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Abstract
Sensorimotor cortex mediates the formation of adaptation memory.
Individuals differ in the rate at which they acquire, retain, and gener-
alize adaptation. We present a mechanistic explanation of the neuro-
chemical and computational causes of this variation in humans. Neu-
roimaging identified structural, functional and neurochemical covari-
ates of a computational parameter that determines memory persis-
tence. To establish causality, we increased sensorimotor cortex ex-
citability during adaptation, using transcranial direct current stimu-
lation. As predicted, this increased retention. Inter-individual vari-
ance in the stimulation-induced E:I increase predicted the compu-
tational change, which predicted the memory gain. These relations
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did not hold, and memory was unchanged, with stimulation applied
before adaptation. This cognitive state dependent effect was modu-
lated by the BDNF val66met genetic polymorphism. Memory was
enhanced by stimulation in Val/Val carriers only, implicating a mech-
anistic role for activity-dependent BDNF secretion. Sensorimotor
cortex E:I causally determines the time constant of memory persis-
tence, explaining phenotypic variation in adaptation decay.

Introduction

Individuals differ – an explanatory challenge. Here we exploit this variation to test a causal

mechanistic hypothesis about how sensorimotor memories in human brain are formed, retained

and enhanced. Primary motor cortex (M1) has been identified as a critical region for the mainte-

nance of newly acquired visuomotor maps following sensorimotor adaptation in both primates

(Wise et al. 1998; Li et al. 2001; Paz et al. 2003; Paz et al. 2005; Inoue et al. 2016) and humans

(Hadipour-Niktarash et al. 2007; Hunter et al. 2009; Galea et al. 2010; Landi et al. 2011; Leow

et al. 2016; O’Shea et al. 2017). We previously demonstrated that left M1 anodal transcranial

direct current stimulation (a-tDCS) applied during adaptation to a 10-degree rightward displace-

ment of the visual field (prism adaptation, PA) enhances consolidation of the prism after-effect

(AE) in the healthy brain (O’Shea et al. 2017). Notably, this stimulation-induced memory en-

hancement was 1) anatomically specific (it was not observed with left parietal or right cerebellar

tDCS), 2) polarity specific (it was not observed with left M1 cathodal tDCS), and 3) cognitive

state dependent (it was not observed when a-tDCS was applied before as opposed to during

PA). Here, we interrogate the computational and neural bases of this effect.

Since adaptation memory was enhanced only with M1 excitatory stimulation during PA,

the interaction with information processing in M1 was critical. What computation did stimula-
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tion alter to cause memory change? Computational theories of motor control posit that when

a perturbation (such as an optical shift) causes reaching errors, the brain forms an estimate of

the perturbation, used to counteract the disturbance and correct movement accuracy (Shadmehr

et al. 2010; Franklin and Wolpert 2011; Wolpert et al. 2011; Petitet et al. 2017). For future

movements to also be accurate, this estimate should not only include a representation of the

magnitude of the perturbation (e.g. by how much do I need to correct?) but also of its tempo-

ral dynamics (e.g. for how long is the perturbation likely to prevail?). The latter is known as

a temporal credit assignment problem. For retention to be optimal, it should match the inter-

nal estimate of the perturbation timescale, i.e. the solution to the temporal credit assignment

(Körding et al. 2007). For example, if the disturbance is believed to be stable, adaptation should

be retained; if transient, it should decay. Thus we reasoned that it might be this computation,

whose implementation is likely to involve M1, that interacts with a-tDCS such that memory is

enhanced.

If that is true, what features of M1 physiology are likely to be involved in this computation?

Primary motor cortex a-tDCS is known to locally increase the excitation:inhibition (E:I) ratio

via a reduction of gamma-aminobutyric acid (GABA) concentration (Stagg et al. 2009; Kim et

al. 2014; Bachtiar et al. 2015; Antonenko et al. 2017). In our previous study, the magnitude of

the stimulation-induced GABA decrease (measured in a separate session, inside the MRI scan-

ner) correlated with the increase in AE 24 hours after receiving PA + left M1 a-tDCS (O’Shea

et al. 2017), implicating this neurotransmitter in the mechanisms responsible for the memory

enhancement. Therefore, we hypothesised that the solution to the temporal credit assignment

might be reflected in the level of M1 excitation:inhibition during PA, such that greater E:I ratio

would be associated with longer memory timescales. We used a weighted two-state model to in-

fer this computation (i.e. relative contribution of short-lasting versus long-lasting computational
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states to the overall representation of the perturbation) at the individual level, as adaptation pro-

ceeded after or during real or sham left M1 a-tDCS. Individual trait markers of neurochemical

response to M1 a-tDCS, white matter microsctructure, resting functional connectivity, as well

as BDNF val66met polymorphism were taken to test the main prediction and explain individual

variability in computation and behaviour. The data presented in this paper demonstrate that

sensorimotor cortex E:I (and in particular GABAergic inhibition) causally determines the time

constant of memory persistence, explaining phenotypic variation in adaptation decay in young

healthy adults.

Results

Computational model of sensorimotor memory formation

To formally test the hypothesis that reduced M1 inhibition biases temporal credit assignment

towards longer timescales, right-handed healthy volunteers (n = 24, mean age = 25 years, SD =

3.50) adapted to 10° right-shifting prisms, during or after real or sham left M1 anodal tDCS (4

sessions per individual, Figure 6). The PA paradigm was as before (O’Shea et al. 2017). Par-

ticipants adapted gradually to prisms over 20 minutes (7 blocks, 120 trials, Figure 1B: E1-7).

Leftward AEs were probed in interleaved blocks during PA (7 blocks, 15 trials each, Figure 1B:

AE1-7). AE retention was assessed after a 10-minute rest delay (45 trials; Figure 1B: AE8-10).

Unlike in most adaptation paradigms, in this PA protocol, error-dependent learning and AE are

not quantified under near-identical conditions. Instead, two different tasks are used (Figure 1A,

Figure 6). Learning is quantified, under prism exposure with visual feedback (Figure 1B: E1-

E7), as endpoint accuracy on trials of speeded centre-out reaches to lateral targets. AE is mea-

sured, after prism removal without visual feedback (Figure 1B: AE1-7), as endpoint accuracy

under non-speeded conditions to an untrained central target. By quantifying that portion of
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learning that transfers across a contextual change (of limb dynamics, speed, feedback, and spa-

tial location), this AE measure reflects generalisation (Kitazawa et al. 1997), a factor thought

to be an essential precursor of the cognitive transfer gains from PA observed in neurological

patients with visual neglect (Jacquin-Courtois et al. 2013). Consistent with this, sensorimotor

cortex stimulation stabilised both AE and cognitive gains in patients (O’Shea et al. 2017). Un-

derstanding the mechanisms of AE stabilisation would advance both motor neuroscience and

therapeutics.

To achieve this, we built a variant of an influential state-space model of adaptation that

posits two adaptive processes learning from performance error – one ‘fast’ that learns and for-

gets quickly and one ‘slow’ that learns and forgets slowly Smith et al. 2006a. The net adaptation

(during error-dependent learning and AE measurements) is the summed output of the two sys-

tems. During PA, error-dependent learning behaviour is relatively invariant across participants

(Figure 1B: E1-7), however individuals differ in how the consequent AE develops and decays

(Figure 1BC: AE1-7). The original model cannot account for this variability because the dy-

namics of AE behaviour are dependent fully upon the dynamics of error correction. To remedy

this, we modelled the AE as a weighted sum of the two systems (Figure 1). Figure 1B shows

this model provided a good fit to the group mean data (R2 = 99.68%), outperforming the origi-

nal model after correcting for the benefit of two extra degrees of freedom (∆AIC = −273.02;

full details in Materials and Methods). When fitting individuals’ data, the learning and reten-

tion rates of both systems were kept constant for all. This approach reduced the number of free

parameters, enabling individuals’ AE to be modelled solely in terms of the two weights, one per

system. Within this modelling framework, temporal credit assignment can be conceptualised as

the relative weight assigned to the slow versus fast system, computed as: Rw = ws/(ws +wf )).

Higher Rw predicts more stable AE.
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B) Group mean model fit

A) Weighted two-state model
1. Error-dependent learning (E1-7) 

FAST SYSTEM
xf(n) = Af.x(n-1) - Bf.e(n-1)

X(n) = xf(n) + xs(n)
Motor output
e(n) = p(n) + X(n) 

Prismatic shift
p(n) = 8 

xs(n) = As.x(n-1) - Bs.e(n-1)
SLOW SYSTEM

Internal estimate

2. After-effects (AE1-7)
FAST SYSTEM

xf(n) = Af.x(n-1)

X(n) = wf.xf(n) + ws.xs(n)
Motor output
e(n) = p(n) + X(n) 

Prismatic shift
p(n) = 0 
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C) Individual model fits

‘Slow system dominant’ individual (high Rw)

‘Fast system dominant’ individual (low Rw)

An
gu

la
r e

rro
r (

de
gr

ee
s)

-15

-10

-5

0

5

10

FAST

SLOW

Rw

7 (20)10 14 4 2 5 11 19 16 22 15 3 8 17(21) 9 1 12(18)13 23 24 6Participant:

