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Abstract 
Recent advances have enabled gene expression profiling of single cells at lower cost. As more 

data is produced there is an increasing need to integrate diverse datasets and better analyse 

underutilised data to gain biological insights. However, analysis of single cell RNA-seq data is 

challenging due to biological and technical noise which not only varies between laboratories but 

also between batches. Here for the first time, we apply a new generative deep learning 

approach called Generative Adversarial Networks (GAN) to biological data. We show that it is 

possible to integrate diverse skin (epidermal) datasets and in doing so, our generative model is 

able to simulate realistic scRNA-seq data that covers the full diversity of cell types. In contrast to 

many machine-learning approaches, we are able to interpret internal parameters in a 

biologically meaningful manner. These include using internal GAN learned features for improved 

dimensionality reduction. Using our generative model we are able to obtain a universal 

representation of epidermal differentiation and use this to predict the effect of cell state 

perturbations on gene expression at high time-resolution. We show that our trained neural 

networks identify biological state-determining genes and through analysis of these networks we 

can obtain inferred gene regulatory relationships. In combination these attributes provide a 

powerful framework to progress the analysis of scRNA-seq data beyond exploratory analysis of 

cell clusters and towards integration of multiple datasets regardless of origin.       
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1. Introduction 
The development of affordable single cell RNA-seq has enabled the measurement of transcript 

abundance in hundreds to thousands of individual cells1–3. These profiles provide an opportunity 

to define cell state and indirectly measure the signals and factors influencing cell fate. However, 

despite the richness of single cell measurements, these data are computationally challenging to 

analyse due to technical and biological noise meaning that traditional bulk expression analysis 

approaches are frequently not applicable. Current single cell RNA-seq dimensionality reduction 

methods can  successfully reveal clustering and structure within data when technical noise is 

low; however, they cannot easily integrate diverse datasets produced using distinct protocols4–6. 

Furthermore, current approaches focus on differential expression and marker gene identification 

but do not yield functional gene regulatory relationships. 

 

Deep learning algorithms enabled by advances in computational power have demonstrated the 

capability to analyse diverse datasets from images to genomics7,8. In particular, generative 

adversarial networks (GAN), first introduced in 2014, have shown promise in the field of 

computer vision9. Since their introduction, GANs have become an active area of research with 

multiple variants developed that have resulted in improved performance and training10–14. 

Common to all of these variants15 is the concurrent training of two neural networks competing 

against one another, referred to as the generator and discriminator (Figure 1). The generator is 

tasked with generating simulated data, whereas the discriminator is tasked with evaluating 

whether data is authentic or not. Notably, only the discriminator directly observes real data while 

the generator improves its simulations through interaction with the discriminator. As training 

progresses both neural networks learn key features of the training data. Additionally, both 

discriminator and generator performance improves as they compete against each other.  

 

In the field of computer vision, GANs have proved capable of generating visually convincing and 

novel images such as faces or furniture16,17. Furthermore, it has been shown that the generator 

network learns a meaningful latent space where visually similar data such as similar faces are 

clustered. A meaningful latent space for single cell RNA-seq is particularly appealing as this can 

be used in conjunction with existing dimensionality reduction methods for improved and more 

meaningful subpopulation extraction. Additionally, an advantageous feature of generative neural 

networks is that non-linear relationships between features of the data are learned through 

training and can be later extracted to provide further insights. 

 

Here, we integrate disparate epidermal datasets produced by three separate laboratories. The 

mammalian epidermis comprises interfollicular epidermis (IFE), hair follicles, sebaceous glands 

and further associated adnexal structures: together they form a protective interface between the 

body and external environment. Hence, epidermal cell fate is determined through the integration 

of extracellular cues with transcriptional activity18,19. Under steady-state conditions, each 

epidermal compartment is maintained by distinct stem cell populations. However, under certain 

conditions such as wounding, each stem cell subpopulation is able  to contribute to all 

differentiated lineages20. These distinct yet seemingly interchangeable subpopulations hint at a 

common, but as yet undefined epidermal gene regulatory network.  For the first time, we have 

applied GANs to genomic data  to uncover previously unknown gene regulatory relationships 
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and regulators of epidermal cell state. We show that GANs produce biologically meaningful 

dimensionality reduction and using the trained generator neural network we demonstrate that 

GANs can be used to predict the effect of cell state perturbations on unseen single cells. 

 

2. Results 
 
2.1 Generative adversarial networks integrate diverse datasets 
We used  a generative adversarial network (GAN) to integrate multiple diverse mouse epidermal 

single cell RNA-seq datasets. These datasets originated from three labs, spanning mouse 

epidermal cells in vitro21, whole epidermis in vivo22 and isolated subpopulations in vivo23 (Figure 

1, upper right. See methods for GEO accession numbers). No adjustments were made to 

account for batch-to-batch variations within datasets and across labs. After removing non-

epidermal cell types and outlier cells we retained 1763 cells for training and 500 unseen cells for 

testing and validation. Similarly to other analysis methods, we filtered genes by expression 

level, resulting in 6605 potentially informative genes (see methods).  

