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SUMMARY (148 words) 

Multi-region sequencing is used to detect intratumor genetic heterogeneity (ITGH) in tumors. To 

assess whether genuine ITGH can be distinguished from sequencing artifacts, we whole-exome 

sequenced (WES) three anatomically distinct regions of the same tumor with technical 

replicates to estimate technical noise. Somatic variants were detected with three different WES 

pipelines and subsequently validated by high-depth amplicon sequencing. The cancer-only 

pipeline was unreliable, with about 69% of the identified somatic variants being false positive. 

Even with matched normal DNA where 82% of the somatic variants were detected reliably, only 

36%-78% were found consistently in technical replicate pairs. Overall 34%-80% of the 

discordant somatic variants, which could be interpreted as ITGH, were found to constitute 

technical noise. Excluding mutations affecting low mappability regions or occurring in certain 

mutational contexts was found to reduce artifacts, yet detection of subclonal mutations by WES 

in the absence of orthogonal validation remains unreliable.  
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INTRODUCTION 

Intratumor genetic heterogeneity (ITGH), typically defined as the coexistence of genetically 

distinct but clonally related cancer cells within the same patient (Yap et al., 2012), can manifest 

itself spatially within the same lesion or as genetic differences between different metastatic sites 

and the primary tumor from the same patient (Ding et al., 2010; Gerlinger et al., 2012; Marusyk 

et al., 2012; Newburger et al., 2013; Yates et al., 2015). The broad availability of massively 

parallel sequencing has accelerated research into ITGH and numerous studies have applied 

whole-exome or targeted exome sequencing to multiple biopsies from the same cancer, to 

different metastatic lesions from the same patient, and more recently to multiple single cells 

from the same cancer (Gerlinger et al., 2012; Hou et al., 2012; Martelotto et al., 2017; Navin et 

al., 2011; Newburger et al., 2013; Nik-Zainal et al., 2012; Wang et al., 2014; Xu et al., 2012). 

ITGH represents a snapshot of the tumor’s evolutionary path and is a clinically important 

phenomenon with implications in prognosis and treatment response (Fisher et al., 2013; Hiley et 

al., 2014; Jiang et al., 2014; Marusyk et al., 2012; Morris et al., 2016; Turner and Reis-Filho, 

2012).  

The assessment of ITGH, by definition, involves the detection of subclonal, low 

frequency variants that are not uniformly present in all cancer cells, and is made possible by the 

availability of bioinformatics tools to detect low frequency somatic mutations with high sensitivity 

(Cibulskis et al., 2013; Koboldt et al., 2012; Saunders et al., 2012; Wilm et al., 2012). However, 

the presence of technical noise in sequencing data is well known (Li, 2014; Nakamura et al., 

2011) and it is unclear whether genuine ITGH can be reliably distinguished from artifacts 

generated during library preparation, sequencing, and data processing (Qi et al., 2015; Smith et 

al., 2014). Understanding the signal to noise characteristics in these experiments is critical for 

the interpretation of ITGH.  
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Given the implications in prognosis and treatment response, ITGH is an important 

consideration in the clinical setting. Because the cost of WES and complex informed consent 

requirements, the inclusion of matching normal samples still represents a limitation in the 

sequencing of tumor samples in some large clinical trials (Shi et al., 2017). Whether subclonal 

mutations can be robustly identified in the absence of matching normal samples and whether 

pooled normal samples from unrelated individuals would serve as a reasonable control should 

be explored as alternative options for the assessment of ITGH in the clinical setting.  

In this study, we aimed to assess the reliability of somatic variant detection from whole 

exome sequencing (WES) in the context of ITGH (Fig. 1a, Fig. S1). To address this question, 

we performed WES on DNA from biopsies obtained from three anatomically distinct regions of 

six primary breast cancers (6 x 3 biopsies) and from matched peripheral blood leukocytes. 

Additionally, to determine the background noise levels as a comparator for the assessment of 

ITGH, aliquots of the same DNA samples from six distinct biopsies were sequenced twice to 

generate technical replicates.  We examined the reliability of somatic variant detection using 

three different analysis approaches, namely, using cancer WES data only, cancer data and 

WES from pooled unrelated (i.e. non-matched) normal samples, and WES data from cancer and 

matching normal tissue (i.e. blood). To generate the ‘gold standard’ benchmark dataset, we re-

sequenced all somatic variants identified by at least one of the three somatic variant detection 

pipelines in at least one sample using high-depth targeted amplicon sequencing (i.e. AmpliSeq). 

