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Abstract

Motivation: For Prostate Cancer (PCa) patients, timing and intensity of the therapy is adjusted based on
their prognosis. This can be predicted from clinical/pathological information and, recently, gene expression
signatures. One major challenge in developing such signatures is that all of them are based on cohorts
which have limited number of patients with complete clinical outcomes (labelled), especially for slow
progressing cancers such as PCa. This poses a challenge to the model development in conjunction with
high dimensionality of the transcriptomic data.
Results: In this study we aim to exploit the previously untapped potential of a large cohort (n=15,136)
with genomic data but no clinical outcome (unlabelled), to improve the performance of the genomic
classifiers for predicting PCa metastasis. We propose, Deep Genomic Signature (DGS), based on
Denoising Auto-Encoder (DAE) for feature extraction and selection. In order to capture information from
the unlabelled and labelled data we train two DAEs separately and apply transfer learning to bridge the
gap between them. We show that DGS captures information from these cohorts that can be utilized to
build a logistic regression model to predict metastasis. Results on five validation cohorts indicate that this
classifier, which is based on high weight genes in the DAEs, outperforms state-of-the-art signatures for
metastatic PCa in terms of prediction accuracy. Survival analysis demonstrate the clinical utility of our
signature which adds information to the well-established clinical factors and state-of-the-art signatures.
Furthermore, pathway analysis reveals that the signature discovered by our DGS captures the hallmarks
of PCa metastasis.
Availability of the implemented codes and supplementary materials:
https://github.com/hosseinshn/Deep-Genomic-Signature
Contact: ester@cs.sfu.ca

1 Introduction
Prostate Cancer (PCa) is the most prevalent cancer type among men, where
roughly one in six men will be diagnosed in their lifetime (NIH, 2017). A
majority of detectable PCa is entirely quiescent and can be successfully
managed without intervention. However, a fraction of PCa is aggressive
and responsible for the disease being ranked as the third leading cause of
cancer death among men. This wide range of oncologic outcomes makes
managing patients with PCa challenging and creates a need to stratify
patients into clinically meaningful risk groups. Accurately determining a
patient’s risk of developing metastatic disease (a surrogate for lethal PCa
(Xie et al., 2017)) allows patients with more aggressive forms of PCa to be

provided with more intense therapy and patients with relatively indolent
cancer to avoid the serious side-effects of overtreatment.

Identification of clinically significant and aggressive PCa has been
historically achieved through the interpretation of clinical and pathological
risk factors, such as Prostate-Specific Antigen (PSA) blood concentration,
Gleason Score (GS), and tumor stage. Recently it has been demonstrated
that gene expression patterns within a patient’s tumor can be used to
identify higher risk PCa (Ramaswamy et al., 2003; Penney et al., 2011).
Moreover, genomic signatures built with gene expression have been shown
to add prognostic information over contemporary clinical and pathological
variables (Erho et al., 2013; Karnes et al., 2017).

There are several genomic signatures for PCa. For example, Cuzick
et al. (2011) developed Cell Cycle Proliferation score, based on 31 genes
identified to be predictive of biochemical recurrence and prostate cancer
specific mortality. Penney et al. (2011) developed a 157-gene signature by
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comparing the gene expression profiles of low (≤ 6) GS and high (≥ 8)
GS PCa. They used this signature to build a nearest shrunken centroid
(Tibshirani et al., 2002) classifier to build a parsimonious model for these
two groups and a logistic regression model to predict the lethal cases among
intermediate GS (= 7) tumors using this signature. Erho et al. (2013)
identified a gene expression based signature to predict early metastasis
following radical prostatectomy using a random forest. Moreover, it was
recently demonstrated that gene expression signatures derived from the
stroma or microenvironment of the primary tumor are predictive of the
metastatic progression of PCa as well (Mo et al., 2017; Tyekucheva et al.,
2017).

Because a long follow-up time is needed to determine if a patient
has indolent PCa and high-throughput genomic profiling is costly, all
published prognostic signatures were developed on relatively small
datasets (n ≤ 545). The large number of features (genes) relative to
the small number of observations poses a great challenge to model
development and potentially limits model performance. However, the
rise of high-throughput, commercially available, whole-transcriptome,
clinical testing, such as the Decipher test, is making large amounts of
unlabelled tumor genomic data available without longitudinal outcomes
(clinicaltrials.gov identifier: NCT02609269). We hypothesize that this
large set of unlabelled, high dimensional genomic data can be exploited
along with small well-annotated, labelled datasets from retrospective
research studies to develop a genomic classifier that captures information
that cannot be obtained from the smaller annotated datasets alone and
ultimately outperforms existing prognostic models.