 

GANs consist of two neural networks competing against each other. The generator is tasked 

with producing realistic output data from a random input vector ! or latent variable. In our case 

the latent variable ! is of lower dimension (100, arbitrarily chosen) than the output scRNA-seq 

data (6605 genes), hence the generator represents a mapping from a lower dimensional space 

to gene expression space. Each 100-dimensional latent vector maps to 6605 transcripts per 

million (TPM, log(TPM+1)) normalised gene expression values for one cell. The second 

network, named the discriminator, is tasked with discriminating between the real and generated 

data. The discriminator takes log(TPM+1) gene expression values as input and outputs a score 

related to its assessment of the gene expression input. These two networks are trained using a 

combined loss function leading to improved performance of both neural networks (Figure 1).  

 

We tested several variations of GANs ultimately utilising a Wasserstein GAN with added 

gradient penalty term in the loss function as described previously24 due to training stability. We 

trained our neural network for approximately 15,000 epochs per full training run. We evaluated 

the generator network output performance at multiple checkpoints using t-distributed stochastic 

neighbour embedding (t-SNE, Figure 2A) and correlation between real samples and generated 

samples as shown in Supplementary Figure 1. For each evaluation we generated 500 cells 

using 500 random latent variables. Early in training, the GAN struggles to produce a varied 

output representative of the breadth of cell types and states; generated cells are closely 

correlated and form a single cluster in the t-SNE plot (Figure 2A 1000 steps, Supplementary 

Figure S1A). After 5,000 steps the generator begins to produce a varied output with generated 

cells mapping to multiple clusters in the t-SNE plot covering the different cell types, cell states, 

cell origin and experimental batches present in our combined dataset. After 10,000 steps, the 

generator network is capable of producing a subset of cells with similar transcriptomic profiles to 

those of Yang and colleagues that form a distinct cluster. Further GAN training broadens the 

distribution of correlations between generated samples, indicating an increasingly diverse 

generator output (Supplementary Figure S1A). We observed that after 13,000 steps continued 

training does not continue to increase the output diversity of the generator network, as defined 
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by the median distance between cell gene expression profiles. Figure 2B shows that GAN 

output diversity reaches a maximum between 12,500 and 15,000 training steps. Furthermore, 

additional training between 12,500 and 15,000 steps does not change the generated cell 

correlation distribution (Supplementary Figure S1A). At this point the discriminator loss function 

has also converged and therefore we cease further training (Supplementary Figure S2).  

 

We computationally validate our GAN by examining the correlation between generated samples 

and unseen samples (Supplementary Figure S1B). The distributions obtained at different 

training steps show that generated samples are correlated with, but distinct from, real samples. 

At early training steps this distribution is centred around a Pearson correlation of 0.4. After 

10,000 steps this distribution broadens, indicating the generator learns to simulate a diverse 

population of cells. This can also be seen from the expression of individual genes. Figure 2C 

shows single cell expression bar plots for three genes that distinguish subpopulations in our cell 

cohort, Ap1s3, Bcl2 and Nucks1. For each gene we show 500 unseen cells and 500 closely 

related generated cells with an average correlation of 0.71. Our generated cohort follows a 

similar pattern of expression to the real unseen cells, with Ap1s3 and Bcl2 highly expressed in 

differentiating cell types, and Nucks1 expression absent in vitro. In real cells where Ap1s3 or 

Bcl2 are not detected, the corresponding generated cells show low non-zero expression 

indicative of a form of imputation performed by the generator. Across all genes, expression 

variability in the simulated cells is similar to the real data. Together these results demonstrate 

that the generator network is not memorising and reproducing training samples but is instead 

inferring relationships between gene expression values in order to output convincing 

heterogeneous generated cells.  

 

Focusing on the data from Joost and colleagues, the 1422 cells comprise eleven epidermal cell 

types originating from whole dorsal epidermis including previously uncharacterised cells. The 

generator neural network is able to simulate cells clustering with all in vivo epidermal cell types, 

ranging from sebaceous gland cells with distinct gene expression profiles to upper hair follicle 

and interfollicular epidermal cells (IFE) with similar transcriptomes but distinct spatial positions 

(Figure 2D). This range of cell type simulation is achieved despite training the GAN using three 

diverse datasets. 

 

2.2 Discriminator network + t-SNE allows better dimensionality reduction 
We hypothesised that the discriminator network learned biologically relevant features of scRNA-

seq data, discarding uninformative genes in order to  discriminate successfully between the 

generated and real samples. The discriminator neural network consists of a single hidden layer 

whose output is transformed to a discriminator or “critic” output value It transforms 6605 gene 

expression values into 200 learned internal features, effectively a reduced dimensional 

representation. Hence, we sought to understand whether the discriminator hidden layer output 

contained learned features that could be used to improve on existing dimensionality reduction.  

We performed t-SNE on the discriminator hidden layer output to visualise these learned features 

(Figure 3A) and compared this with two other approaches.  
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First we performed a principal component analysis (PCA) on the combined epidermal training 

data (Figure 3A, middle column); the main source of linearly separable variance in the first two 

components is the batch effect of dataset origin and laboratory and the approach generally fails 

to identify biologically meaningful clusters even at higher principal components. We removed 

this technical source of variation by subtracting the first two principal components and 

performing a t-SNE on the resulting dataset. The resulting t-SNE (Figure 3A, right column) no 

longer clusters cells by dataset origin, so removing variation caused by different experimental 

protocols, at the cost of concurrently removing informative biological variation in gene 

expression.  