Given the higher depth obtained by amplicon sequencing, we assessed true ITGH and 

estimated the frequency of false positives by the different detection pipelines. Finally, we 

evaluated the sequence patterns and context in which the artifactual mutations occurred to 

improve the specificity of WES for characterizing genuine ITGH. 

 

RESULTS 
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Limited reliability of somatic mutations defined by WES  

We performed WES on DNA extracted from three distinct regions of the primary tumor and the 

matching normal blood cells from 6 breast cancer patients, including 4 with estrogen receptor 

positive and 2 with triple-negative cancers. The biopsies were obtained from 3 anatomically 

distinct regions of each tumor at least 1 cm apart (i.e. intratumor replicates, Fig. 1a) in the 

context of a prospective Institutional Review Board (IRB) approved study to assess intratumor 

molecular heterogeneity (von Wahlde et al., 2017). All tumor samples had at least 50% tumor 

cellularity based on pathologic assessment. For the technical replicates, a second library was 

generated from one of the tumor DNA samples randomly selected from each cancer and 

sequenced by WES using the same protocol at the same facility on a different day. The mean 

target depth was 160x (range 70x to 220x), consistent with recommendations for WES(Clark et 

al., 2011; Sims et al., 2014). Following WES, somatic single nucleotide variants (SNVs) and 

small insertion-deletions (INDELs) were identified by three different somatic variant calling 

pipelines that used either (i) the tumor DNA alone (i.e. tumor-only) (ii) tumor DNA and pooled 

unrelated normal DNA (i.e. cohort-normal) or (iii) tumor DNA and patient matched normal DNA 

(i.e. matched-normal, Fig. S1 and Supplemental Experimental Procedures). Targeted 

amplicon sequencing using an orthogonal library generation and an independent sequencing 

method (AmpliSeq) was performed for all putative somatic variants identified by at least one of 

the WES variant calling pipelines on all tumor and matching normal DNA to a median depth of 

605x to define the ‘gold standard’ mutation status for each identified somatic variant 

(Supplemental Experimental Procedures). 

 To quantify the technical reliability of somatic mutation detection by the matched-normal 

WES pipeline, the approach that is most frequently used in the research setting to assess ITGH, 

we compared the somatic mutations identified in the six pairs of technical replicates. In this 

experiment, tumor samples and normal samples were sequenced to a median coverage of 184x 
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(range 92–211) and 90x (range 80–138), respectively. We identified a median of 74 (range 40–

125) and 3 (range 0–13) somatic SNVs and INDELs, respectively, in each of the twelve DNA 

samples. Considering the high-depth amplicon sequencing results as the ‘gold standard’, we 

categorized candidate mutations detected in WES as true somatic, absent, germline-like 

(incorporating genuine germline variants and artifactual variant alleles caused by alignment 

biases and/or the sequencing technology)(Kim and Speed, 2013) or low-depth (i.e. technical 

failure with amplicon sequencing, Table S2 and Supplemental Experimental Procedures). 

Excluding the low-depth (technical failure) variants, a median 82% (range 56%-90% per 

sample) of the somatic SNVs were confirmed as somatic, a median 5% (range 0%-16%) as 

germline-like and the remaining were absent by Ampliseq (Fig. 1b).  

Given that both technical replicates used the same input DNA, we anticipated detecting 

nearly identical somatic mutations in each pair of replicates. However, only a subset of the 

somatic SNVs and INDELs were consistently identified in technical replicate pairs, with median 

Jaccard distances (ranging from 0, perfect agreement, to 1, absence of overlapping variants; 

see Supplemental Experimental Procedures) of 0.39 (range 0.24-0.64) for SNVs (Fig. 1c) 

and 0.17 (range 0-0.50) for INDELs (Fig. 1d). Interestingly, the technical replicate pairs with the 

highest Jaccard distances were those with the lowest tumor cell content as inferred by FACETS 

(Shen and Seshan, 2016) (Table S1).  There was also a small number of potentially pathogenic 

variants among the discordant variants in technical replicate pairs (range 0-3, red bars in Fig. 