0

0.5

1

Retention

Retention

AE1 2 3 4 5 6 7

AE1 2 3 4 5 6 7

wf

ws

8-10

8-10

Figure 1: Computational modelling of motor behaviour during prism adaptation. A. Schematic representation of the
weighted two-state model. B. Fit of the group mean prism adaptation data. The x-axis represents trial number and the y-axis
pointing accuracy (rightward errors are positive). Black wedges indicate blocks throughout which prisms were worn. Group
mean data (4 sessions per participants, i.e. 96 datasets) is plotted in black (error bar = SEM). The fitted weighted two-state
model is represented in red and the time courses of the fast and slow systems in green and blue respectively. C. Individual
fits in the absence of stimulation. Each bar plot represents the relative weight (Rw) of one participant (estimated on the
sham-tDCS conditions only), ranked in ascending order from left to right. Participant numbers are indicated on top of each
bar (bold = Val/Met carriers, regular = Val/Val carriers, parenthesis = not genotyped). Individual model fits are plotted for
the two extreme participants on this spectrum (lowest Rw is S7; highest Rw = S8). The individual with with lowest Rw
shows temporal dynamics of AE that more strongly resemble the fast (green) than the slow (blue) system, with steep slopes
indicating a labile AE during Adaptation, which declines in magnitude across Adaptation to Retention. In the individual
with highest Rw, AE1-7 more strongly reflects the dynamics of the slow system (blue) than the fast (green), with flat slopes
indicating stable AE during Adaptation, which increases in magnitude across Adapation to Retention.
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Neuro-computational correlates of memory persistence

The model quantitatively captures inter-individual variation in PA profile, based on a princi-

pled theory of how (hidden) computational states contribute to (overt) motor behaviour. This

suggests its parameters may be sensitive to the underlying underlying neural causes of this

variation. To test this, we regressed the model parameters (wf , ws) against whole brain imag-

ing measures of white matter microstructure and resting state functional connectivity. Figure 2

shows the structural and functional correlates ofws across participants (wf regressed out). Inter-

individual variation in ws correlated with the microstructural integrity of the left superior lon-

gitudinal fasciculus (predominantly branches II and III), a white matter pathway interconnect-

ing frontoparietal cortex (Figure 2A; p < 0.05, FWE-corrected with 2D-cluster enhancement)

(Thiebaut De Schotten et al. 2011). The higher the weight an individual assigns to the slow

system on AE, the stronger their coherence of white matter connectivity within this tract (i.e.

higher fractional anisotropy and lower mean diffusivity).

Analyses of resting state data asked whether, across individuals, there was any functional

network for which the strength of coupling with the “hand” sensorimotor network (RSN 1325;

Figure 8) co-varied quantitatively with ws (while controlling for wf ). Figure 2B shows that only

one network out of 12 showed this pattern: the right frontoparietal attention network (RSN 925;

Figure 8). Individuals with higher weight assigned to the slow system on AE measures during

PA had greater functional coupling between the sensorimotor network and the right frontopari-

etal attention network in the resting state (edge 1325-925; p = 0.038, FWE-corrected). These

structural and functional relationships withws were independent, and remained significant when

analyses tested for one while controlling for the other (both p < 0.03). This suggests that

trait variation in resting state structural and functional connectivity of parietal-sensorimotor-

premotor circuits influences the (long) time constant of sensorimotor memory and decay.

7

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 29, 2018. ; https://doi.org/10.1101/255091doi: bioRxiv preprint 

https://doi.org/10.1101/255091


R R

A) Structural connectivity

Fractional Anisotropy (FA)
0.52 0.56 0.60 0.64W

ei
gh

t o
f t

he
 s

lo
w

 s
ys

te
m

0.4

0.8

1.2

1.6

B) Functional connectivity

“hand” sensorimotor
(RSN 1325)

right frontoparietal
(RSN 925)x = -39

z = 34

y = -18

z = 24

x = -50

y = -10

x =-31

z=42

y = -54

M1 PMv

ANG

PMv
M1ANG

ANG

PMv

M1
S1

R R R

R R R

C) 3D rendering of the structural and functional connectivity results
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Figure 2: Structural and functional connectivity correlates of memory persistence. A.
White matter whose microstructure covariates with the weight of the slow system (ws).
Light blue shows the white matter FA skeleton in which statistical analysis (TBSS) was
carried out. Dark blue indicates regions where FA is positively associated with ws and
MD is negatively associated with ws (Fisher non-parametric combination, p < 0.05, FWE-
corrected with 2D-cluster enhancement, wf regressed out). Liinear relationships are plotted
underneath for illustration purpose. B. In the absence of stimulation, the degree of func-
tional coupling between these 2 resting state networks (left: “hand” sensorimotor network,
Z > 4, x = -38, y = -23, z = 54; right: right frontoparietal network, Z > 4, x = 39, y
= -54, z = 45) was positively associated with the weight of the slow system (p < 0.05,
FWE-corrected, wf regressed out). The relationship is plotted underneath for illustration
purpose.

(Legend continued on next page)
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C. 3D rendering of the structural and functional connectivity correlates of the weight of
the slow system. On this glass brain are overlaid: 1) the aforementioned white matter
voxels (in blue) whose microstructure is associated with ws, and 2) the “hand” sensorimotor
network (in red, Z > 4) and right frontoparietal network (in green, Z > 4) whose functional
connectivity is associated with ws.

Sensorimotor cortex excitation-inhibition ratio causally determines mem-
ory persistence

Next, we tested our key mechanistic hypothesis: that excitation:inhibition balance in senso-

rimotor cortex causally determines whether AE persists or decays by biasing temporal credit

assignment towards longer timescales. Figure 3A shows our neuro-computational hypotheses

and one-way directional predictions about the causal relationships between sensorimotor cortex

neurochemistry, temporal credit assignment, and behaviour at baseline (i.e. in the absence of

excitatory stimulation). All the statistical analyses reported in this section were one-tailed given

the a priori directional hypotheses set out in Figure 3A.

First, we tested for a baseline relationship between sensorimotor cortex E:I and temporal

credit assignment. Excitation:inhibition ratio was quantified across individuals as the relative

concentration of glutamate to GABA in left sensorimotor cortex, using high-field (7T) resting

state MRS. Across individuals, we predicted a positive correlation between E:I and the relative

weight parameter (Rw). Robust linear regression confirmed this (Glu:GABA × Rw : r =

0.42, p = 0.01; Figure 3B). When evaluating the individual contribution of each neurotrans-

mitter to this relationship (analyses controlled for the other metabolite), greater GABA levels

were found to be associated with lower Rw (r = −0.68, p < 10−4). By contrast, glutamate

showed no association with Rw (r = 0.05, p = 0.75). In turn, as expected, higher Rw during

PA predicted greater and more persistent AE at retention (AE magnitude: r = 0.46, p = 0.01;

AE persistent: r = 0.76, p < 10−3; Figure 3B).
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Figure 3: Predictions and correlations of MRS, computational and retention measures
at baseline. A. Based on previous findings (Galea et al. 2010; O’Shea et al. 2017), we pre-
dicted greater M1 E:I ratio to be associated with greater relative contribution of the slow sys-
tem to the AE during Adaptation, which in return should predict greater and more persistent
AEs at retention. Analysis of baseline (i.e. in the absence of stimulation) inter-individual co-
variation in these 3 levels confirmed the predictions. Across individuals, higher Glu:GABA
was associated with greater Rw (r = 0.42, p = 0.01). Individual contribution of GABA
and Glu to this relationship is plotted on the side. In return, greater Rw during PA was
associated with greater (r = 0.46, p = 0.01) and more persistent (r = 0.76, p < 10−3)
AEs after a 10 minutes break. Colour code represents the contribution of individual data
points to the linear regression.

To test the hypothesis that Rw depends causally on E:I, we intervened within sensorimotor

cortex with excitatory stimulation (a-tDCS) during PA. This has previously been shown to re-

duce GABA concentration (Stagg et al. 2009; Bachtiar et al. 2015; Antonenko et al. 2017). If

E:I causally determines Rw, then stimulation during PA should increase Rw and consequently

increase AE at Retention (Figure 4A). If the computation ofRw is critical for this effect to arise,
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the same should not be observed when stimulation is delivered before PA (offline tDCS condi-

tion). In other words, across individuals, the magnitude of stimulation-induced neurochemical

change (∆ E:I) should predict the computational change (∆Rw) induced by online (but not of-

fline) a-tDCS, which should in return predict the behavioural change at retention (∆AE).

At the group mean level, stimulation did not change GABA concentration (p = 0.31; Fig-

ure 10), but stimulation during PA did increase AE at retention (p = 0.02, Cohen’s d = 0.4640;

Figure 9A), while stimulation prior to PA did not (p = 0.64; Figure 9A), all three findings

replicating previous work (full details in Appendix; O’Shea et al. 2017). Critically, analyses

of inter-individual co-variation in the effect of stimulation at the neurochemical, computational

and behavioural level confirmed the predictions (Figure 4A). Across individuals, the greater the

induced increase in Glu:GABA, the greater the increase inRw when a-tDCS was applied during

PA (r = 0.57, p = 0.008, controlling for ∆Glu:GABA occurring with sham tDCS; Figure 4C).

As expected, the stimulation-induced change in computation predicted behavioural change at

retention. The greater the induced increase in Rw, the greater the induced increase in AE at

Retention (∆ AE magnitude: r = 0.41, p = 0.02; ∆ AE persistence: r = 0.33, p = 0.05;

Figure 4).
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Figure 4: Predictions and correlations of stimulation-induced change in MRS, com-
putational and retention measures. A. If the relationship described in Figure 3 are
causal, then across individuals, the magnitude of stimulation-induced increase in E:I ra-
tio should relate to how much Rw increase, which should predict subsequent increase
in AE at retention. B. Regression analyses confirmed these predictions (∆GABA:Glu
× Rw : r = 0.57, p = 0.008; ∆ AE magnitude: r = 0.41, p = 0.02; ∆ AE persis-
tence: r = 0.33, p = 0.05). Colour code represents the contribution of individual data
points to the linear regression.