 

Two major sources of variation in epidermal cells are their differentiation status and spatial 

position within the epidermis: a useful dimensionality reduction approach should capture at least 

one of these features, ideally both. To investigate this we overlaid expression of Krt14, a marker 

of undifferentiated keratinocytes, Krt10 a marker of commitment to differentiation and Rps29, a 

ubiquitously expressed ribosomal protein upregulated in the IFE in comparison to hair follicles.  

 

Biologically, we expect cells with similar expression levels of these marker genes to cluster. 

PCA and the combined approach of PC removal + t-SNE perform poorly in this regard and 

expression of all three markers fails to distinguish cells across the dimensionally reduced space 

(Figure 3 middle and right column). In contrast, our GANt-SNE approach clusters Krt14high cells 

deriving from the basal layer of the IFE (Figure 3B, Basal IFE) which are separated from the 

remaining IFE cells. A third cluster of hair follicle cells shows sporadic expression of Krt14 as 

this is not a functional marker for these cells. Our dimensionality reduction separates 

differentiated IFE cells highly expressing Krt10 from terminally differentiated and keratinized 

Krt10low cells (Figure 3C). Furthermore, GANt-SNE correctly separates IFE-derived cells from 

hair follicle cells as seen by Rps29 expression (Figure 3D). These biological distinctions are not 

identified by the two alternative methods of dimensionality reduction. 

 

These results lend credence to our hypothesis that the discriminator learns biologically relevant 

features of the data. Using the GANt-SNE approach we successfully separate cells by 

differentiation status and spatial position (IFE vs. hair follicle and differentiating vs. 

undifferentiated). This is achieved without a priori knowledge of technical variation and batch 

effects by training on the commonalities between training data. In contrast the PCA and t-SNE 

approaches fail to separate cells into these biologically meaningful clusters, as they crudely 

extract the strongest sources of variation - often a non-linear mixture of biological and technical 

variation.   

 

2.3 Simulating cellular perturbations using latent space interpolation 
To take advantage of the gene expression rules learned by the generator network we devised 

an algorithm for retrieving the latent space vector ! from an arbitrary gene expression profile " 

such that "	 = 	%(!). For each target cell we randomly sampled latent space vectors (z) and 

generated cells until a sufficiently similar cell is obtained (see methods). In other fields where 

GANs have been applied, such as image generation, the latent space representation of an 

image meaningfully represents visually similar images. Furthermore, vector arithmetic in the 
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latent space leads to meaningful outputs. For example Radford and colleagues10 have shown 

that subtracting the latent space vectors of a face wearing glasses from a face without glasses 

results in a differential vector representing glasses; adding this to a different face outputs a face 

with glasses (i.e.%(!′) produces a person wearing glasses where !′	 = 	 (!)*+,,-, − 	!/0	)*+,,-,) 	+

	!2+3- ).  

 

We hypothesised that latent space arithmetic can be extended to cell types and cell states. To 

investigate this we simulated the process of differentiation at the single cell level using latent 

space arithmetic, as shown in Figure 4A. We sampled 30 terminally differentiated and 

undifferentiated pairs of cells from the unseen pool of cells in the Joost dataset using the 

original study labels, obtained their latent space vectors !4522-6-/75+7-4 and !8+,+* and calculated 

the difference between these vectors  9 = !4522-6-/75+7-4	 − !8+,+*		. We sampled cells from both 

the interfollicular epidermis and hair follicles in order to obtain a universal differentiation latent 

vector. Unseen cells were used to demonstrate that the generator’s learned latent space could 

generalise to previously unseen gene expression profiles.  We then added 9, the latent space 

differentiation vector, to an unseen undifferentiated cell and interpolated 1000 timepoints 

between the undifferentiated latent space point and the simulated differentiation latent space 

endpoint. We used the generator network to produce gene expression for all 1000 timepoints 

and repeated this process for 30 cells with similar undifferentiated starting profiles. It is 

important to note that only the starting point (the undifferentiated cell gene expression profile) is 

real, whereas the differentiated endpoint and all timepoints in between are generated by the 

neural network. 

 

Figure 4B shows simulated time-series gene expression profiles for a selection of genes. Two 

differentiation markers, Periplakin (Ppl) and Grainyhead-like protein 3 homolog (Grhl3), 

demonstrate the ability of our latent space arithmetic to  simulate successfully simulate 

differentiation of single cells. Over differentiation time points the mean expression level of these 

two markers increases, spanning the expression levels observed in the undifferentiated and 

differentiated subpopulations (B - basal start point, D - differentiated end point median 

expression line). Similar to real scRNA-seq gene expression profiles, the generated time points 

for individual cells display substantial cell-to-cell variation in gene expression over time, with 

cells showing different gene expression curves dependent on initial expression level and cell 

state. Similarly, for basal IFE markers such as the examples in Figure 3B, Integrin-beta 1 (Itgb1) 

and Metallothionein 2A (Mt2) the reduction in expression is successfully captured by the GAN 

latent space interpolation. 