1c) that could have been misinterpreted as ITGH. We obtained fewer somatic mutations but 

similarly modest reproducibility with the cohort-normal WES pipeline, and far fewer somatic 

mutations but improved reproducibility using the tumor-only pipeline (see explanation below; 

Fig. S2). Comparing only the mutations that were confirmed to be somatic by Ampliseq between 

the technical replicate pairs, we observed almost perfect agreement for SNVs (Fig. 1c) and for 

INDELs (Fig. 1d) (maximum Jaccard distance of 0.02 and 0, respectively).  
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When we examined the somatic mutations found to be concordant or discordant 

between pairs of technical replicates based on WES, a median of 95% (range 73%-97%) of the 

concordant variants were confirmed to be genuinely somatic in at least one of the two technical 

replicates, compared to a median 33% (range 14%-48%) of the discordant variants (Fig. 1e). Of 

the discordant WES variants, a median of 44% (range 36%-71%) were found to be absent by 

Ampliseq (i.e. false positive in one of the two technical replicates), and a median of 7% (range 

3%-22%) were germline(-like) variants (i.e. missed by WES in the matching normal). The 

validation status of 3% (range 1% to 8%) of the mutations could not be ascertained due to 

technical failure in the validation experiments due to low Ampliseq coverage. 

Taken together, these results suggest that WES performed at typical sequencing depth 

may be inadequate for detecting ITGH, particularly when the tumor cell content is less than 

50%, as only 62% (range 36% to 76%) of the somatic mutations were detected consistently in 

the technical replicate pairs by WES with the remaining mutations falsely appearing as 

discordant.  

 

WES overestimates true intratumor genetic heterogeneity  

Next, we quantified ITGH by comparing somatic variant calls between the geographically 

distinct biopsies from the same cancer. In this analysis, we also examined how the three 

different WES analytic approaches differed in the quantification of ITGH (Fig. S1 and 

Supplemental Experimental Procedures). Tumor cellularity of all samples was inferred from 

WES using FACETS (Shen and Seshan, 2016) (Table S1).  We used mixed-effects linear 

modeling to estimate an average cellularity of 54.7% with intratumor and technical standard 

deviation of 7.0% and 2.2%, respectively (Supplemental Experimental Procedures). The 

matched-normal pipeline detected a median of 150 unique somatic mutations (range 68-186) in 

all 3 samples combined per tumor. Compared to the matched-normal pipeline, the cohort-
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normal pipeline detected a median of 101 mutations (range 48-131, Wilcoxon test n.s.) and the 

tumor-only pipeline identified a median of 62 mutations (range 36-97, Wilcoxon test p=0.01) 

(Fig. 2a-b).  

To assess the reliability of the different WES pipelines in detecting ITGH, we compared 

the WES candidate mutations to the ‘gold-standard’ Ampliseq validated somatic variants from 

the same sample. A median of 62% (range 50%-98%) of the candidate somatic variants 

detected by the tumor-only pipeline were germline variants, and only 28% (range 2%-45%) 

validated as true somatic mutations. By contrast, a median of 79% (range 59%-91%) and 84% 

(range 61%-92%) of the variants defined by the cohort-normal and the matched-normal 

pipelines, respectively, were true somatic mutations (Fig. 2a, Fig. S3a-b). The tumor-only 

pipeline had the lowest sensitivity (median 18%, range 0%-29%) and precision (median 28%, 

range 0%-46%) for identifying true somatic variants. The matched-normal pipeline had the 

highest sensitivity (median 87%, range 47%-94%) and precision (median 86%, range 62%-94%, 

Fig. 2c), whereas the cohort-normal pipeline had similar precision (median 83%, range 61%-

91%) but significantly lower sensitivity (median 48%, range 26%-64%; Wilcoxon p < 0.001).  

Next, we estimated the apparent ITGH based on mutations detected by the three WES 

calling pipelines using the Jaccard distance as the metric of ITGH. Mutations identified as 

somatic in one or two of the three biopsies and as germline-like or absent in the remaining 

biopsies contributed to ITGH. The tumor-only pipeline had a median Jaccard distance of 0.34 

(range 0.19-0.96) compared to the cohort-normal pipeline of 0.70 (range 0.53-0.91) and 

matched-normal pipeline of 0.60 (range 0.44-0.89, Fig. 2b). The apparently lower ITGH defined 

by the tumor-only pipeline (paired Wilcoxon test p=0.03 for tumor-only vs cohort-normal; ns vs 

matched-normal) was due to the high number of germline variants misidentified as somatic 

mutations by the tumor-only pipeline (Fig. 2a). When ITGH was estimated based on the 

Ampliseq validated somatic mutations only, the median Jaccard distance was 0.40 (range 0.19-
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0.61, Fig. 2b), which in the context of this study was considered a true estimation of ITGH. 