The analysis of the individual relationships of ∆GABA and ∆Glu with ∆Rw (analysis con-

trolling for the a-tDCS-induced change in the other metabolite and sham tDCS-induced change

in Glu:GABA) revealed the same pattern found at baseline. Stimulation-induced decrease in

GABAergic tone was associated with increase in Rw (r = −0.53, p = 0.03) but changes in

glutamatergic tone showed no such association (r = 0.28, p = 0.32). When stimulation was ap-

plied prior to PA, the a-tDCS-induced ∆E:I did not correlate with ∆Rw (r = −0.20; p = 0.43).

That induced ∆E:I increases AE retention, only when applied concurrent with (but not prior to)

PA, implies causal dependence of stimulation on this computational state (Rw). This confirms
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our mechanistic prediction: that higher sensorimotor cortex excitation biases temporal credit

assignment towards longer timescales during PA, causing lasting memory.

Enhanced memory persistence via sensorimotor cortex stimulation is mod-
ulated by genotype

Individuals with a common polymorphism in the gene coding for brain derived neurotrophic

factor (BDNF val66met) exhibit reduced behavioural and neural markers of motor cortical plas-

ticity (Kleim et al. 2006; McHughen et al. 2011; Joundi et al. 2012). Plastic enhancement of

motor skill learning via a-tDCS is also reduced in Met allele carriers (Fritsch et al. 2010).

The polymorphism causes a partial reduction in activity-dependent BDNF secretion (Egan et

al. 2003; Chen et al. 2005), a factor involved in long-term potentiation (Minichiello 2009).

Augmentation of BDNF-dependent synaptic plasticity is a candidate mechanism of action of

sensorimotor cortex a-tDCS in mice and humans (Fritsch et al. 2010). Here we tested the pre-

diction that this genotype would modulate the cognitive state dependent effect of stimulation on

AE retention. That is, since the memory enhancement effect of sensorimotor cortex a-tDCS is

activity-dependent (requires concurrent computation of Rw), the impact of stimulation applied

during PA should vary with genotype, while stimulation at rest prior to PA may not. Genotyping

was acquired for 21/24 participants after all other data were analysed.
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Figure 5: The BDNF Val66Met polymorphism influences the effect of anodal tDCS on
retention. A. The change in prism AE magnitude at retention between anodal and sham
tDCS (a value > 0 means an increased in AE) is plotted as a function of experiment (on-
line/offline) and BDNF polymorphism (Val/Val in grey, Val/Met in white). Each dot repre-
sents an individual and the error bars represent the SEM. BDNF polymorphism influenced
the a-tDCS effect only when stimulation was delivered during but not before PA. Val/Val
carriers (n = 15) but not Val/Met carriers showed the expected increase in AE with online
a-tDCS. Asterisk indicates significant effects ((*): p = 0.053; **: p < 0.01). B-C. Val/Val
carriers but not Val/Met carriers responded to online M1 a-tDCS. The x-axis represents trial
number and the y-axis pointing accuracy in reference to baseline accuracy (i.e. change from
baseline, positive values indicate rightward errors). Pointing accuracy in Val/Val carriers (B,
n = 15) and Val/Met carriers (C, n = 6) is plotted when anodal (red) or sham (blue) was ap-
plied to the left M1 during prism adaptation (online experiment) (group mean ± 1 SEM).
Black wedges indicate blocks throughout which prisms were worn (CLP trials).

In agreement with the known allele distribution in the Caucasian population (Verhagen et

al. 2010), 6/21 participants (28.6% of our sample) carried the Met allele. Mean AE at re-

tention was analysed across all four PA sessions (anodal/sham tDCS × before/during PA).

The interaction of genotype with cognitive state and stimulation was marginally significant
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(F (1, 19) = 4.3, p = 0.053, 2-tail, η2P = 0.18; Figure 5). Follow-up ANOVAs confirmed that

BDNF polymorphism influenced the behavioural response to stimulation when applied during

PA (stimulation × genotype: F (1, 19) = 9.24, p < 0.01, 2-tail, η2P = 0.327) but not when

applied prior to PA (F (1, 19) = 0.04, p = 0.84, 2-tail). As predicted, stimulation during PA

significantly enhanced AE retention in Val-Val carriers (anodal-sham: t(14) = −3.51, p < 0.01)

but not in Val-Met carriers (t(5) = 1.30, p = 0.25). These findings implicate activity-dependent

BDNF secretion in stimulation-induced enhancement of AE persistence. They support the hy-

pothesis that augmentation of BDNF-dependent synaptic plasticity is a contributory mechanism

mediating behavioural plasticity induction via sensorimotor cortex anodal tDCS. Prior evidence

was confined to motor skill learning. Our results extend this to sensorimotor adaptation.

Discussion

Adaptation is a fundamental property of the nervous system that underwrites the maintenance

of successful actions across the lifespan (Shadmehr et al. 2010). Computational theories posit

that individuals adapt to perturbations (e.g. lateral displacement of the visual field by prisms) by

forming an internal model of it, used to adjust motor output and restore accuracy (Smith et al.

2006a). Once acquired, what determines whether adaptation memory persists or decays? The

present study investigated this question from a computational and neurochemical perspective.

We recently showed (and replicated in the present study) that excitatory stimulation (a-tDCS)

of sensorimotor cortex during but not before PA increases retention of the AE (O’Shea et al.

2017). This timing-dependent effect indicates that understanding the information processing

implemented within sensorimotor cortex and interacting with the stimulation is key to under-

standing the mechanism by which sensorimotor memories are formed and enhanced. Here, we

hypothesised that sensorimotor cortex excitation:inhibition during PA might reflect the solution

to the temporal credit assignment problem, such that lower inhibition would bias estimates to-
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wards longer timescales, and therefore longer-lasting AEs. To formally test this hypothesis,

we inferred hidden computational states from behaviour using a variant of an influential state-

space model (Smith et al. 2006a) that allowed us to quantify the relative contribution of short

versus long timescale to the internal representation of the perturbation (Figure 1). This weighted

two-state model outperformed the original model and provided a good fit to group mean and

individual data. Across individuals, greater E:I ratio (quantified as Glutamate:GABA concen-

tration using 7T MRS) was associated with greater contribution of the slow system during PA,

which in return predicted greater and more persistent AEs at retention. To establish causality,

the effect of excitatory a-tDCS was assessed on all three levels (physiology, computation, be-

haviour). This resulted in correlated increases in E:I, relative contribution of the slow system,

and retention.

MR spectroscopy offers a way to measure metabolite concentrations in the living brain. The

non-invasiveness of this technique comes at the cost of a relatively low signal-to-noise (SNR)

ratio. In this study, good SNR was obtained by using ultra high-field (7T) MRS and by acquir-

ing data from a large 2 × 2 × 2 cm3 MRS voxel centred on the region of interest. Due to the

size of the voxel, adjacent regions of sensory cortex (S1) were also included in the measure

of M1 metabolites. This is a common methodological limitation of MRS studies (Stagg et al.

2009; Lunghi et al. 2015; Antonenko et al. 2017; Ip et al. 2017; Kolasinski et al. 2017; O’Shea

et al. 2017). Although we cannot rule out the contribution of S1 to our results, M1 is likely

to play a predominant role because of a convergence of studies implicating it in the consolida-

tion of adaptation memory (Wise et al. 1998; Li et al. 2001; Paz et al. 2003; Paz et al. 2005;

Hadipour-Niktarash et al. 2007; Landi et al. 2011; Leow et al. 2016). It is not our intention how-

ever to suggest that only M1 is involved in the implementation of temporal credit assignment.

As illustrated in the structural and functional connectivity results, the weight assigned to the
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slow system appears to involve the interaction of M1 with at least the posterior parietal cortex

and ventral premotor cortex, two regions known to be involved in PA (Kurata and Hoshi 1999;

Clower and Boussaoud 2000; Pisella et al. 2004; Newport and Jackson 2006; Newport et al.

2006; Danckert et al. 2008; Luauté et al. 2009). A parsimonious interpretation of the results

is therefore that the level of inhibition within M1 is a causal factor in the computation of the

timescale over which to retain the solution of the adaptation, but that it may also involve other

distant regions.

The relationships between M1 inhibition and Rw could result from two functionally dis-

tinct forms of GABAergic signalling: phasic or tonic. Phasic GABAergic activity refers to the

release of presynaptic GABA into the synaptic cleft due to the depolarisation of inhibitory neu-

rons (Mody 2001; Bachtiar and Stagg 2014). It is involved in the generation of rapid inhibitory

postsynaptic currents (IPSCs) via the activation of GABAB receptors (Maffei et al. 2017). In ad-

dition, extracellular GABA also has a longer-lasting neuromodulatory role via tonic signalling

on extra-synaptic GABAA receptors (Glykys and Mody 2007). This form of tonic inhibition

affects neuronal excitability via an action on the tonic conductance, which is distinct from the

time-dependent phasic inhibitory signalling (Mody 2001). It has an important regulatory in-

fluence on synaptic plasticity in that greater tonic inhibition is typically associated with less

long-term potentiation (LTP) (Wigström and Gustafsson 1983; Chapman et al. 1998; Levkovitz

et al. 1999; Bütefisch et al. 2000; Yoshiike et al. 2008; Martin et al. 2010). Extrasynaptic

tonic GABA represents approximately 70% of the total GABA in the cortex (Petroff 2002) and,

unlike vesicular phasic GABA, it is not bound to macromollecules, which makes it more eas-

ily detectable with MRS (Stagg et al. 2011b). Although these observations indicate that the

resting MRS-GABA signal measured in this study reflects predominantly tonic extrasynaptic

GABAA inhibition (Stagg et al. 2011a; Stagg et al. 2011b), it is currently nearly impossible to
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disentangle the contribution of the two neurotransmitter pools with the resolution of this tech-

nique. Studies considering TMS intra-cortical inhibitory measures as indirect proxi of GABAA

and GABAB inhibition have reported modulatory effects of a-tDCS on both types of signalling

(Hummel et al. 2005; Antal et al. 2010; Tremblay et al. 2013; Amadi et al. 2015). We therefore

suggest that the baseline relationship between MRS-GABA and Rw is likely to rely on indi-

vidual trait variation in GABAA tone, while the relationship between ∆MRS-GABA and ∆Rw

is likely to implicate state variation in both GABAA and GABAB. The latter might contribute

to explaining why although M1 a-tDCS has been shown to reduce MRS-GABA measures be-

yond the period of the stimulation (for up to 30 minutes) (Bachtiar et al. 2015), it had no effect

on behaviour when applied before PA (O’Shea et al. 2017). Another account for the timing-

dependent interaction between a-tDCS and sensorimotor memory is that offline a-tDCS might

involve metaplasticity (Stagg et al. 2011c), a set of mechanisms engaged to counteract the ef-

fect of excitatory stimulation in order to maintain neural activity within a normal range (Lang

et al. 2004). These mechanisms might take place during PA in the offline tDCS condition and

suppress the excitatory effect of a-tDCS.