To utilize both the labelled and unlabelled datasets for training a
genomic classifier, information needs to be captured from both the large
unlabelled cohort and the small labelled one. Auto-Encoders (AE), a
type of unsupervised Deep Neural Networks, can be used to reduce the
dimensionality of the unlabelled cohorts, and capture the most salient
features. These learned features are transferable and can be applied
in different settings (Bengio, 2012; Bengio et al., 2012). Information
transferred from a source domain (e.g. a unlabelled cohort) to a target
domain (e.g. a labelled cohort) can be fine-tuned if enough data is available
in the target domain, or can remain frozen and untrainable if the target
domain is rather small (Yosinski et al., 2014). Because of their feature
learning capabilities, AEs have been widely utilized in diverse biological
problems. For instance, Denoising Auto-Encoders (DAE) has been used to
obtain complex patterns from gene expression profiles in breast cancer (Tan
et al., 2015). Similarly, Stacked Denoising Auto-Encoders have been used
to obtain functional features from breast cancer gene expression profiles
(Danaee et al., 2016). Therefore, using AE can be a viable solution to
address our hypothesis. A more detailed review of AE and its strength is
provided in Section 2.1.

We propose to utilize DAE to extract the most salient features from a
large unlabelled cohort. These salient features are transferred in the form
of weights, biases, and activation function to the first layer of another DAE,
trained on a smaller labelled dataset. During training of the second DAE,
the transferred parameters in the first layer are fixed and only parameters of
the other layer are trained. Finally, a logistic regression model is built based
on the informative genes selected from the second DAE via a standard
deviation filter on the obtained weights of this DAE. Since this classifier
has both l1 and l2 penalties, only a subset of the genes have non-zero
coefficients. We propose these genes with non-zero coefficients as a novel
signature for PCa metastasis.

Our contributions: To the best of our knowledge, this is the first study
of deep transfer learning from a large unlabelled cohort without clinical
outcomes to a small labelled cohort with clinical outcomes in the context of
cancer research. We propose the Deep Genomic Signature (DGS) method
based on two Denoising Auto-Encoders (DAEs), one for the labelled cohort
and the other one for the unlabelled cohort. Learned parameters from the

first DAE are transferred to the second DAE. High weight genes from
the second DAE are used as features of a logistic regression classifier
to predict metastasis. The final outcome of DGS is the set of features
(genes) with non-zero coefficients which is used as a genomic signature
for PCa metastasis prognosis. We applied DGS to six labelled datasets
from retrospective research studies and one large unlabelled dataset
obtained from the Decipher test of GenomeDx Biosciences Laboratory.
We compared the accuracy of the signature discovered by DGS against
that of the state-of-the-art signatures for PCa metastasis and showed that
our signature significantly outperforms the existing signatures in terms of
Area Under the receiver operating characteristic Curve (AUC). Further,
we performed Uni/Multivariable Analyses and found that our signature
adds novel prognostic information to well-established clinical risk factors
and the state-of-the-art signatures (separately and combined). Finally,
we performed Gene Set Enrichment Analysis (GSEA) and showed that
our signature is highly relevant to metastasis and PCa biology. These
experimental findings confirmed that our proposed DGS method succeeds
in transferring relevant information from the unlabelled cohort to the
labelled ones.

2 Materials and methods
the proposed DGS method consists of four steps: 1) Similar to the methods
of (Danaee et al., 2016; Tan et al., 2015, 2016, 2017), a DAE is trained with
a large unlabelled gene expression dataset to extract salient features. The
output of this step is the learned parameters to be transferred to the next
DAE. 2) in this step another DAE is trained with relatively small labelled
dataset. This DAE has the transferred parameters from the previous step.
Since it is very difficult to retrain those transferred parameters because
of the small size of this labelled dataset, these transferred parameters are
not trainable and stay fixed. The other parameters are trained. We adopted
this method of transfer learning from (Yosinski et al., 2014). Transferring
parameters from the first DAE trained with the unlabelled data to the second
DAE trained with the labelled data is the core of our DGS model. 3) After
training the second DAE, genes with high weights in this DAE are selected
based on a standard deviation filter on their connectivity weights. This
selection approach is similar to (Danaee et al., 2016; Tan et al., 2015,
2016, 2017; Way and Greene, 2018). The idea of this gene selection step
is to provide the classifier with a few rich genes with the strongest signals
based on both the labelled and unlabelled datasets. 4)The selected genes
from the previous step are used to train a classifier on the labelled dataset to
predict metastasis. After training the classifier, those genes with non-zero
coefficients are considered as the signature for PCa metastasis.