Compared to the apparent ITGH defined by the candidate mutations in the cohort-normal and 

matched-normal WES pipelines, the true ITGH was significantly smaller (paired Wilcoxon test 

p=0.015 vs cohort-normal and p=0.015 vs matched-normal). We noted that 5.8% of the 

heterogeneous variants, also called branch mutations that were not present in all biopsies of a 

given case, were predicted to be pathogenic, but there was no statistically significant 

enrichment in pathogenic mutations compared to non-pathogenic variants among the 

heterogeneous somatic variants (Fig. 2b). Heterogeneous variants were detected in a small 

number of cancer genes (21 of 306 or 6.9%) and 5 of these variants (1.6%) were predicted 

pathogenic.  

Taken together, these results suggest that the tumor-only WES pipeline misidentifies a 

substantial proportion of germline variants as somatic mutations. Even when using the matched- 

normal DNA for mutation detection, the extent of ITGH defined based solely on WES performed 

at typical sequencing depth is overestimated, potentially affecting actionable cancer genes. For 

example, a deleterious stop-gain branch mutation in CDC27 (p.Cys71*) was identified as 

heterogeneous (in one of the 3 biopsies) by the matched-normal WES pipeline, but was not 

validated by Ampliseq. False positive heterogeneous variants were mostly not actionable, 

however. 

 

Characteristics of artifactual WES somatic mutations 

To identify the characteristics of the putative mutations identified by WES that were 

subsequently confirmed not to be truly somatic variants, we examined the alternative coverage 

(i.e. the number of reads supporting the alternate allele), the variant allele frequency (VAF) and 

the total depth of coverage of the candidate somatic mutations identified by the three WES 

pipelines from the intratumor biopsies. The tumor-only pipeline reported a median of 2 variants 
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(range 0-5) with VAF<10% due to reduced sensitivity of the single-sample mutation detection 

algorithm at low VAF and the strict filtering imposed to remove potential germline variants (Fig. 

3a-b). Despite aggressive filtering, most of the putative somatic variants from the tumor-only 

WES pipeline were found to constitute germline variants with VAF~50%, indicating the presence 

of a large number of private mutations not having been catalogued in publicly available 

databases (Figs. 2a and 3a-b). The cohort-normal WES pipeline correctly identified subclonal 

somatic variants with low VAF, including many that were heterogeneous between the biopsies, 

but missed somatic variants with VAF>45% due to filtering imposed to remove likely germline 

variants that may not be present in the pooled normal DNA used as the reference (Figs. 2c and 

3a-b). The validated somatic mutations defined by the matched-normal pipeline covered the 

widest range of VAFs. The putative somatic mutations identified by the matched normal pipeline 

that were confirmed to be absent by Ampliseq were mostly in the low VAF range (median 7.3%, 

range 0.6%-44%, Figs. 2a and 3a-b).  

Given that the majority of the ITGH studies carried out to date (Ding et al., 2010; 

Gerlinger et al., 2012; Nik-Zainal et al., 2012) used matched tumor-normal samples and 

analysis pipelines similar to our matched-normal pipeline and that mainly low VAF mutations 

contribute to ITGH (Fig. 3a-b), we compared the true and false positive somatic mutations (i.e. 

the validated and the unvalidated putative somatic variants) and the validated homogeneous 

(i.e. present in all biopsies from a case) and heterogeneous (i.e. absent in at least one biopsy 

from a case) somatic mutations derived from the distinct biopsies using the matched-normal 

WES pipeline. We found that the total depth for the true positive (median 124, range 9-1028, 

green in Fig 3c) was significantly higher than for the false positive mutations (median 78, range 

12-926, p<0.001, Wilcoxon test, red in Fig 3c). Furthermore, the false positives, compared to 

true mutations, had significantly lower alternative coverage (median 7, range 1-126 vs median 

22, range 4-231, p<0.001, Wilcoxon test) and VAF (median 11%, range 0.6%-64% vs median 
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23%, range 3%-93%, p<0.001, Wilcoxon test, Fig 3c). There were also significant differences in 

the VAF distribution of the validated homogeneous and heterogeneous mutations (median 25%, 

range 1%-93% vs median 6%, range 1%-57%, p<0.001, Wilcoxon test) and between the 

validated homogeneous mutations and the false positives (median 25%, range 1%-93% vs 

median 12%, range 2%-64%, p<0.001, Wilcoxon test, Fig 3c). Crucially, the validated mutations 

implicated in true ITGH had significantly lower VAF than the false positives (p<0.001, Wilcoxon 

test, Fig. 3c), Fig. S4), which indicates that true ITGH mutations may display similarly low or 

lower VAFs as the false positive and false negative mutations. These results suggest that 

filtering somatic variants with low VAF or low alternative coverage may improve the precision of 

the WES pipeline but would also eliminate many true somatic variants that contribute to ITGH. 