Identification of individual predictors of responsiveness to stimulation is crucial for both

the mechanistic understanding of the effect of tDCS and the tailoring of interventions on an

individual basis. In the present study, the cognitive state dependency of the stimulation-induced

memory enhancement was influenced by individuals’ BDNF val66met polymorphism. Ho-

mozygote individuals (Val/Val) responded to online but not offline a-tDCS while heterozygotes

individuals (Val/Met) responded to neither online nor offline a-tDCS. This result extends the

known role of activity-dependent BDNF secretion in motor skill learning and its modulation by

a-tDCS (Fritsch et al. 2010) to another paradigm: sensorimotor learning. It is unclear however

how BDNF polymorphism interacts with the neuro-computational mechanism reported above.
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For example, it might be the case that because of altered activity-dependent synaptic plasticity,

Met carriers show a different relationship between neurochemical and computational changes

(e.g. a greater reduction in GABA is needed to induce the same increase in Rw in Met carri-

ers). The small number of Met carriers in our experimental sample (n = 6) prevented us from

formally asking this question. Future research beyond the exploratory analysis reported here

should therefore consider screening participants for their BDNF polymorphism at inclusion in

order to obtain balanced sample sizes between the two groups (Val/Val and Val/Met) and for-

mally compare the mechanisms involved.

Materials and methods

Participants

Twenty-four right-handed healthy male individuals (mean age = 25.03 years, SD = 3.50) gave

their written informed consent to take part in this study in accordance with ethical approval

from the Oxford A Research Ethics Committee (REC reference number: 13/SC/0163). The

gender selection criterion was applied to avoid potential confounds related to variations in neu-

rotransmitter concentration with the menstrual cycle in women (Smith et al. 1999; Epperson

et al. 2002). Handedness was assessed using the Edinburgh handedness questionnaire (Old-

field 1971). All participants had normal or corrected-to-normal vision and indicated no family

history of psychiatric or neurological disease. All participants were naive to the purpose of

the experiment and were not informed of the expected effect of the prism glasses and brain

stimulation. No participant reported any side effect from the experimental procedure.

Experimental design

All individuals participated in four PA sessions (behavioural experiment) and two scanning ses-

sions (neuroimaging experiment). Sessions were separated by at least one week. The order of
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the four PA sessions was fully counterbalanced across the group. The order of the scanning

sessions was also counterbalanced across the group.

A) Experimental setup B) Online stimulation experiment

C) Offline stimulation experiment
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Figure 6: Experimental set-up and protocols. A. An PA set-up was used (see Materi-
als and Methods). B-C) Experimental protocol. Closed-loop pointing (CLP) and open-loop
pointing (OLP) accuracy was first measured at baseline. Then followed 20 minutes of either
real or sham left M1 a-tDCS during which participants either adapted to 10-degree right-
shifting prisms (online condition, B) or stayed blindfolded at rest (offline condition, C). In
the offline condition, participants underwent prism adaptation as soon as the stimulation
finished. The prism adaptation phase included blocks of CLP during which participants
adapted to prisms, interleaved with blocks of OLP used to measure the development of
prism AE. After the end of the last block of the PA phase, participants rested blindfolded
for 10 minutes before to undergo a long block of 45 OLP trials to measure retention. D.
Scanning protocol. All participants underwent two scanning sessions with either anodal or
sham left M1tDCS, the order of which was counterbalanced across the group. MR spec-
troscopy and resting state fMRI were acquired at two time points: before and after tDCS.
Diffusion-weighted images were taken once at the end of one of the two scanning sessions
in 22 subjects. Timeline shown is an estimate of the length of the scans in minutes.

The behavioural experiment had a 2-by-2 within-subject design. Experimental sessions dif-

fered in regards to the type (anodal or sham tDCS) and timing (during or before PA, i.e. online

or offline) of the stimulation. Similar to our previous report (O’Shea et al. 2017), each PA ses-
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sion included 4 phases as follow: 1) measure of baseline pointing accuracy (3 blocks); 2) prism

adaptation (14 blocks; 20 min); 4) 10-minute break (blindfolded, at rest); 3) measure of prism

AE retention (Figure 6B). The neuroimaging experiment (performed in the same individuals)

involved 2 scanning sessions with either real or sham left M1 tDCS. Details of the scanning

protocol is provided in Figure 6C.

Prism adaptation procedure

The experimental protocol used in this study was as described in O’Shea et al. (2017) and is

summarised bellow. The main difference with previous work (O’Shea et al. 2017) is that a fully

automated experimental set-up was used to enable a more precise and reproducible measure-

ment of reaching errors, as well as a better control of visual feedback availability and exper-

imental timing (Figure 6A). As a result, the pace of the experiment increased so we could fit

7 exposure blocks instead of the original 6 during the 20 minutes of brain stimulation (Fig-

ure 6BC).

Participants sat facing a horizontal 32-inch LED screen embedded in a table that was used to

record the reach endpoint position of their index finger (Figure 6A). Their head was restrained

by a chin rest mounted on the edge of the table to keep a distance of about 60 centimetres be-

tween their eyes and the centre of the screen. Wood panels were placed on the other three edges

of the table to create a box in which participants’ visual environment was strictly restricted to

the screen. A button was attached to the pole of the chin rest and subjects were instructed to

keep it pressed at all time and only release it when initiating a reaching movement. A fixed

shutter prevented participants from seeing their limb when pressing the button and during the

first third of their pointing movement. A liquid crystal shutter (Dispersion film, Liquid Crys-

tal Technologies, Ohio, USA) placed between participants’ eyes and their limb controlled the
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visual feedback of the screen and pointing limb. The same prism glasses were used (glacier

goggles: Julbo, Longchaumois, France; 10° right-shifting prism lenses: OptiquePeter, Lyon,

France).

Participants were instructed to perform two types of pointing movements: closed-loop point-

ing and open-loop pointing.

• Closed-loop Pointing (LP). On CLP trials, participants made speeded reaching move-

ments (average movement duration = 317 ms, SD = 53 ms) to point at a visual target

appearing on the screen at the beginning of each trial. Within any CLP block, targets

appeared either 12 cm to the left or 12 cm to the right of the centre of the screen (50%

on each side), following a pseudorandom sequence in which target location transitions

were generated if the same location appeared twice in a row. Visual feedback was lim-

ited to the last two thirds of the reaching movement in order to limit strategic adjustment

(Redding and Wallace 1996; O’Shea et al. 2014; Inoue et al. 2015; O’Shea et al. 2017)

and lasted until 500 ms after participants touched the screen to allow for them to perceive

their terminal reach endpoint error. After this time, the LC shutter turned opaque and

participants had to return to the starting position (i.e. press and hold the button) without

visual feedback of their hand.

• Open-loop pointing (OLP). On OLP trials, participants pointed at a slower speed (aver-

age movement duration = 816 ms, SD = 174 ms) to a visual target located in the centre of

the screen. The LC shutter turned opaque as soon as their hand left the starting position

(i.e. release of the button), thereby blocking any visual feedback during the reaching and

return movements. The LC shutter turned clear again only when participants returned to

the starting position and initiated the next trial.
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Four factors differentiated OLP from CLP trials: 1) participants only wore prism glasses

during CLP trials (and never during OLP trials) so that any change in pointing accuracy on

open-loop pointing relative to baseline could be interpreted as an after-effect of the adaptation;

2) participants could learn from their reach endpoint error on CLP but not on OLP (because vi-

sual feedback was deprived); 3) participants made fast movements on CLP (average movement

duration = 317 ms, SD = 53 ms) but slower movements on OLP (average movement duration =

816 ms, SD = 174 ms); 4) participants pointed to lateral targets on CLP (located 12 cm to the

left or right of the centre of the screen) and to a unique central target on OLP. The differences in

movement speed and target location between prism exposure (CLP trials) and AE probes (OLP)

enabled us to assay generalised AE that were not contaminated by extensive training of a spe-

cific movement dynamic and local learning at a certain target location (Kitazawa et al. 1997).

This type of AE is thought to be relevant for neglect rehabilitation (Serino et al. 2006; O’Shea

et al. 2017).