2.1 Background

In the past decade, Deep Learning proved to be significantly beneficial for
unstructured problems such as audio/image processing, machine vision,
and natural language processing (Goodfellow et al., 2016). Deep Learning
also has found its role in biological challenges such as regulatory genomics,
cellular imaging (Angermueller et al., 2016), Gene expression inference
(Chen et al., 2016), and sequence analysis (Alipanahi et al., 2015; Zhou and
Troyanskaya, 2015). The art of Deep Learning is to extract higher levels of
abstraction or build more complex representations based on simpler ones.
For example, in object recognition task first layers of the network only
detect edges and contour-like shapes based on the output of the previous
layers in a hierarchical order (Goodfellow et al., 2016).

AEs are a type of the unsupervised deep networks which are designed
to reduce the dimensionality of the data by learning the most salient
features of it. An AE has two major components: an encoder which is
capable of learning a latent space from the input data, and a decoder,
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which can generate (reconstruct) an output vector similar to the input from
the latent representation. Usually, an AE is constructed as a feed forward
neural network and parameters e.g. connectivity weights between layers
are optimized via backpropagation similar to the ordinary deep networks.
The latent space usually has lower dimensionality than the input, so it
captures most salient features from the input space. The ultimate goal of
an AE is to generate an output identical to the input, but this task is required
to take place first by obtaining and extracting informative features and then
accurately decoding and reconstituting the input data from them rather than
just learning an identity matrix and copying the input (Goodfellow et al.,
2016). There are various types of AE including DAE (Vincent et al., 2010),
Sparse Auto-Encoder (Ng, 2011), Contractive Auto-Encoder (Rifai et al.,
2011), Variational Auto-Encoder (VAE) (Kingma and Welling, 2013), and
Adversarial Auto-Encoder (AAE) (Makhzani et al., 2015).

Due to their feature learning capabilities, AEs have been widely
utilized in diverse biological challenges. For instance, DAE was applied
in the Analysis Using Denoising Auto-Encoders of Gene Expression
(ADAGE) method on compendium of Pseudomonas aeruginosa gene
expression profiling experiments to identify biological patterns (Tan
et al., 2016). Further, in order to enhance robustness and generate
better signatures (more consistent with biological pathways), an ensemble
version of ADAGE (eADAGE) was developed that integrated stable
signatures across models (Tan et al., 2017). Deep Patient, an unsupervised
deep feature learning method based on Stacked DAE, was developed to
predict future of patients with different cancers from Electronic Health
Records data (Miotto et al., 2016). VAE and AAE were also successfully
utilized in designing new molecules with desired properties for drug
discovery purposes (Gómez-Bombarelli et al., 2016; Kadurin et al., 2017).
Moreover, VAE was also able to capture patterns in the gene expression
pan-cancer data for specific tissues (Way and Greene, 2018).

Therefore, Deep Learning in general and AEs specifically, have been
proved to be effective in extracting salient features, circumventing curse
of dimentionality, and dealing with uncertainty in the input data without
considering known biological knowledge.

We present DGS model in Section 2.2 and 2.3. Section 2.4 describes
selection of high weight genes for classification. The datasets and statistical
methods used for model training and evaluation are described in Section 2.5
and 2.6. Figure 1 illustrates the general idea of the DGS method.