Importantly, false positive mutations have significantly lower total depth in the matched normal 

DNA (median 35, range 6-492) compared to true positive mutations (median 68, range 9-514, 

p<0.001, Wilcoxon test) and validated heterogeneous mutations (median 72, range 12-343, 

p<0.001, Wilcoxon test, Fig. 3d). Many putative somatic mutations (47%) with total depth in the 

normal DNA of 10 or less were confirmed as germline-like by Ampliseq, emphasizing the 

importance of having adequate sequencing depth in the normal sample as well. 

 

Separating true ITGH from WES artifacts 

Because subclonal mutations are expected to be the predominant contributors to ITGH, we 

inferred the clonality of all mutations identified by WES using ABSOLUTE (Carter et al., 2012).  

Subclonal mutations were significantly overrepresented among the validated heterogeneous 

variants compared to the homogeneous somatic variants (83.2% vs 28.9%, p<0.001, Fisher 

exact test, Fig. 4a), but were similarly overrepresented among the artifactual somatic variants 

(91.5% vs 83.2%, n.s., Fig. 4a). Importantly, subclonal mutations were also significantly 

enriched among discordant variants in the WES technical replicates in compared to the 
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concordant variants (72.0% vs 24.9%, p<0.001, Fisher exact test, Fig. 4a). These results 

suggest that, compared to clonal variants, subclonal variants detected by WES are more likely 

to be erroneously attributed to ITGH. 

Examination of the sequence context of mutations revealed that 41.1% of the artifactual 

somatic mutations occurred in genomic regions of low mappability (Derrien et al., 2012) 

compared to only 6.4% for the validated somatic heterogeneous mutations (p<0.001, Fisher 

exact test, Fig. 4b). Furthermore, 30.8% of the discordant variants in the WES technical 

replicates occurred in low mappability regions compared to 8.4% for the concordant variants 

(p<0.001, Fisher exact test, Fig 4b). These results suggest that ambiguous mapping of DNA 

fragments directly contributes to artifactual somatic variants. Compared to the validated 

heterogeneous mutations, artifactual somatic mutations appeared to be significantly enriched in 

T>C transitions (p<0.001, Fisher exact test, Fig. 4c), particularly in the ApTpA and NpTpG 

trinucleotide contexts and also in T>G transversions in the GpTpG context (Fig. 4e). By 

contrast, artifactual somatic mutations were significantly depleted in C>G transversions 

(p<0.001, Fisher exact test, Fig. 4c). Interestingly, validated somatic heterogeneous mutations 

were enriched for C>G and C>T in the TpCpA and TpCpT contexts (Fig. 4e), the characteristic 

substitution patterns induced by the upregulation of APOBEC cytidine deaminases (Nik-Zainal 

et al., 2016). Although a substantial proportion of the artifactual mutations detected were C>T 

transitions, which have been associated with both the aging process and with lab-induced 

cytosine deamination during DNA library preparation (Alexandrov et al., 2013; Chen et al., 

2014), their proportion was similar between the artifactual and validated somatic heterogeneous 

variants (34.6% vs 33.9%, n.s., Fig. 4c), with mutations occurring in the TpCpN context being 

significantly underrepresented in the artifactual variants (Fig. 4e). Mutational signature analysis 

using previously defined mutational signatures(Alexandrov et al., 2013) identified Signatures 5 

and 29 to be overrepresented in the artifactual somatic mutations (p=0.028, Wilcoxon test, Fig. 
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4d), with a median of 16.1% (range 0%-44.4%) of the artifactual mutations classified as 

Signature 5, mainly driven by the T>C transitions reported above. Signature 29 is driven by C>A 

mutations, predominantly occurring in the ApCpA and GpCpA contexts that were significantly 

overrepresented among the artifactual variants (Fig. 4e).  

Finally, we considered whether applying filtering strategies to exclude mutations that 

occur in low mappability regions or within sequence contexts which are enriched in artifactual 

mutations (C>A mutations in ApCpA and GpCpA contexts, T>C mutations in ApTpA and 

[C/T/G]pTpG contexts, and T>G mutations in GpTpG context, Fig 4e) can improve the reliability 

of WES. Excluding putative somatic mutations in low mappability regions improved the precision 

for mutations detected in the technical (0.862 vs 0.792 without filtering) and biological replicates 

(0.876 vs 0.817 without filtering), while reducing moderately the sensitivity (0.858 vs 0.913 for 

technical; 0.773 vs 0.824 for biological). Filtering by mutational context reduced the sensitivity 

without appreciably improving precision, as did filtering by the combination of filters (Fig. S5). 