In all four PA sessions, the tDCS electrodes were positioned and the stimulation switched

on at the end of the baseline phase (20 CLPs, 30 OLPs). In the online condition, the PA phase

(E1-7: 10 CLPs per block during the first 2 blocks, 20 CLPs per block in the remaining ones;

AE1-7: 15 OLPs per block) started as soon as the stimulation reached its constant level. In the

offline condition, participants were blindfolded and remained at rest during the entire duration

of the stimulation. This enabled us to control the visual input participants received during the

offline stimulation. The prism adaptation phase started as soon as the stimulation was over in

the offline condition. In all sessions, retention of the AE (AE8-10: 15 trials per block) was

probed 10 minutes after the end of the last OLP trial of the adaptation phase.
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Transcranial direct current stimulation
During behavioural sessions

When delivered outside the scanner (i.e. PA sessions), direct current stimulation was generated

by a battery driven DC stimulator (Neuroconn GmbH, Ilmenau, Germany) connected to two 7

× 5 cm sponge electrodes soaked in a 0.9% saline solution. The anode electrode was centred

over C3 (5 cm lateral to Cz) corresponding to the left primary motor cortex according to the

international 10-20 System (Herwig et al. 2003). The cathode electrode was placed over the

right supraorbital ridge. The large surface of the electrode (35 cm2) ensured a good coverage

of the M1 “hotspot”. Similar to previous M1 tDCS studies, the long axis of the anode electrode

was oriented parallel to the sagittal axis during behavioural sessions (Nitsche and Paulus 2000;

Galea et al. 2010; Panouillères et al. 2015; O’Shea et al. 2017). The electrodes were positioned

immediately before stimulation onset and removed as soon at the stimulation finished in order

to minimise participants’ discomfort. For anodal stimulation, the current intensity was set to

1 mA for 20 minutes with a ramp-up and ramp-down period of 10 seconds prior and after the

stimulation respectively. For sham stimulation, the current also ramped up and down for 10 secs

but no stimulation was delivered during the 20 minutes. Instead, small current pulses (110 µA

over 15 ms) occurred every 550 ms to simulate the tingling sensation associated with real anodal

stimulation. Both experimenters and participants were blinded to the stimulation condition.

In order to verify the efficacy of the blinding, participants were asked to guess whether the

stimulation was 'real'/ or 'fake'at the end of every behavioural session. The proportion of correct

responses for identifying the stimulation condition was at chance level (50%, SD = 27.59),

indicating that participants were unable to successfully differentiate anodal from sham tDCS.
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Inside the scanner

When delivered outside the scanner (i.e. PA sessions), direct current stimulation was generated

by a battery driven DC stimulator (Neuroconn GmbH, Ilmenau, Germany) connected to two 7

× 5 cm MR-compatible carbon-rubber electrodes equipped with an inbuilt 5 kΩ resistor at the

junction between the electrode and the wire (Easycap GmbH, Herrsching, Germany) in order

to avoid temperature increase and reduce induction voltages caused by the scanner (Woods et

al. 2016). A thick coating of chloride-free abrasive electrolyte gel was applied between the

biocarbon electrodes and the scalp to maintain low levels of impedance throughout the duration

of the scan and ensure the stimulation to be delivered evenly across the electrode (Woods et al.

2016). The electrode placement was identical except for the anode electrode that was oriented

perpendicular to the sagittal axis (instead of parallel, during behavioural sessions) in order for

the wire to exit the RF coil through the shortest route and limit the risk of eddy current induction

(Woods et al. 2016). This electrode montage was similar to previous work done in the laboratory

(Stagg et al. 2009; Bachtiar et al. 2015; O’Shea et al. 2017). The electrodes were placed on

participants’ head immediately before the beginning of the scanning session and removed as

soon as participants exited the scanner. The protocol for anodal and sham stimulation was

identical to what was done outside the scanner. Only participants were blinded to the stimulation

condition inside the scanner.

Statistical analysis of raw prism adaptation data

Reach endpoint angular errors were calculated as the angle formed between a straight line join-

ing the starting position (button) and the target location and a straight line joining the starting

position (button) and the touch location on the screen. Data distribution assumption of normal-

ity was assessed quantitatively using the Kolmogorov-Smirnov and Shapiro-Wilkinson tests and

qualitatively using distribution plots and Q-Q plots. Sphericity was assessed using Mauchly’s
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test, with violations corrected using the Huyhn-Feldt procedure where appropriate. When data

met the assumptions of parametric testing, pointing angular error data were analysed with re-

peated measures ANOVA and t-tests using SPSS software (SPSS inc. version 24.0) and Matlab

(The MathWorks inc. version R2014b). Cohen’s d was reported for significant results only. All

the MATLAB scripts are provided in supplementary material.

Computational analysis of prism adaptation data

State-space models and Bayesian models have proven useful in describing and predicting mo-

tor behaviour during sensorimotor adaptation (Kitazawa et al. 1995; Körding and Wolpert 2004;

Smith et al. 2006a; Körding et al. 2007; Berniker and Kording 2008; Joiner and Smith 2008;

Haith et al. 2009; Lee and Schweighofer 2009; Yamamoto and Ando 2012; Inoue et al. 2015;

McDougle et al. 2015). One key difference between these two classes of model is that the for-

mer extracts hidden internal states from the raw behavioural data whereas the latter infers them

from the noise structure of the experiment under the assumption of optimality. Bayesian models

therefore require the reliability of different sources of information (e.g. vision, proprioception)

to be experimentally manipulated (for examples of such experimental manipulations, see Körd-

ing and Wolpert 2004; Wei and Körding 2010). The set of experiments reported in this thesis

was designed to measure the evolving dynamics of the AE during and after adaptation to prisms

and did not involve manipulations of the reliability of different sources of information. Hence

the state-space modelling framework was used.

State-space models posit that trial-by-trial adaptation arises from the interaction of multiple

learning processes that can be approximated by two systems: a ‘fast’ system that learns quickly

but also forgets quickly, which is mainly responsible for the rapid initial error correction, and

a ‘slow’ system that learns slowly but forget slower, allowing the long-term retention of AE
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(Smith et al. 2006a; Joiner and Smith 2008). A recent study applied time-invariant state-space

models to prism adaptation data and suggested the need of a third ‘ultra-slow’ system when

explaining the temporal dynamics of AE after prolonged prism exposure (500 exposure trials)

(Inoue et al. 2015). The present experiment however used a relatively short prism exposure (120

pointing trials), which does not require the addition of a third system. On CLP, the two-state

model is defined as follows:

e(n) = biasCLP + d−X(n)

X(n) = xf (n) + xs(n)

xf (n) = Afxf (n− 1) +Bfe(n− 1)

xs(n) = Asxs(n− 1) +Bse(n− 1)

0 < Af < As < 1; 0 < Bs < Bf < 1

(1)

where the endpoint error on the n-th trial e(n) is modelled as the sum of a bias term biasCLP

and a prism effect d from which is removed the sum of the states of the two systems X(n).

The bias term is a fixed parameter capturing the natural deviation from target participants show

at baseline (i.e. a constant 'irreducible' error that is not attributable to PA). The prism effect d

is a fixed parameter that determines the error magnitude obtained on the first prism exposure

CLP trial of the Adaptation. Owing to online corrections during reach trajectory with visual

feedback (CLP), d is always less than the true visual displacement, and is typically about 60-

80% (Rock et al. 1966; Redding and Wallace 2000; Redding et al. 2005). The total amount of

adaptation X(n) corresponds to the sum of the states of the fast system xf (n) and slow system

xs(n). These systems produce a trial-by-trial estimate of d based on the visual error feedback.

The learning rate B dictates the proportion of error added to the state of a system from one trial

to the other. A greater B means faster learning, i.e. larger proportion of error on the (n-1)-th

trial corrected for on trial n. The retention rate A determines the speed of the memory decay,

27

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 29, 2018. ; https://doi.org/10.1101/255091doi: bioRxiv preprint 

https://doi.org/10.1101/255091


i.e. the proportion of state that is being carried over from one trial to the other. A high A for a

system means little inter-trial memory decay.

On OLP trials, where the visual disturbance is removed and no visual feedback is available,

the original two-state model (Smith et al. 2006a) becomes:

e(n) = biasOLP −X(n)

X(n) = xf (n) + xs(n)

xf (n) = Afxf (n− 1)

xs(n) = Asxs(n− 1)

0 < Af < As < 1

(2)

This equation differs from equation 1 in three ways. First, a different bias term is used, reflecting

the fact that, at baseline, individuals show different biases between the two tasks (for example,

compare the baseline deviation on the CLP and OLP blocks in Figure 1C). Second, the prism

effect d is removed (effectively set to zero) because individuals are no longer wearing prisms

when the AE is measured. Third, the learning rates of the fast and slow systems are set to zero

(i.e. Bf = 0, Bs = 0) to reflect the absence of learning during OLP trials. Any within-block

change in pointing accuracy during AE measurements is therefore explained by the forgetting

of the two systems in this model. If visual feedback is provided during AE measurements (i.e.

CLP, e.g. de-adaptation phase of experiment 1), the learning of both systems is switched on

and the equation is the same as in 1 except that d = 0. In this case, within-block change in

pointing accuracy reflects both the forgetting of the adapted state and the active learning from

performance error (i.e. de-adaptation).

To date, state-space models have been used predominantly in the literature on visuomotor

rotation (Lee and Schweighofer 2009; Tanaka et al. 2009; Tanaka et al. 2012; Kim et al. 2015;
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McDougle et al. 2015) and force-field adaptation experiments (Smith et al. 2006a; Joiner and

Smith 2008), two paradigms in which the AEs are typically measured using the same exper-

imental constraints as during exposure to the perturbation (i.e. identical effectors, movement

dynamics, target location in space). Because of these identical conditions, both error-dependent

learning and AE measurements are assumed to reflect the direct sum of the states of the two

systems (see equations 1 and 2) (Smith et al. 2006a). However, if the error-dependent learning

and AE measurements occur under different pointing conditions (CLP vs. OLP: different target

location, different movement speed), the assumption of equal contribution of the two systems

to the AE may no longer hold. For example, one system may generalise more than the other.