2.2 Prospective Auto-Encoder

We denote the first DAE as the Prospective Auto-Encoder (PAE) because
it is trained with the unlabelled data (prospectively collected). Since gene
expression data is generally corrupted with noise, a DAE is a natural choice
to deal with this issue and also it is a way to avoid over-fitting. PAE has
three main components: 1) an encoder F (.), 2) a decoder G (.), and 3) a
cost function J(.). ForM patients,N features (i.e. genes) and P nodes in
the hidden layer: the encoder receives the input datax ∈ <N , and encodes
it to a hidden representation in lower dimensions h ∈ <P via a weight
matrix W ∈ <N×P and a bias vector b ∈ <P×1:

Fθ(x)Pro = σPro(xPro ∗WPro + bPro), (1)

where x ∈ <N is the corrupted version of input data x obtained from
a corruption process like x̄ = q(x), i.e., x̄ = x ∗ z and z is a binary
variable from a binomial distribution. σ(.) is the activation function like
the Sigmoid or Relu functions. Decoder is another mapping function which
maps back this hidden code or representation to the original input space:

Gθ(h)Pro = σPro(hPro ∗WT
Pro + bPro). (2)

Finally, the following cost function measures the discrepancy between the
reconstructed version and the original input:

J (θ)Pro =
∑
t
q(x

(t)
Pro )

[
LMSE(x

(t)
Pro,Gθ(Fθ(x

(t)
Pro)))

]
, (3)

where, "Pro" indicates the unlabelled cohort indexing, x(t) denotes
the input vector for sample t, q(x(t)) denotes the expectation over the
corrupted observation x via the corruption process q, and LMSE(.) is the
Mean Squared Error loss function. PAE is Denoising, which means the
expression values for some randomly selected patients are changed to zero,
therefore, PAE has to learn how to deal with this intentionally added noise
in the corruption process as well. (.)T is the transpose operator because
we used tied weights. Therefore, the set of parameters of the PAE to be
optimized is θPro = {WPro, bPro}.

2.3 Retrospective Auto-Encoder

We denote the second DAE as the Retrospective Auto-Encoder (RAE)
because it is trained with the labelled data (retrospective studies). RAE has
two main differences comparing to the previous one, the first difference
is the structure because it has two hidden layers. Second, parameters of
the first layer i.e., weights and bias are not initialized randomly, these
parameters are transferred along with the activation function from the PAE.
These parameters are not trainable and stay frozen during training of the
RAE with the labelled data because number of samples in the labelled data
is not sufficient to train both of the layers. Therefore, the first layer stays
fixed, and only parameters of the second layer are trained:

Fθ(x)Ret = σRet(σPro(xRet ∗WPro + bPro) ∗WRet + bRet), (4)

Gθ(h)Ret = σPro(σRet(hRet ∗WT
Ret + bRet) ∗WPro + bPro), (5)

JRet(θ) =
∑
t
q(x

(t)
Ret )

[
LMSE(x

(t)
Ret ,Gθ(Fθ(x

(t)
Ret )))

]
, (6)

where, descriptions of symbols are the same as the previous one, and
"Ret" denotes labelled cohort indexing. The set of parameters for the RAE
is θRet = {WRet, bRet,WPro, bPro}.

All codes for the PAE and the RAE are implemented by TensorFlow
framework in Python 2.

2.4 Gene Selection and Building Classifier

A gene is considered to be a Deep High Weight (DHW) gene, if the value
of its connectivity weight falls into the tails of the distribution of the input
weights of a node in the second hidden layer. This selection is based on a
standard deviation filter on those weights and regardless of their sign. After
training the RAE with the labelled data, we have two weight matrices. The
first weight matrix is obtained from training the PAE with the unlabelled
data and the second one is obtained by training the RAE with the labelled
data, here we denote them WPro ∈ <N×P and WRet ∈ <P×Q for
learned weights by PAE and RAE respectively. Q is the number of nodes
in the second hidden layer of the RAE. We define WFinal ∈ <N×Q, as
a result of matrix product as follows:

WFinal = WPro ∗WRet, (7)

In WFinal each gene has a vector of size Q which shows how strongly
it is connecting/contributing to a node in the hidden layer. The standard
deviation filter is applied on this matrix. In another words, only those genes
that are in certain distance from the mean of the distribution of nodes in the
hidden layer are considered to be DHW. Some of the DHW genes might
be irrelevant to metastasis because their selection is unsupervised.
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After selection of DHW genes, they will be the input of a regularized
logistic regression in order to build the classifier to predict the desired
phenotype i.e. metastasis. Signature obtained by our DGS method is a set of
genes with non-zero coefficients in this classifier. Training and parameter
tuning of this model is implemented in R 3.4.