      

DISCUSSION 

WES is an appealing and increasingly affordable technology to study the extent of ITGH in an 

unbiased manner (i.e. without a priori selecting genes of interest for sequencing). The reliability 

of WES to detect low frequency mutations, which often account for the majority of ITGH within a 

cancer, depends on the experimental design, the sequencing depth and the bioinformatics 

approaches used to define the somatic variants. To examine the influence of these factors on 

measuring ITGH, here we generated a dataset incorporating both technical and biological 

replicates sequenced to depths commonly found in clinical or translational research studies, and 

validated every putative somatic variant detected with orthogonal high-depth sequencing 

methods. All datasets generated in this study have been made publicly available to provide a 

resource for the community to refine analytical tools for ITGH detection from WES. 
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 We performed six pairs of technical replicates that involved independent library 

preparation and sequencing of aliquots from the same DNA extractions, and experiments were 

performed on different days. The technical replicates revealed an unexpectedly high degree of 

discordance in the putative somatic variants identified, even using the current best practice 

matched-normal variant calling analysis approach. Subsequent validation with high-depth 

amplicon sequencing (605x median coverage) of all variants identified by WES demonstrated 

that the majority of the false positive somatic variants either i) displayed low variant allele 

fraction and were often detected as subclonal in one experiment but not in the other, ii) were in 

fact germline-like variants that appeared as heterogeneous somatic mutations (Kim and Speed, 

2013), or iii) map to genomic regions of low mappability. The enrichment of subclonal mutations 

among the discordant mutations in the WES technical replicates is expected, given the well 

known difficulty in identifying somatic mutations at low VAF. Indeed, comparison of the putative 

mutations that did not validate to the ‘true’ somatic mutations that were validated by high-depth 

amplicon sequencing demonstrated that mutations with low VAF and/or low alternative 

coverage were more difficult to be reliably identified by WES. On the other hand, our results 

revealed a not insignificant proportion of germline-like false positive mutation calls. While some 

of these germline-like variants are genuinely germline alleles not detected in the matched 

normal samples, a substantial proportion of these are likely attributed to alignment and 

sequencing biases (Kim and Speed, 2013) that manifested as false positive variants at low 

VAF/alternative coverage. Importantly, our results highlighted the often overlooked importance 

of the coverage of the matched normal sample in the accurate identification of somatic 

mutations, given that mutations that failed validation, on average, were associated with lower 

coverage in the normal sample. In terms of mappability of genomic regions, we found that false 

positive mutation calls were enriched in genomic regions of poor mappability. In fact, we 

demonstrated that this may represent a reasonable filter if specificity is of paramount 
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importance and some trade-off in sensitivity can be tolerated. Although our study provides direct 

evidence in support of ITGH, the mutations implicated in ITGH show substantial overlap with the 

alterations stemming from intrinsic technical noise associated with WES in terms of VAF, 

alternate allele depth, total depth in tumor and normal, as well as mappability. 

 Our analysis of the mutational signatures between the validated mutations implicated in 

ITGH versus the false positive mutations revealed striking differences. The heterogeneous 

mutations were enriched in a pattern typically associated with increased APOBEC activity and 

this pattern has been previously shown to contribute to ITGH in breast and lung cancers (de 

Bruin et al., 2014; Ng et al., 2017). On the other hand, the false positive mutations were 

enriched for, in particular, C>A and T>G mutations at specific sequence contexts. A recent 

study of rare polymorphisms determined by high-depth whole genome sequencing in 300 

individuals of diverse genetic origins identified four mutational signatures, two of which were 

consistent within populations and had a clear association with geographic distribution 

(Mathieson and Reich, 2017). The origin of the remaining two were uninterpretable, with one of 

these latter signatures dominated by T>G mutations in the GpTpG context, and the other 

signature highly correlated with COSMIC Signature 5, which has been found in all cancer types 

(Alexandrov et al., 2013) and has been suggested to display clock-like properties suggestive of 

an association with the aging process (Alexandrov et al., 2015). Our analysis of the sequence 

context of false positive variants identified both these features as being significantly enriched in 

artifactual putative mutations (Fig. 4c-d), strongly suggesting that caution should be exercised 

in the interpretation of the reported mutational signatures.   