 

Moreover, the expression curve is not necessarily monotonic or linear.  We also observed a 

range of highly non-linear expression profiles such as genes only expressed in early or late 

timepoints (Uxs1), parabola-like expression (Actb, Ube2f) and genes which change in 

expression variation but not mean expression. These non-linear expression profiles 

demonstrate that latent space interpolation produces meaningful gene expression predictions 

based on gene expression interdependencies and does not simply average between gene 

expression profiles.  
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To investigate further the dynamics of gene expression over epidermal differentiation we 

clustered the simulated time-series profiles for all 6605 genes. Using k-means clustering we 

were able to distinguish eight types of dynamic expression profile (Figure 4C). Genes expressed 

early in differentiation were enriched for epidermal stem cell related gene ontology and 

concordantly late-expressed genes were enriched for epidermal differentiation (q-value<0.01 for 

both, Supplementary Figure S3). We focused on four clusters, two corresponding to increasing 

and decreasing expression (Figure 4C, Groups I and II) and two subsets of genes only 

transiently up- or down-regulated during commitment to differentiation (Figure 4C, Group III and 

IV genes). To validate these findings we used a recently published dataset investigating human 

epidermal differentiation25. Mishra and colleagues utilised methylcellulose suspension-induced 

differentiation to obtain temporal differentiation gene expression data from human keratinocytes 

at 0, 4, 8 and 12 hours. A majority of our predicted transiently expressed genes are dynamically 

expressed in this dataset with Groups I and II showing decreasing and increasing bulk 

expression over the differentiation time course (Figure 4D, Group I and II). Focusing on Group 

IV, these 223 genes are of particular biological interest as they are predicted to be transiently 

expressed during commitment to differentiation and are therefore likely to play a functional role 

in this process. From our predicted epidermal commitment genes, this group clusters into three 

subgroups based on bulk peak expression around 0 hours, between 4 and 8 hours, and 12 

hours or later.  We hypothesise that three groups are observed as our simulated differentiation 

assumes a synchronised population of differentiating cells. The asynchronous nature of in vitro 

differentiation and heterogeneous starting population reduces our ability to detect transiently 

expressed and subsequently downregulated genes. From the subgroup with peak expression 

between 4 and 8 hours we identified two protein phosphatases, PTPN1 and PTPN13 which are 

also identified and extensively validated by Mishra and colleagues. This is followed by transient 

MAF expression - a member of the AP1 subfamily of differentiation transcription factors - 

predicted by our latent space interpolation approach and observed in the Mishra dataset along 

with previous studies26.  

 

In summary, using our generative model we have simulated a perturbation to cell state in the 

form of epidermal differentiation and subsequently obtained high-resolution predicted gene 

expression profiles. Using the generator neural network we have obtained information on 

switch-like expression of genes, an aspect of gene expression which is difficult to infer from 

previous methods of single cell RNA-seq analysis such as pseudotime ordering. Pseudo-

ordering of cells provides an understanding of the sequence of gene expression events,   

however, this can be confounded by highly transient gene expression events which may lead to 

erroneously missing or identifying cell state transitions. In comparison our generative method is 

guided by gene expression rules learned by the GAN, hence producing valid gene expression 

profiles at all timepoints. These results can be extended to any other perturbation captured by 

latent space. 

 

2.4 Discriminator network identifies state-determining gene expression ranges 

As GAN training progresses, the discriminator network learns to identify compatible ranges of 

gene expression levels and interrelationships for all genes. An advantage of our approach is 

that these relationships can be highly non-linear, for example the discriminator can learn gene 
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expression interdependencies which only apply when genes are expressed in a certain range or 

combination. To extract this learned information we performed a sensitivity analysis on the 

discriminator network by taking real gene expression profiles from the unseen cell group and 

varying expression of genes individually from the lowest observed expression level in the cohort 

to the maximum observed expression level. Figure 5A shows the relationship between adjusted 

expression level and change in discriminator network output critic value. This analysis produced 

a sensitivity curve for each gene where absolute sensitivity value indicates a strong change in 

discriminator critic value and the gradient of the sensitivity curve denotes ranges of gene 

expression that the discriminator is sensitive to. For genes with no known role in epidermal cell 

state such as Actb there is little change in sensitivity across all expression levels. In contrast, for 

known markers or determinators of epidermal state, such as Ivl, Krt10, Krt14, Cav2, Brd4 and 

Sox9, there is a strong relationship between expression level and sensitivity. For some genes 

such as Ivl, an IFE differentiation marker, an increase in expression showed increased 

sensitivity, i.e. a greater effect on discriminator critic value. However, for other genes such as 

Krt10 medium levels of transcription resulted in a lower sensitivity than low and high levels 

indicating that for this gene there are two important ranges of transcription. The discriminator 

network identification of Krt10 import expression ranges is supported by strong expression of 

Krt10 in the interfollicular epidermis above the basal layer and subsequent downregulation in 

terminally differentiating cells22. Krt10 misexpression has been shown to cause epidermal 

barrier defects27,28. Furthermore, a cellular need for binary expression of Krt10 is clear as the 

protein constitutes approximately 40% of all cellular proteins in the suprabasal layer of the 

epidermis29,30. 