2.5 Datasets

A total of 16,838 de-identified and anonymized radical prostatectomy
tumor expression profiles using the Human Exon 1.0 ST microarray
(ThermoFisher, Carlsbad, CA) were retrieved from the Decipher GRID.
This included expression data from six published retrospective cohorts
(n=1,702) with complete treatment and long-term outcomes data (we
referred to them as the labelled datasets) and 1 prospective cohort (n =
15,136) with baseline pathological information only (we referred to it as
the unlabelled dataset). labelled cohorts are as follows: Mayo I and II
(GSE46691 and GSE62116) (Nakagawa et al., 2008; Erho et al., 2013;
Karnes et al., 2017); CCF (GSE62667) (Prensner et al., 2014; Klein
et al., 2015); JHMI (GSE79957 and GSE79956) (Ross et al., 2016);
TJU (GSE72291) (Den et al., 2014); MetaSet (Spratt et al., 2017)1. The
characteristics of these labelled datasets are brought in Table S1 in the
Supplementary Materials. The unlabelled cohort was from clinical use
of the Decipher test (GenomeDx Biosciences Laboratory, San Diego,
CA; clinicaltrials.gov identifier: NCT02609269). The microarrays were
normalized using Single Channel Array Normalization (SCAN) algorithm
and summarized by gene annotation (Piccolo et al., 2012). The normalized
expression data had 46,050 features which we reduced to 13,856 via a
standard deviation filter (sd > 0.11) to remove features with low levels of
detection and signal.

2.6 Clinical and Biological Evaluation

We evaluate performance of DGS against five competitor methods:
(Cuzick et al., 2011), (Penney et al., 2011), (Erho et al., 2013), (Mo et al.,
2017), and (Tyekucheva et al., 2017). Area Under the receiver operating
characteristic Curve (AUC), with the Delong method (DeLong et al., 1988;
Robin et al., 2011) for confidence interval calculation, was used to compare
the genomic signature’s ability to predict metastasis in five validation
datasets. We further assess the clinical utility of our signature with survival
analyses on a large multi-institutional cohort (MetaSet). Similarly, both
univariable and multivariable (UVA and MVA) Cox proportional hazard
models with mixed effects (CoxPHME) (Therneau et al., 2003) are used to
assess the association of the signature obtained by the DGS method with
the time to metastasis. Here the mixed effect models are chosen to account
for variation of underlying hazard functions and referral patterns across
different institutions.

In order to demonstrate the independent prognostic power for the
obtained signature, we adjusted for the common clinical variables that
have shown to be prognostic in PCa in the MVA. In addition, we run
multivariable CoxPHME with the signature obtained by DGS adjusting
for one or more competitor methods. We divide the prediction scores from
all five competitor models2 as well as our DGS by 0.1, such that the
reported Hazard Ratio (HR) should be interpreted for each 10% increase
in the predictor score.

We studied co-expression network of the entire DHW genes to find
correlated modules and their associations to PCa. We calculated correlation
among the DHW genes in the unlabelled dataset and selected interactions
with greater than 0.5 correlation.

1 A subset of patients in this cohort were included in Mayo II, JHMI, TJU
cohorts.
2 prediction scores of Penney et al. (2011) and Cuzick et al. (2011) are
scaled to (0, 1) first.

To investigate the pathway and functional enrichment in those
genes that had non-zero coefficients in the classifier, we performed
a hypergeometric test based Gene Set Enrichment Analysis (GSEA)
(https://github.com/raunakms/GSEAFisher). Gene sets of pathways were
obtained from Molecular Signature Database v6.0 (Liberzon et al., 2015).
A cut-off threshold of false discovery rate < 0.01 was used to obtain
the significantly enriched pathways. We selected only gene-sets/pathways
with at least three genes enriched from our query list. Analysis for
biological and clinical evaluation of this signature is performed in RStudio
1.0.143.

3 Results
In this section, first experiments for tuning the hyper-parameters of PAE,
RAE, and the classifier are described. Then, we compared our method
to the state-of-the-art signatures for PCa and interpreted the results.
Finally, biological significance of the signature obtained by DGS method
is discussed. To train the PAE, the RAE, and the classifier, we used the
unlabelled and the Mayo I (one of the labelled datasets) cohorts. The
PAE was trained using the unlabelled cohort, while the RAE and the final
classifier were trained using the Mayo I cohort.