In order to capture this key feature of our experimental paradigm in computational terms, we

introduced a time-invariant weighting on the two systems that determines how much of what

a system learns during prism exposure is subsequently expressed behaviourally on open loop

pointing. In practice the equation for CLP trials remains the same as the original model (equa-

tion 1). However, the equation for OLP becomes:

e(n) = biasOLP −X(n)

X(n) = wfxf (n) + wsxs(n)

xf (n) = Afxf (n− 1)

xs(n) = Asxs(n− 1)

0 < Af < As < 1; 0 < Bs < Bf < 1

0 < wf < 5; 0 < ws < 5

(3)

where wf and ws are weighting factors that introduce a dissociation between the state of a given

system on CLP and its contribution to the total amount of adaptation on OLP. As a result, the

AE is now modelled as a weighted sum of the states of the two systems. For each system, hav-

ing a weight lower than 1 means a scaling down of its contribution to the prism AE, whereas a

weight greater than 1 means an over-expression.
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Model optimisation was performed in MATLAB (The MathWorks inc. version R2014b)

using a least squares fitting procedure (fmincon function). In order to confirm the superiority

of the weighted two-state model over the original non-weighted two-state model (Smith et al.

2006a), we performed formal model comparison on the group mean data (average of the 4

sessions of the 24 participants, i.e. 96 datasets). For the original two-state model, the best-fitted

parameters were Af = 0.866; As = 0.991; Bf = 0.195 and Bs = 0.101 and for the weighted

two-state model, they were Af = 0.931; As = 0.996; Bf = 0.159; Bs = 0.076; wf = 0.974 and

ws = 0.855 (Supplementary scripts). The overall fit of the group mean data was better for the

weighted two-state model compared to the original model (root mean squared error = 0.23° vs.

15.48°; R-square = 99.68% vs. 99.14%). In order to formally compare the two models, Akaike’s

Information Criterion (AIC) and the associated relative likelihood (RL) were calculated for each

model as follow:

AIC = t. ln var(ε) + 2k

RL = exp(
∆AIC

2
)

(4)

where t is the total number of data points and k is the degrees of freedom in each model (k = 4

for the original model and k = 6 for the weighted model). This index expresses the residual er-

ror while adding a penalty for model complexity in order to avoid issues related to over-fitting.

Thus, the best model is characterised by the lowest AIC (i.e. a negative ∆AIC). This analysis

confirmed that the improvement associated with the weighted two-state model was not merely

due to extra parameters (∆AIC = −273.02, RL = 3.06x10 − 61).

The main advantage of the weighted two-state model is not only that it provides a closer fit

to the data, but mainly that it enables to extract the key computational parameter of interest for

this study, i.e. the time-invariant contribution of the fast and slow systems to overt behaviour
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on OLP during Adaptation. We expressed this as a relative weight as follow:

Rw =
ws

wf + ws

(5)

This derived scalar captures in a single metric the relative contribution of long versus short

memory timescales to the AE during Adaptation. A relative weight greater than 0.5 is indica-

tive of a dominance of the slow system, i.e. little intra- and inter- block forgetting (Figure 1C).

Alternatively a fast system dominant PA profile (Rw < 0.5) is characterised by larger prism AE

initially but greater forgetting throughout the 20 minutes of prism adaptation (Figure 1C).

In order to ensure comparability of the relative weights within and between participants,

Af , Bf , As and Bs were kept constant and only wf and ws were estimated when fitting indi-

vidual datasets. We used the learning and retention factors extracted from the fit of the weighted

two-state model to the group mean data. If all parameters were let free, weighting factors would

refer to different memory timescales depending on which participant/session they apply to. In-

stead, we decided to posit identical systems for all participants and only let the weight of these

systems vary. This approach also reduced the number of free parameters, making the estimates

more robust and ensuring that they capture unique variance. Furthermore, inspection of raw PA

data revealed a stereotypical behavioural profile on CLP while most of the variance was present

in the OLP data (Figure 1B).

Regression analyses

Regression analyses were performed in MATLAB (The MathWorks inc. version R2014b) us-

ing robust multiple linear regressions analyses with an iteratively re-weighted least squares

procedure. This algorithm was used to limit the contribution of potential outliers to the fit. Indi-

viduals with missing data for at least one of the variables included in the linear regression were

excluded from the analysis. The details of participants exclusion is provided in Table 1. For all
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multiple linear regressions, normal probability plots of residuals were examined to check the

normal distribution of errors. The coefficients reported are the regression coefficient estimates

after z-transformation of the dependent and independent variables. Fisher’s r was calculated to

compare regression coefficients.

BDNF Val66Met polymorphism

A sub-sample of 21 participants (Table 1) was genotyped for the BDNF Val66Met polymor-

phism (rs6265, G>A). Genomic DNA was extracted from buccal cells using the ChargeSwitch®

gDNA Buccal Cell Kit (ThermoFisher Scientific, UK) and samples were genotyped in duplicate

by LGC Genomics (LGC Group, UK). Rs6265 was the only polymorphism examined.

MR data acquisition

All MR data (T1-weighted images, MR spectroscopy, diffusion-weighted images and resting

state fMRI) were acquired on a 7T Siemens MAGNETOM scanner (Siemens, Erlangen, Ger-

many) at the Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB).

All participants underwent two 90 minutes scanning sessions (anodal tDCS scan and sham

tDCS scan) separated by at least 1 week and counterbalanced across participants (Figure 6D).

To keep volunteers engaged during the scanning session, a video (BBC life, no sound, no subti-

tles) was projected in the scanner at the exception of during the resting state fMRI acquisitions.

Participants wore earplugs throughout scanning.

T1-weighted structural images

High-resolution T1 images (MPRAGE: 176 x 1 mm sagittal slices; TR/TE = 2200/2.82 ms;

flip angle = 7 deg; FOV = 256 x 256; voxel size = 1mm isotropic; PAT = 2; scan time = 325

secs) were acquired at the beginning of each scanning session for MRS voxel placement and

registration purposes.
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Participant GABA Glu tCr DTI rs-fMRI BDNF

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Table 1: Diagram of data completeness. Completeness of the dataset is represented for
each participant. The four columns of GABA, Glutamate and Creatine represent the four
measurements (before a-tDCS, after a-tDCS, before s-tDCS, after s-tDCS). A black square
means that the data didn’t meet the quality criteria. Black squares in the BDNF column
indicates participants for which genotyping could not be obtained.

MR spectroscopy

MR spectroscopy was acquired immediately before and after the application of 20 minutes of

left M1 real or sham a-tDCS inside the scanner. B0 shimming was performed in a two-step

process. First, GRE-SHIM (64 x 4mm axial slices, TR = 600 ms; TE1/2 = 2.04/4.08 ms; flip

angle = 15 deg; FOV = 384 × 384; voxel size = 4 mm isotropic; scan time = 44 secs) was used

to determine the optimal first- and second-order shim current. The second step involved the

fine adjustment of first-order shims using FASTMAP. Prior to switching on the direct current
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stimulator, the modified semi-LASER sequence (O’Shea et al. 2007; Bank et al. 2015) (TR/TE

= 5000/36 ms, 64 scan averages, scan time = 320 secs) was used to acquire MRS measurement

in a 2 × 2 × 2 cm3 volume of interest centred on the left motor knob (Yousry et al., 1997) to

include parts of the pre- and post-central gyrus (see VOI overlap maps in Figure 10B). As soon

as the baseline MRS measurement was over, the experimenter turned on the DC stimulator and

no scanning happened for 10 minutes (Figure 6D). At the end of this time, lower-resolution

T1-weighted images (MPRAGE: 176 × 1 mm sagittal slices; TR/TE = 2200/2.82 ms; flip angle

= 7 deg; FOV = 192 × 192; voxel size = 1 mm isotropic; PAT = 4; scan time = 171 secs)

were acquired to check for head motion. If significant head motion was detected, the VOI was

re-positioned to match the baseline acquisition and B0 shimming was performed again. If no

significant head motion was detected, baseline VOI positioning and shimming were applied.

On average, post-tDCS MRS measurements (64 averages) started 2 minutes 21 seconds after

the end of the stimulation (range: 6 secs to 12 minutes 30 secs).

Diffusion weighted images (DWI)

Diffusion-weighted echo planar images (2 acquisitions of 64 diffusion-weighted directions in

opposite phase-encode direction, b-value = 1000 s/mm2; 8 non-diffusion weighted images with

4 b0 volumes in the reverse phase-encode direction, b-value = 0 s/mm2; 120 slices; TR/TE =

6210/68.2 ms; FOV = 192 × 192; voxel size = 1.2 mm isotropic; PAT = 2; scan time = 938 secs)

were acquired once at the end of a scanning session for 22 participants (Figure 6D; Table 1).

Resting state functional MRI (rs-fMRI)

Resting state Blood oxygen-level-dependent (BOLD) echo planar fMRI scans (96 slices; TR/TE

= 1472/25.0 ms; FOV = 192 × 192; voxel size = 1.5 mm isotropic; PAT = 2; scan time = 444

secs) were acquired before and after the stimulation (Figure 6D). Participants were instructed to

keep their eyes open and fixate on a cross hair projected on the screen. Immediately after each
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resting state fMRI scan, a field map (64 slices; TR = 620 ms; TE1/2 = 4.08/5.1 ms; FOV = 192

× 192; voxel size = 2 mm isotropic; scan time = 122 secs) was acquired for post-processing

correction of geometrical distortions caused by magnetic field inhomogeneity. Two participants

did not undergo the resting state scans in order to minimise the time they spent in the scanner

(Table 1).