 This study has several limitations. The sample size of 6 breast cancers and 18 biopsies 

may be too limited to allow the generalization of our results on ITGH to all breast cancer 

subtypes and to other cancers. Of note, the unique nested experimental design incorporating 

within-sample technical replication processed and sequenced in the same manner as the intra-
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tumor biopsies, which provided an estimate of background discordance against which the ITGH 

results could be interpreted. Additionally, the extensive orthogonal validation by high-depth 

amplicon sequencing on an independent sequencing platform with very different chemistry from 

the platform used for WES adds rigor to our study. The sequencing depth attained in this study 

is comparable to previous studies utilizing WES (with subsequent high-depth sequencing for 

validation) for the genomic characterization of ITGH (Yates et al., 2015); it is plausible, however, 

that WES at higher depth (i.e. >250x) would mitigate in part the false positives and false 

negatives, in particular in samples with tumor cell content <50%.  

 In summary, our study showed that WES at 184 mean depth of coverage in the tumor 

samples overestimates the extent of ITGH, and the technical noise associated with somatic 

mutation detection using WES alone can confound true ITGH. Our results also suggested that it 

is not possible to reduce the false positive rate through more aggressive minimum depth filtering 

without impacting the sensitivity of detecting true somatic mutations in the 1%-5% VAF range, 

but excluding mutations that occur in low mappability regions of the genome, or in certain 

mutational contexts could reduce artifactual somatic mutations and provide less biased 

estimates of ITGH. Nevertheless, orthogonal, high-depth validation experiments are highly 

desirable in the context of quantifying ITGH. 
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FIGURE LEGENDS 

Fig. 1. Reliability of somatic SNVs and INDELs detected by whole exome sequencing and 

high-depth amplicon sequencing validation of variants.  

(a) Biopsies were obtained from 3 anatomically distinct regions of each tumor to assess spatial 

genomic heterogeneity. One of the three DNA samples was split in two to provide a pair of 

technical replicates. Somatic variants were detected by three different WES analysis pipelines 

and subsequently validated by high-depth amplicon sequencing.  

(b) Number of somatic mutations identified by WES in each technical replicate, subclassified 

according to their validation status by high-depth amplicon sequencing. 

(c-d) Concordance of somatic SNVs (c) and INDELs (d) defined in each pair of technical 

replicates using the matched-normal WES analysis pipeline (left) or high-depth amplicon 

sequencing (right). Discordance between the replicates quantified as the Jaccard distance 

shown next to each bar and the pathogenicity of variants were assessed as described in the 

Supplemental Experimental Procedures. Putative WES variants re-sequenced with high-

depth amplicon sequencing were further classified as absent (VAF<1%), germline (tumor 

VAF/germline VAF < 5), or low depth (<50x). 

(e) Validation status of variants (SNVs and INDELs) detected by WES in technical replicate 

pairs, categorized as concordant (“con”) or discordant (“dis”) by WES, and the distribution of 

their Ampliseq validation status is shown within each bar.  

 

Fig. 2. Intratumor genetic heterogeneity as assessed by different WES analysis pipelines.  

(a) Total number of somatic variants (SNVs and INDELs) identified in intratumor biopsies by the 

three WES analysis pipelines. One of the two technical replicates was randomly selected for 

inclusion in this analysis. Validation status by high-depth amplicon sequencing (i.e. somatic, 

germline, absent [VAF < 1%], low depth [< 50x coverage]) is shown according to the color key. 
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(b) Venn diagrams showing the overlap of putative somatic variants detected in intratumor 

biopsies from each tumor by the three WES analysis pipelines. The last row includes only “true” 

somatic variants validated by high-depth amplicon sequencing. The size of the circles is 

proportional to the number of somatic variants in a biopsy, with the numbers representing the 

total variants and those in parentheses indicating the number of pathogenic variants.  

(c) Performance characteristics of the three WES analysis pipelines to identify true somatic 

variants. Putative somatic variants were considered as “true” if confirmed by high-depth 

amplicon sequencing. Precision was calculated as TP/(FP+TP) and sensitivity as TP/STP, 

where TP and FP are the number of true positive (TP) and false positive (FP) variants and STP 

is the total number of true somatic calls made by all three pipelines. Each circle represents one 

sample as analyzed by each pipeline, and the size of the circles is proportional to the number of 

putative somatic variants per biopsy identified by each analysis pipeline.   

 

Fig. 3. Coverage characteristics of true somatic variants and false positive mutations in 

the WES data.  