 

We sought to compare the relative importance of genes in determining cell transcriptional state 

across all epidermal cell types. Sensitivity varies non-linearly with expression level, hence, to 

compare all genes we calculated the maximum gradient of the sensitivity curve for each gene 

(Figure 5B). This metric is an indication there is at least one range of expression levels which 

has a large effect on discriminator network output. Strikingly, the top 100 genes identified are 

highly enriched for known epidermal regulators and comprise both low and highly expressed 

genes (Figure 5C). Amongst the top 10 are three keratin genes with spatially-restricted 

expression; Krt6a (inner bulge), Krt10 (suprabasal IFE) and Krt14 (basal IFE). Our analysis 

predicted Lars2 expression as one of the most important indicators of pan-epidermal cell state. 

Lars2 is a mitochondrial leucyl-tRNA synthetase and is upregulated during differentiation as 

seen by our differentiation predictions (Supplementary Figure S4) and from the Joost dataset22. 

Considering these analyses we hypothesise that Lars2 is one of the key regulators of cell 

metabolic considerations during differentiation. This sensitivity analysis approach enables 

identification of state-regulating genes without bias for transcript abundance. 

 

2.5 GAN-derived gene association networks predict Gata6 targets 

Finally we examined the internal features of the generator network to extract gene expression 

interdependencies to complement our sensitivity analysis ranking of state-determining genes by 

providing context on how these genes are coregulated. The final layer of the generator network 

non-linearly transforms an arbitrary number of internal features to the final 6605 gene 

expression values using a leaky rectified linear unit activation function. We found empirically 
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that 600 internal features produced stable and diverse generator output, representing a 

maximum of 600 features that, when non-linearly combined, produce each gene expression 

output value. Since these internal features are an order of magnitude fewer than the number of 

gene expression values, the generator network is forced to learn the most salient relationships 

between genes in order to produce a convincing output. Hence, genes with correlated generator 

final layer values are predicted to correspond to co-regulated genes. This is distinct from 

correlation analysis of gene expression, which infers linear and directly correlated regulation.  

 

We visualised the correlation of the final layer weights for the 600 features between all genes 

using a force directed network (Figure 5D, middle network) and also examined the structure and 

clustering of the genes using a hierarchically clustered heatmap (Supplementary Figure S5). On 

a macroscopic scale genes are segregated by their overall positive or negative effect on gene 

expression. On a local scale the majority of genes cluster into small groups of between 10 and 

50 closely associated genes. We used these local gene association networks to examine Lars2, 

a gene predicted from our analysis to be highly important for epidermal cell state. Lars2 is a 

mitochondrial leucyl-tRNA synthetase and our analysis shows it to be a member of an extremely 

closely regulated group of ribosomal and translation related genes. We also examined the local 

gene association networks for three known epidermal regulators examined in our previous 

sensitivity analysis Krt14, Itga6 and Ivl. Itga6 and Krt14 are both known basal IFE markers; the 

local network for these genes highlights the power of our machine learning approach to identify 

coregulated genes. Several known basal IFE regulators are present both local networks, such 

as Krt5, Krt14, Itga3, Cav2 and Col17a1. We observed a similar pattern of enriched associated 

genes for Ivl, an IFE differentiation marker which is co-associated with several other 

differentiation genes and Rps29 a marker of IFE-derived cells which is exclusively associated 

with ribosomal genes in our local networks. Furthermore, the local network for Notch ligand 

Jag2 contains several hair follicle bulge and basal IFE regulators, corresponding to its role in 

these epidermal locations31. Strikingly, Wnt3 is present in this local network indicative of Wnt-

Notch signaling interplay32,33, which cannot be seen at the RNA level using conventional gene 

expression analysis. These co-regulated epidermal genes are robustly identified despite little 

correlation of expression in the scRNA-seq data.  

 

Finally, in order to explore the predictive power of our neural network approach we derived the 

local gene association network for the GATA-binding factor 6 transcription factor, GATA6 

(Figure 5E). We predicted that as a transcription factor, the GATA6 network would contain many 

genes which are directly regulated by GATA6. Hence, we hypothesised that genes in the 

network with a positive final layer correlation should be upregulated in GATA6+ cells. Using a 

previous dataset from the lab, we contrasted bulk gene expression of GATA6+ and GATA6- cells 

derived from the junctional zone and sebaceous duct of the epidermis (Figure 5F)34. Figure 4G 

shows the log fold-change distribution of genes between the GATA6+/GATA6- subpopulations. 

Genes derived from our GATA6 gene regulatory network show significantly higher expression in 

the GATA6+ cells when compared to all other genes (p < 0.05, Kolmogorov-Smirnov test). 

Taken together these results suggest GANs are capable of elucidating complex gene 

interrelationships beyond the limits of linear correlation analyses.  
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3. Discussion 
We have addressed a major goal of single cell gene expression analysis; the desire to obtain 

functional gene relationships and a predictive model of transcriptional state in single cells. This 

serves as a framework for understanding cell fate transitions, disease-causing perturbations and 

state-determining genes across tissue types.  

