] A. Dileva, “The fractal geometry of the brain,” Springer series in compu-
tational neuroscience (, 2016.

30

https://doi.org/10.1101/248385
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Results
	Generative model
	Simple objects
	Generating Neurons
	Comparison with NeuGen

	Discussion
	Materials and Methods
	Representation of a neuron's morphology
	Sub-sampling of Nodes

	Features Extraction
	Number of nodes, branching, end nodes and initial segments
	Global Angles
	Local Angles
	Branching Angles
	Side Branching Angles
	Curvature
	Spatial Distribution
	Self-Avoidances
	Fractal growth
	Length of Neural Segments
	Bending
	Segmental bending

	Generative model of the morphology
	Markov chain Monte Carlo
	Reversible jump Markov chain Monte Carlo:
	Initialization

	list of proposals
	Extending or Reducing the neuron
	Sliding a part of the neuron over itself
	Rotation

	Ergodicity
	Implementation Details

	Acknowledgments
	Supporting Information