MR data analysis
MR spectroscopy

Metabolites were quantified using LCModel (Provencher 1993; Provencher 2001; Provencher

2012) performed on all spectra within the chemical shift range 0.5 to 4.2 ppm. The model spec-

tra of alanine (Ala), ascorbate/vitamin C (Asc), aspartate (Asp), glycerophosphocholine (GPC),

phosphocholine (PCho), creatine (Cr), phosphocreatine (PCr), GABA, glucose (Glc), glutamine

(Gln), glutamate (Glu), glutathione (GSH), myo-inositol (myo-Ins), Lactate, N-acetylaspartate

(NAA), N- acetylaspartylglutamate (NAAG), phosphoethanolamine (PE), scyllo-inositol (scyllo-

Ins) and taurine (Tau) were generated based on previously reported chemical shifts and coupling

constants by VeSPA Project (Versatile Stimulation, Pulses and Analysis). The unsuppressed wa-

ter signal acquired from the volume of interest was used to remove eddy current effects and to

reconstruct the phased array spectra (Natt et al. 2005). Single scan spectra were corrected for

frequency and phase variations induced by subject motion before summation. The full width

half maximum (FWHM) and signal-to-noise ratio (SNR) did not differ between the four MRS

measurements (Table 2).

Relative Cramér-Rao Lower Bounds (CRLB) is commonly used as a quality-filtering

criterion to identify and discard 'bad quality' data (Provencher 1993; Provencher 2001; Scholz

et al. 2009; Kim et al. 2014; Antonenko et al. 2017). However, as recently highlighted in
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Anodal scan Sham scan
Baseline post-tDCS Baseline post-tDCS

% Grey matter 28.3 (4.7) 28.03 (5.2) 28.7 (3.2) 28.0 (3.7)
% White matter 65.3 (6.1) 65.5 (7.1) 64.4 (4.6) 65.4 (5.0)
% CSF 6.4 (2.5) 6.4 (2.7) 6.9 (2.3) 6.5 (2.4)

SNR 48.0 (5.3) 47.8 (6.6) 46.3 (7.3) 47.0 (5.8)
FWHM 0.028 (0.003) 0.030 (0.005) 0.029 (0.003) 0.029 (0.004)

GABA %CRLB 48.2 (25.8) 48.5 (34.6) 57.8 (36.1) 47.8 (23.2)
Glu %CRLB 4.7 (0.6) 4.8 (0.7) 4.9 (0.8) 4.9 (0.6)

Table 2: MRS characteristics. Group mean (standard deviation in parenthesis) voxel
composition, spectrum signal-to-noise ratio (SNR), full width at half maximum (FWHM),
and GABA and glutamate (Glu) relative Cramér-Rao lower bound (%CRLB) are shown
for each spectroscopy measurement (before a-tDCS, after a-tDCS, before s-tDCS, after s-
tDCS).

the work of Kreis (2016), this method induces a selection bias towards high concentration

estimates and therefore leads to an over-estimation of the group mean metabolite concentration.

This is particularly problematic for low concentration metabolites such as GABA. In order

to avoid this methodological confound in this experiment, we used the alternative quality

filtering method. First, a high relative CRLB threshold of 100% was applied in order to

exclude exceptionally unreliable measurements. Next, we calculated the expected relative

CRLB value for all MRS measurements under the assumption of a constant noise level across

all measurements. We then excluded measurements for which the observed relative CRLB was

exceptionally higher than the one predicted under this assumption. We used Pearson residuals

to quantify the distance between the observed and predicted relative CRLB (threshold = 2).

This quality filtering method allowed us to identify poor quality measurements irrespective

to their concentration estimate and therefore avoid the selection bias of the standard method

based on relative CRLB. Out of the 24 participants, 16 passed this quality check successfully

for GABA, glutamate and creatine across all four MRS measurements. Twenty-three par-

ticipants had at least one reliable baseline MRS measurement for all these metabolites (Table 1).
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Figure 7: Magnetic Resonance Spectroscopy data. A. Example raw spectroscopy spec-
trum and LC model fit from one participant. The fitted LCModel (red) is overlaid on the raw
data (black). The difference between the data and model (residuals) is shown at the top, and
the baseline is shown at the bottom. The arrows represent the constituent peaks of glutamate
(blue) and GABA (green). B. MRS voxel group overlap map. The MRS was centred on the
left motor knob to include parts of the pre- and post-central gyrus (Yousry et al. 1997). This
resulted in consistent positioning of the voxel in the same location in MNI space between
individuals (light colours indicate overlap in voxel position in all 24 participants) and scan-
ning sessions (red: anodal tDCS scan; blue: sham tDCS scan). C. The total creatine (tCr)
concentration estimate was stable across all 4 measurements. Total creatine’s absence of
significant variation across measurements (F (1, 19) = 1.46, p = 0.24) and good test-retest
reliability (ICC = 0.86, p < 10−3) enabled us to use it for internal referencing.

FMRIB’s automated segmentation tool (Patenaude et al. 2011), part of the FSL software

library (Smith et al. 2004), was used on the T1-weighted images to calculate the percentage

of grey matter, white matter and cerebrospinal fluid present in the volume of interest (noted

[GM], [WM] and [CSF] respectively) (Table 2). GABA and glutamate concentration estimates

were corrected for the proportion of grey matter within the VOI (i.e. divided by [GM]/([GM] +

[WM] + [CSF])), and creatine and phosphocreatine concentration estimates were corrected for

the proportion of total brain matter within the VOI (i.e. divided by ([GM] + [WM])/([GM] +

[WM] + [CSF])).

Reliability of total creatine (creatine + phosphocreatine, noted tCr) concentration estimate
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across all 4 measurements was assessed using intra-class correlations (two-way random effects

model with absolute agreement) implemented in SPSS (SPSS inc., version 24.0). An excellent

degree of test-retest reliability was observed for tCr (ICC = 0.86, p < 10−3), enabling us

to use it for internal referencing. In all analyses, GABA and glutamate levels were therefore

reported as ratios to tCr. Across the 2 baseline measurements, test-retest reliability was good for

Glu:tCr (ICC = 0.75, p = 0.001) but lower for GABA:tCr (ICC = 0.28, p = 0.26). Thus,

when evaluating the relationship between baseline metabolite concentration and computational

parameters, we averaged the baseline concentration estimates across the 2 scanning sessions to

obtain a more reliable estimate.

Diffusion-weighted images

Analysis of DW images was performed using tools from the FMRIB Software Library v5.0

(FSL; https://fsl.fmrib.ox.ac.uk) (Smith et al. 2004; Woolrich et al. 2009; Jenk-

inson et al. 2012). Preprocessing included the correction for susceptibility distortions, eddy

current distortions and subject movement artefacts using TOPUP (https://fsl.fmrib.

ox.ac.uk/fsl/fslwiki/topup) (Andersson et al. 2003) and EDDY (https://fsl.

fmrib.ox.ac.uk/fsl/fslwiki/eddy) (Andersson and Sotiropoulos 2016). A diffu-

sion tensor model was then fitted to the corrected DWI data using FDT (https://fsl.

fmrib.ox.ac.uk/fsl/fslwiki/FDT) (Behrens et al. 2003; Behrens et al. 2007) in or-

der to generate individual Fractional Anisotropy (FA) and Mean Diffusivity (MD) maps.

Voxelwise statistical analysis of the FA data was carried out using TBSS (Tract-Based

Spatial Statistics, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS) (Smith et

al. 2006b). In brief, all subjects’ FA and MD images were first brain-extracted using BET

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET) (Smith 2002) and then aligned
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into a common space using the nonlinear registration tool FNIRT (https://fsl.fmrib.

ox.ac.uk/fsl/fslwiki/FNIRT) (Andersson et al. 2007). Next, the mean FA image was

created and thinned to create a mean FA skeleton, which represents the centres of all tracts com-

mon to the group. Each subject’s aligned FA data was then perpendicularly projected onto this

skeleton for statistical analysis. The same procedure was applied to MD data. Visual observa-

tion of the raw DWI data and skeletonised FA and MD maps revealed unreliable measurements

in the temporal lobes due to large signal dropouts. Therefore, voxels from the temporal lobes

were excluded from further statistical analysis.

The significance of the association between individual differences in weight of the fast and

slow systems and white matter microstructure (FA and MD) was tested using Permutation Anal-

ysis of Linear Models (PALM) (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM;

version alpha-109) (Winkler et al. 2014; Winkler et al. 2016). The advantage of this technique

is that it allows carrying out voxelwise joint inference on FA and MD using a full nonpara-

metric permutation testing and Fisher combination to calculate Family-Wise Error (FWE)-

corrected significance level. Results were considered significant for p < 0.05 after FWE

2D threshold-free cluster extent correction and correction across contrasts. The location of

significant clusters was determined using the JHU DTI-based white matter atlases (https:

//fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases) (Mori et al. 2005).

Resting state functional MRI

Analysis of resting state fMRI data was carried out using an independent component analysis

(ICA) approach as implemented in MELODIC (https://fsl.fmrib.ox.ac.uk/fsl/

fslwiki/MELODIC) (Beckmann et al. 2005) and tools from FSL (Smith et al. 2004). The

first 5 volumes of each fMRI scan were discarded to allow for T1 equilibration effects. Standard
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pre-processing steps were applied, which included motion correction (MCFLIRT) (Jenkinson

et al. 2002), brain extraction (BET) (Jenkinson et al. 2005), B0 unwarping (FUGUE), spatial

smoothing using a Gaussian kernel of full-width at half- maximum (FWHM) of 5 mm, and

high-pass temporal filtering equivalent to 100 s. fMRI volumes were registered to the indi-

vidual’s structural scan using boundary-based registration (BBR) (Greve and Fischl 2009) and

then to standard space images using FNIRT (Andersson et al. 2007). Individual fMRI data

were denoised using FIX (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIX, ver-

sion v1.065 beta) trained on a subset of 24 scans taken from our dataset (Griffanti et al. 2014).