 

Here we demonstrate the effectiveness of a new deep learning approach in integrating multiple 

gene expression datasets, despite no prior adjustment for technical and batch-to-batch 

variation. To the best of our knowledge, this is the first time GANs have been applied to 

genomic data. Our approach of combining data from cells in different environments with diverse 

technical and biological noise allows robust inference of gene associations intrinsic to epidermal 

cells rather than experimental conditions. We focused on skin due to the wealth of knowledge 

available regarding subpopulations and cell state. However, our generative model can be 

extended to integrate cells from multiple tissues and we anticipate this will advance our 

understanding  of gene expression relationships across tissues. 

 

Currently, our analysis is constrained by available data. As further scRNA-seq data becomes 

available, particularly through large scale projects such as the Human Cell Atlas35 we envisage 

that GANs will be a viable strategy to analyse all human cell types en masse. In our study we 

have shown that a relatively small dataset of under 2000 cells is sufficient to uncover state-

determining genes and gene expression networks in the epidermis. GANs applied to a greater 

dataset covering multiple tissues could be used to resolve organism-wide gene expression 

relationships and to predict previously unseen cell state transitions. 

 

4. Methods 
 

Datasets and data preparation 
All datasets analysed in this study are publicly available under the GEO accessions GSE90848, 

GSE67602 and GSE99989. We combined these three datasets using transcripts per million 

(TPM) normalisation and removed labelled non-epithelial cells from the Joost dataset. Data was 

filtered for: cells with more than 1000 genes detected log2(TPM+1)  > 1 and genes expressed in 

more than 500 cells at log2(TPM+1)  > 1. All neural network input data was log2(TPM+1) and the 

combined dataset is available as a CSV matrix at https://github.com/luslab/scRNAseq-WGAN-

GP/tree/master/data. 

 

Tools and code availability 
Data preparation was performed using R. Gene ontology enrichment was evaluated using 

enrichR36. All other analysis and implementation of the generative adversarial networks was 

performed using Python (numpy, sklearn and networkx). We used Google’s Tensorflow37 deep 

learning framework to implement, train and monitor our neural networks. We have provided a 

Jupyter Notebook containing our implementation of the generative adversarial network available 

at https://github.com/luslab/scRNAseq-WGAN-GP. 

 

Generative adversarial network algorithm 
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We adapted our generative adversarial network algorithm from four previous works9,10,13,24. Both 

generator and discriminators are fully connected neural networks with one hidden layer. We 

used a Leaky Rectified Linear Unit (LReLU) as the activation function for both networks using a 

coefficient of 0.2.  

 

The generator input consists of a 100-dimensional latent variable (z) and a hidden layer size of 

600 fully connected units. In order to reduce training time and data required for the generator 

network to simulate the Poisson distributed nature of scRNA-seq count data we trained the 

generator network using an additive Poisson and Gaussian distributed latent variable where 

!	 = 	:(; = 0, > = 0.1	 ∗ BC") 	+ 	D(E = 1). Generator output is a 6605 dimensional vector 

representing the 6605 genes in the training cohort. 

 

The discriminator network input is a 6605 dimensional vector (gene expression profile) and has 

a hidden layer size of 200 fully connected units. The final layer of the discriminator does not 

apply an activation function, in line with other Wasserstein GANs using a gradient penalty loss 

function. 

 

We used backpropagation and RMSProp to train the two neural networks (learning rate of 5e-5) 

and a batch size of 32 cells. Additionally, data were augmented during training by randomly 

permuting the expression of 10 genes expressed at log2(TPM+1) < 3. We used several loss 

functions during this study before finalising on using the Wasserstein-GAN (WGAN) with 

gradient penalty loss function. WGAN replaces the original GAN where data distributions of 

generated and real data are compared using the Jensen-Shannon divergence for the loss 

function9. In WGANs the loss function is calculated using the Wasserstein distance which gives 

improved training stability13. Gulrajani and colleagues further improved on this variant of GANs 

by eliminating weight-clipping in favor of a gradient penalty in the form of the gradient between 

pairs of real and generated samples24. 

 

The two loss functions to minimise are: 

FG5,365H5/+706 	= I[K(%(!))] 	− 	I[K(")] 	+ 	EI[(||NK("′)||O − 1)
O]   

FP-/-6+706 = 	−I[K(%(!))]	, 
 

where % is the generator network and Kis the discriminator network such that %:	!	 → 	 " , !is the 

generator latent variable, " is a generated gene expression profile, " is a real gene expression 

profile and "′ is uniformly sampled between pairs of generated and real gene expression 

profiles. 

 

Convergence of the loss function is not sufficient to evaluate completed training of GANs. For 

each timepoint we evaluated the diversity of cells produced by the generator by simulating 500 

cells and calculating the median distance (Pearson), i.e. median cell-cell distance.  

 

For a list of GAN parameters used see Supplementary Table 2. 

 

Dimensionality reduction and clustering 
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We evaluated clustering and structure of real and generated single cell RNA-seq profiles in 

three ways 1) PCA (principal component analysis), 2) t-distributed stochastic neighbour 

embedding (t-SNE) on data with the top two principal components removed. 3) t-SNE on the 

hidden layer output values of the discriminator network. For all t-SNEs we used a default 

perplexity parameter of 30. 