(a) Alternative allele coverage (i.e. number of read supporting the alternative allele) and (b) total 

coverage are plotted against variant allele fraction (VAF, all log10 scale) for the three WES 

analysis pipelines (rows). The different subsets of WES putative somatic variants according to 

validation status by high-depth amplicon sequencing are shown as columns: validated somatic 

mutations, validated homogeneous somatic mutations (i.e. present in all three biopsies of the 

same tumor), validated heterogeneous somatic mutations (i.e. present in one or two biopsies 

from the same tumor), and putative somatic mutations identified by the WES pipelines but failed 

validation by high-depth amplicon sequencing (i.e. putative somatic mutations that were 

validated to be germline, absent [VAF < 1%] or low coverage [< 50x]). 
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For the matched-normal WES pipeline, (c) WES alternative allele coverage (all log10 scale) is 

plotted against VAF and (d) total coverage in the tumor (bottom) is plotted against the coverage 

in the matched normal sample of somatic mutations identified in all the specimens. The 

validation status categories are the same as in panels (a) and (b). Density kernel plots of the 

marginal distributions are included above and to the right of the scatter plots for each of the four 

categories of mutations.   

 

Fig. 4. Mappability and sequence context of true and artifactual somatic variants. 

(a) Clonality as defined by ABSOLUTE and (b) mappability of somatic variants identified by the 

matched-normal WES pipeline. In each panel, the first two sets of bars enumerate the putative 

somatic variants identified as concordant or discordant in the technical replicates, whereas the 

bottom four sets of bars enumerate the somatic variants identified in intratumor biopsies and 

subsequently validated by high-depth amplicon sequencing. High mappability regions are 

regions with mappability score of 1 (see Supplemental Experimental Procedures).  

(c) Comparison of the mutational spectra of validated somatic heterogenous mutations and 

artifactual somatic mutations that failed validation in all samples. The reference base listed (C or 

T) includes the corresponding reverse complement (G or A). (d) Distribution of signature 

weights obtained from the decomposition of mutational signatures from each tumor sample.  

(e) Detailed mutational spectra of the trinucleotide context of the pool of mutations detected in 

all tumor samples. Trinucleotide contexts with significant enrichment in the validated somatic 

heterogeneous mutations or in the artifactual somatic mutations are shown with an asterisk 

above the corresponding bars. Asterisks indicate p < 0.005.  

Statistical comparisons in (a), (b), (c) and (e) are based on Fisher’s exact tests. Statistical 

comparisons in (d) are based on Wilcoxon tests. All statistical tests are two-sided. p<0.05 was 

considered statistically significant. 
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EXPERIMENTAL PROCEDURES 

Tumor sample collection 

Breast cancer samples were collected from patients with newly diagnosed invasive breast 

cancer with tumor size > 2 cm at the Yale Cancer Center. Tumor tissues were obtained with 3 

punch biopsies at least 1 cm apart from 3 different regions of the tumor after pathologic gross 

examination. Six of these tumors with high enough cellularity (>50%) and high DNA quality from 

all three biopsies and with matched blood DNA were selected for this study. 

 

Whole exome sequencing and analysis 

DNA was extracted and library was prepared using standard protocols, and the exome was 

captured using the NimbleGen SeqCap EZ Human Exome Kit v2.0. Sequencing was performed 

on the HiSeq 2000 in paired-end 75-cycles mode at the Yale Center for Genome Analysis. We 

used three different analytical pipelines for detecting variants. A single-sample “tumor-only” 

pipeline, a “cohort-normal” pipeline suing an in-house normal reference obtained from 10 

unrelated normal blood DNA samples, and a “matched normal” pipeline using the matched 

normal DNA from each patient as reference. Further details are provided in Supplemental 

Experimental Procedures. 

 

Validation of putative variants with high-depth amplicon sequencing 

Variants identified by WES were subjected to validation with high-depth amplicon sequencing 

using custom Ampliseq panels on the same tumor and matched normal DNA samples. 

Amplicon sequencing was performed to a median depth of 600x. 

 

Mutational signature analysis and mappability 
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Mutational signature analyses comparing the validated variants that contribute to ITHG and the 

WES false positive calls were performed for individual tumor samples and for the pooled 

mutations over all samples using the R package deconstructSigs(Rosenthal et al., 2016). 

Mappability of SNVs was assessed using the CRG Alignability track(Derrien et al., 2012) in the 

UCSC genome browser. Additional details are in Supplemental Experimental Procedures. 

 

 

DATA AND SOFTWARE AVAILABILITY 

All the raw data from WES and Ampliseq sequences generated in this project were deposited in 

the Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra) under accession ID SRP070662. 

 

 

SUPPLEMENTAL INFORMATION 

Supplemental information includes Supplemental Experimental Procedures, five figures and five 

tables and can be found with this article online at 
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