Pre-processed functional data containing 280 volumes for each time point (4 time points per

subject: pre/post, real/sham a-tDCS) and each subject (n = 22; Table 1) were temporally con-

catenated across subjects to create a single 4D data set that was decomposed into 25 components

using ICA (Stagg et al. 2014; Bachtiar et al. 2015). All components were manually screened

and non-physiological components were discarded. Informed decision was based on thresh-

olded spatial maps (Z > 4, regional loci outside reasonable areas), as well as Fourier frequency

decomposition of the components’ time courses (shift toward high frequencies) (Beckmann et

al. 2005; Griffanti et al. 2014). In total, 13 components were kept (Figure 8). They included 3

“visual” networks (maps 125, 225 and 325), the default-mode network (map 425), an “auditory”

network (map 525), a “cerebellar” network (map 625), an “insular” network (map 725), an “ex-

ecutive control” network (map 825), 2 “frontoparietal” networks (maps map 925 and 1025) and 3

“sensorimotor” networks (maps 1125, 1225 and 1325). The 3 sensorimotor networks reflected the

somatotopic organisation of the primary sensorimotor cortices and superior cerebellum, with a

predominantly leg (medial), face (inferior) and hand (lateral) component (maps 1125, 1225 and

1325 respectively; Figure 8) (Van Den Heuvel et al. 2010).
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RSN 125 RSN 225 RSN 325 RSN 425 RSN 525 RSN 625

RSN 725 RSN 825 RSN 925 RSN 1025 RSN 1125 RSN 1225

RSN 1325

Figure 8: Thirteen resting-state networks extracted from the 25-component analysis.
All ICA spatial maps were converted to z-statistic images via a normalised mixture-model
fit and thresholded at Z > 4. The resting state network highlighted in a red square (RSN
1325) is the “hand” sensorimotor network and lies underneath the anode electrode.

Next, we estimated individual component spatial maps and corresponding time series for

each subject and time point using dual regression (https://fsl.fmrib.ox.ac.uk/

fsl/fslwiki/DualRegression) (Beckmann et al. 2009; Filippini et al. 2009). Net-

work modelling was then carried out using the FSLnets toolbox (https://fsl.fmrib.

ox.ac.uk/fsl/fslwiki/FSLNets) (Smith et al. 2015). Netmats were estimated using

partial temporal correlations between components’ time series, with a small amount of L2 reg-

ularisation (ρ = 0.1 in the Ridge regression netmats option in FSLnets, i.e. netmats5). Pearson

correlation coefficients were converted into Z-statistics with Fisher’s transformation before sta-
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tistical analysis. The relationship between our computational parameters of interest (weights

of the fast and slow systems) and the degree of functional connectivity between RSNs was in-

vestigated within a GLM framework. In order to minimise multiple comparisons, only edges

involving the “hand” sensorimotor component (map 1325) were included in the analysis. Non

parametric testing was used using PALM (Winkler et al. 2014; Winkler et al. 2016) with cor-

rection across contrasts.
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Appendix

Statistical analysis of motor behaviour during and after prism adaptation

The online and offline experiments aimed to replicate the finding that left M1 a-tDCS would

enhance AE consolidation when applied during but not before PA. A group of 24 participants

underwent PA and tDCS in a repeated measures design, in 4 separate sessions, at least 1 week

apart, in which they received anodal or sham tDCS either before or during PA. RM ANOVA

considered the within-subjects of tDCS (anodal versus sham) and block separately for each ex-

perimental condition (online and offline).

• Prism exposure (Blocks E1-7)

Accuracy on CLP improved progressively as adaptation developed in the online (Blocks

E1-7: F (3.24, 74.44) = 132.24, p < 10−3; Figure 9A) and offline (Blocks E1-7: F (1.61, 2.21) =

89.51, p < 10−3; Figure 9B) experiments. No other effects were significant, indicating

that neither online nor offline a-tDCS significantly influenced block mean pointing accu-
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Figure 9: Behavioural effect of left M1 a-tDCS. The x-axis represents trial number and
the y-axis pointing accuracy in reference to baseline accuracy (i.e. change from baseline).
Positive values represent a rightward shift and negative values leftward shift. Pointing
accuracy in healthy volunteers (n = 24) is plotted (group mean ± 1 SEM) when anodal
(red) or sham (blue) was applied to the left M1 during PA (A) or before PA (B). Black
wedges indicate blocks throughout which prisms were worn (CLP trials). During prism
exposure (E1-7), participants saw the outcome of each trial, so they could gradually correct
their errors. The AE was measured without visual feedback (AE1-7, shaded light grey).
Similar to previous report (O’Shea et al. 2017), relative to sham, anodal tDCS increased
prism AE at retention when applied during (p = 0.02, Cohen′sd = 0.46) but not before
(p = 0.64). Asterisk indicates significant difference between the anodal and sham online
condition (p < 0.05).

• Adaptation phase (Blocks AE1-7) Interleaved with exposure blocks, prism AE was mea-

sured as adaptation developed. Prism AEs stabilised progressively over time in both
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the online (Blocks AE1-7: F (3.95, 90.78) = 11.07, p < 10−3; Figure 9A) and offline

(Blocks AE1-7: F (3.324, 76.456) = 15.408, p < 10−3; Figure 9B) experiments. How-

ever, no other effects were significant, indicating that neither online nor offline a-tDCS

significantly influenced motor behaviour on OLP during the adaptation.

• Retention phase (Blocks AE8-10) Following PA and a 10 min rest period, AE was as-

sessed. For the online experiment, a RM ANOVA with within-subjects factors of tDCS

(anodal vs. sham) and blocks (AE8-10) confirmed the prediction of enhanced AE mag-

nitude (main effect of tDCS: F (1, 23) = 4.38, p = 0.02, 1-tail, mean difference = -1.10

degrees, SEM = 0.53, Cohen’s d = 0.46; Figure 9A). As expected, this effect was not

found in the offline experiment (F (1, 23) = 0.22, p = 0.64, 2-tail, mean difference =

-0.294 degrees, SEM = 0.6221; Figure 9B).

Statistical analysis of the neurochemical effect of left M1 a-tDCS

RM ANOVAs considered the within-subject factors of time (pre vs. post tDCS) and tDCS

(anodal vs. sham) separately for each metabolite to evaluate the neurochemical effect of the

stimulation. At the group level, a-tDCS did not affect GABA (F (1, 15) = 1.10, p = 0.31),

glutamate (F (1, 19) = 2.31, p = 0.15) or Glu:GABA (F (1, 15) = 0.25, p = 0.62) levels, as

illustrated by no interaction 'time × tDCS' (Figure 10). In other words, at the group level, we

found no evidence for the previously reported reduction in GABAergic inhibition with a-tDCS

(Stagg et al. 2009; Bachtiar et al. 2015; Antonenko et al. 2017). Nevertheless, the neurochem-

ical response to a-tDCS showed large inter-individual variability, which enabled us to address

our question of interest: whether individuals with larger a-tDCS-induced increase in E:I ratio

would also show larger increase in Rw when a-tDCS is applied during PA (results reported

above).
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Figure 10: No group mean effect of stimulation on metabolite concentrations. Bar
graphs represent the GABA:tCr ratio (A) and Glu:tCr ratio (B) within the MRS voxel be-
fore and after real (in red) or sham (in blue) left M1 a-tDCS inside the scanner. Individual
participants are represented as lines overlaid on the bar graphs. Only individuals with com-
plete dataset (i.e. satisfactory data quality for all 4 time points; see Table 1) are represented.
RM ANOVAs revealed no significant interaction 'time × tDCS' for either metabolite (both
p > 0.15). Note, however, the large inter-individual variability in neurochemical response
to a-tDCS, exploited in Figure 4B.

Statistical analysis of the a-tDCS effect on resting-state networks

Informed by the baseline relationship between ws and functional connectivity between the

“hand” sensorimotor RSN and right frontoparietal RSN (edge 1325-925), we asked whether the

strength of this edge was influenced by M1 a-tDCS in the scanner. Repeated measure ANOVA

revealed a main effect of scanning session (F (1, 21) = 5.70, p = 0.03) but no main effect of

time (F (1, 21) = 0.10, p = 0.76) or interaction 'time × stimulation' (F (1, 21) = 0.55, p =

0.47). Additionally, inter-individual variations in the a-tDCS change in the edge 1325-925 did

not co-vary with inter-individual changes in ws (r = 0.08, p = 0.74, while controlling for the

fast system). These null-results provide further support for the cognitive state dependency of

the a-tDCS effect. The effect of a-tDCS on the functional coupling between the two networks is

likely to require engaging individuals in the PA task, which was not the case inside the scanner.
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A previous study reported increased functional connectivity within M1 with M1 a-tDCS

(Bachtiar et al. 2015). In an attempt to replicate this result, we centred a 9 × 9 × 9 mm3

region of interest (ROI) on the peak coordinates of the “hand” sensorimotor RSN within the

left M1 (x = -37, y = -24, z = 62; Z = 9.4) and extracted the mean network strength for each

subject, stimulation condition, and time point. Unlike in Bachtiar et al. (2015)’s study, repeated

measures ANOVA showed no significant main effect of stimulation (F (1, 21) = 0.39, p =

0.54) or time (F (1, 21) = 1.10, p = 0.31) and no significant stimulation x time interaction

(F (1, 21) = 0.04, p = 0.84).
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