 

Simulated time-series gene expression profiles were clustered by k-means clustering with 20 

expected clusters. Clustered dynamic gene expression profiles were subsequently visualised 

and two pairs of clusters were manually merged where they were deemed to be visually similar. 

 

Latent space mapping and interpolation 
Terminally differentiated cells and basal IFE cells were sampled from the combined dataset on 

using labels from the original studies. In order to generate corresponding latent space variable 

!8+,+* and !4522-6-/75+7-4 for cells "8+,+* and "4522-6-/75+7-4 we randomly generated cell 

expression profiles until the correlation between " and the generated cell %(!)reached a 

threshold of 0.7. Figure S1B shows that a correlation of 0.7 between two cells is rare, hence, we 

assume that this threshold is sufficient to generate a gene expression profile representative of 

the original cell state. We next calculated the difference between the basal and differentiated 

cell in latent space i.e. 9 = !8+,+* − !4522-6-/75+7-4		. This latent space representation of 

differentiation was used to simulate differentiation on a further unseen cell where we obtained 

!S/,--/and calculated a predicted terminally differentiated latent space point 

!S/,--/	4522-6-/75+7-4 = 	 !S/,--/ + 9. To obtain simulated gene expression time series data we 

interpolated 1000 points between !S/,--/and !S/,--/	4522-6-/75+7-4and generated 1000 

intermediate gene expression profiles from these. 

 

Discriminator network sensitivity analysis 
Contribution of genes to output and sensitivity of the discriminator network was performed by 

taking unseen cells and varying the output of each gene between the minimum and maximum 

observed across all cells. For important genes this results in a change of the discriminator 

output K("T)where "Tis a perturbed gene expression profile. We performed 100 linearly 

interpolated perturbations. Sensitivity curves were calculated by taking the mean normalised 

K("T)at each expression level as unseen cells have can differ in their baseline or unperturbed 

discriminator score K("). Max sensitivity gradient (see Figure 5B) was calculated by taking the 

absolute value of maximum gradient of these curves. 

 

Local gene association networks 
Gene co-regulatory relationships were inferred by analysing the weights of the generator neural 

network final layer. The Pearson correlation matrix of the final layer was used as a network 

adjacency matrix. To construct association networks for a gene we selected all local genes with 

a final layer correlation > 0.5 and retained any connections within the local network also with 

final layer correlation > 0.5. 
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Figure 1. Overview of single cell RNA-seq analysis with generative adversarial networks  
Generative adversarial networks consist of two neural networks concurrently training whilst 

competing against one another. These networks referred to as the generator and discriminator 

networks each have a distinct task. The generator is tasked with generating data by 

transforming a 100-dimensional latent variable into a single cell gene expression profile. In turn 

the discriminator is tasked with evaluating whether data is authentic or generated. Only the 

discriminator network sees the real single cell RNA-seq data, which have not been corrected for 

batch effects or technical variation. Once trained, we are able to extract biologically meaningful 

information from the generator and discriminator networks such as gene  association networks, 

predict single cell time-courses, important gene expression ranges and biologically meaningful 

dimensionality reduction. Fully connected neurons, FCN. 
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Figure 2. GANs model epidermal single cell gene expression 
a) t-SNE projection of 1763 real training cells, 500 real withheld cells and 500 generated single 

cell expression data: each data point represents a cell and cells with similar expression profiles 

are positioned close together. Generated cells are clustered at the beginning, but with training 

gradually occupy the entire range of expression outputs for different cell types across three 

studies. Cells are visualised at 1000, 5000, 10,000 and 13,000 training steps.  
b) Relationship between GAN training epochs and output diversity as measured by median cell-

cell distance. Blue line is a LOESS regression. The greatest diversity of gene expression is 

achieved between 13,000 and 15,000 steps.  

c) Bar plots showing expression of Ap1s3, Bcl2 and Nucks1 in 500 unseen real cells and 500 

closely related generated cells. Cells are ordered by hierarchical clustering of the unseen real 

cells using all 6605 genes.  

d) t-SNE projection of  subset of real cells from Joost et al. and corresponding generated cells. 

Despite training with a larger and diverse dataset, the GAN captures cell diversity at a detailed 

level described by Joost. Labels show the corresponding cell type for each cluster. Upper hair 

follicle, uHF. Junctional zone, JZ 
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Figure 3. GANt-SNE clusters biologically similar cells 
a) GANt-SNE visualises 2263 real cells by performing t-SNE on 200 features captured by the 

discriminator neural network’s hidden layer. This is compared with principal component analysis 

(PCA) and t-SNE after removal of linear batch effects using PCA (PC removal + t-SNE). PCA is 

heavily affected by batch effect and clusters the three datasets separately. 

b) Keratin-14 expression overlaid onto projections. Krt-14 is a marker for basal interfollicular 

epidermis (IFE). GANt-SNE distinguishes between basal IFE and non-basal IFE cells, whereas 

PCA and PC removal + t-SNE fail to distinguish between these cell types.   

c) Keratin-10 is a marker for differentiation interfollicular epidermis (IFE). . GANt-SNE 

successfully clusters separates supra-basal and terminally differentiated IFEs. 

d) Ribosomal Protein S29 is known to be expressed highly in interfollicular epidermis (IFE) and 

at medium levels in hair follicles (HF). GAN-tSNE successfully distinguishes between these two 

major cell types.  
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Figure 4. Latent space interpolation allows simulation of single cell differentiation 
a) Schematics showing how to simulate differentiation for single cells using latent space 

interpolation. Expression data for pairs of undifferentiated and differentiated cells are 

transformed to their respective latent space vectors (!8+,+*, !4522-6-/75+7-4)) The difference 

between the vectors (δ) represents differentiation in latent space (upper panel). This difference 

vector is then applied to the latent space vector of another unseen cell in order to predict the 

terminally differentiated state (lower panel). We also simulate 1000 differentiation timepoints.  

b) Simulated expression profiles for 6 representative genes in 30 cells over 1000 differentiation 

timepoints. Red lines indicate expression profiles in individual cells and  lack lines provide the  

mean expression over all cells. Dotted lines correspond to the median expression of basal 

undifferentiated (B) and differentiated (D) cells from the Joost dataset. Periplakin ( Ppl) and  

Grainyhead like transcription factor 3 (Grhl3) are known differentiation whose simulations show 

increasing expression. Integrin beta-1 (Itgb1) and Metallothionein 2 (Mt2) are basal IFE marker 

which display gradually decreasing expression Actin beta (Actb) and UDP-Glucuronate 

Decarboxylase 1 (Uxs1) are not traditionally considered to be markers but display non-linear 

expression profiles with substantial cell to cell variability. 

c) K-means clustering of simulated differentiation expression profiles for 6605 genes. We 

identify eight broad types of temporal gene expression, of which four of the dynamic expression 

patterns are labelled Groups I-IV. 

d) Heatmaps showing bulk expression levels of genes in Groups I-IV from Mishra et al. at 0, 4, 8 

and 12 hours of suspension-induced differentiation. Most genes display similar expression 

profiles to the simulations, despite the differences in experimental set ups.  
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Figure 5. Sensitivity analysis identifies state-determining genes and local gene 
association networks  
a) Sensitivity curves for seven known markers for epidermal or determinants of epidermal state: 

Actin beta (Actb), Involucrin(Ivl), Keratin 10 (Krt10), Keratin 14 (Krt14), Caveolin 2 (Cav2), 

Bromodomain-containing protein 4 (Brd4), SRY-Box 9 (Sox9). Some genes such as Ivl an IFE 

differentiation marker display higher sensitivity at increased expression levels whereas others 

display the opposite trend.  

b) Histogram  of maximum sensitivity curve gradients of 6605 genes, with the top eight genes 

labelled; known markers are highlighted in bold. 

c) Gene ontology enrichment for the top 100 genes by maximum sensitivity gradient as scored 

by -log10(p-value). 

d) Network representation of the correlation between discriminator neural network final layer 

values for 6605 genes (centre panel); genes are depicted as nodes and correlations between 

them are shown as edges (threshold final layer correlation: 0.5). Network regions containing 

genes with overall positive and negative effect on other genes are highlighted in red and blue 

respectively. Surrounding local network are local gene association networks for Lars2, Itga6, Ivl, 

Rps29 and Jag2; edges are colored by generator final layer correlation.  

e) Local gene association network for Gata6 displayed as described above.  

f) Heatmap showing differentially expressed gene expression z-scores for Gata6+ and Gata6- 

junctional zone and sebaceous duct cells from Donati et al. 

g) Probability density plot of the log-fold change in gene expression between Gata6+ and Gata6- 

cells for genes in the  predicted GATA6 local association  network (violet) and all other genes 

(grey). Network genes display greater expression changes between Gata6+ and Gata6- cells (p-

value = 1.3e-4). 
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Supplementary Figure S1. GAN training improves expression output diversity  
a) Distribution of pairwise correlation between pairs of real or generated cells after 1000, 5000, 

10,000 and 15,000 training steps. 

b) Distribution of pairwise correlation between pairs of real and generated cells after 1000, 

5000, 10,000 and 15,000 training steps. 
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Supplementary Figure S2. Generator and discriminator network loss curves 
Pink line shows discriminator network loss curve, black line shows generator network loss 

curve. Unlike most neural networks, convergence of loss for GANs is not sufficient to indicate 

that training is complete.  
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Supplementary Figure S3. Gene ontology enrichment for predicted differentiation genes 
Gene ontology enrichment for genes that generally decrease (upper) or increase (lower) over 

differentiation as predicted by latent space interpolation. 
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Supplementary Figure S4. Lars2 expression simulated over differentiation 
Lars2 expression over differentiation for 30 generated single cells. Red lines are 1000 simulated 

differentiation timepoints. Black line represents mean expression over all cells.  
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Supplementary Figure S5.  
Correlation matrix of the generator neural network final layer weights visualised using a 

heatmap (Pearson correlation). 
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Supplementary Figure S6.  
Local gene association networks for Krt14 visualised using a Fruchterman-Reingold force-

directed network. Edges are colored by generator final layer correlation. 

 

Supplementary Table 1. Genes identified by sensitivity analysis. 
List of genes ranked by maximum discriminator network sensitivity gradient. 

Related to Figure 5B 

 

Supplementary Table 2. List of GAN neural network parameters. 
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