3.1 Experiments

3.1.1 PAE
In order to train the PAE, three randomly selected sample subsets of size
12000, 2570, and 566 were dedicated to train, development, and test
sets, respectively. PAE was trained using the training set, validated on
the development set, and tested with the unseen test set. For the PAE,
we investigated diverse sets of hyper-parameters to determine the size of
hidden layer, learning rate, batch size, corruption rate, number of epochs,
and activation function. Assessing the cost function of the model, and
minimize it using Adagrad optimization method (Duchi et al., 2011), we
selected the following values for the hyper-parameters used in the PAE:
256 nodes in the hidden layer (from a set of 256, 512, 1024, 2048, and
4096); learning rate of 0.05 (from a set of 0.05, 0.01, and 0.1); batch size
of 100 (from a set of 10, 100, 500, and 1000); corruption level of 0.2
(from a set of 0.1, 0.2, 0.3 and 0.5); and number of epoch was set to be
1000 (from a set of 100, 200, 300, 500, and 1000). Finally, the Sigmoid
activation function was used in the PAE from the set of Tanh, Relu, and
Sigmoid activation functions. Obtained costs for train, development, and
test for this DAE are 0.007, 0.008, and 0.008 respectively.

3.1.2 RAE
We used Mayo I cohort for training. A set of 359 randomly selected samples
were dedicated for training, and the rest for development and testing (186
samples) similar to (Erho et al., 2013). We selected the following values for
hyper-parameters of the RAE after tuning: 64 nodes in the second hidden
layer of the RAE (selected from a set of 32, 64, and 128); learning rate of
0.01 (from a set of 0.01, 0.05, and 0.1); batch size of 359 (from a set of
5, 10, 50, 100, and 359); number of epochs of 1000 (from a set of 300,
500, and 1000). Although we examined the same corruption rates as for
the PAE, the input data without noise had the best performance. Activation
function, cost function, and optimizer were also the same as the PAE. Train
and test costs for the RAE are 0.031 and 0.036 respectively.

3.1.3 DHW genes
In order to select DHW genes, we set the threshold to be 3.94 which
means only genes whose weights are 3.94 standard deviations smaller or
greater than the mean (average value of all of the input weights of a node)
are considered as DHW genes. In the previous studies the value of this
threshold for similar purposes was typically set to 2 (Danaee et al., 2016;
Tan et al., 2015, 2016) or 2.5 (Tan et al., 2017; Way and Greene, 2018).
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Fig. 1. Schematic overview of Deep Genomic Signature (A) Training the PAE with the unlabelled data to extract salient features from this cohort. PAE has one hidden layer. (B) Training
the RAE with the labelled data. RAE has two hidden layers and parameters of the first hidden layer, which are transferred from the PAE, remain frozen and only parameters of the second
hidden layer are trainable. (C) Deep High Weight (DHW) genes are selected based on the weights learned by the RAE (section 2.4). DHW genes are in the tails of the weight distribution
of nodes in the second hidden layer of the RAE trained with the labelled data (D) DHW genes are used to train a logistic regression classifier with l1 and l2 penalties to predict metastasis.
The signature is consist of all those genes with non-zero coefficients in this classifier.

However, due to possible different ranges of the weights or normalization,
in our experiment these thresholds were too loose and resulted in too
many features (genes) for a logistic regression classifier and a rather small
training dataset. On the other hand, thresholds of 4 or 5 were too tight
and resulted in a too small subset of genes. We decreased the value of the
threshold by steps of 0.01 starting from 4 and observed the first jump in the
number of DHW genes at 3.94 and set it as our threshold. It is important to
note that this threshold was chosen without considering prior knowledge
about the biology of the selected genes and without training separate
classifiers for the considered thresholds. By applying this threshold, we
obtained 141 DHW genes (Table S2 in the Supplementary Materials). We
further used these genes to build a logistic regression model to predict
metastasis.

3.1.4 Classifier
To study the performance of the selected DHW genes for the prediction of
metastasis, a logistic regression model with l1 and l2 regularization was
built based on Mayo I cohort (with same train and validation split). Results
(training and validation AUCs) for training the classifier are available in
Table S3. Two hyper-parameters γ, the complexity parameter (γ > 0),
and α, the compromise between l2 (α = 0) and l1 (α = 1) penalties
(0 ≤ α ≤ 1), were optimized under cross validation (α = 0.6 and
γ = 0.032). 38 gene features had non-zero coefficients in the logistic
regression model (Table S4). Scores from this model predict the probability
of a PCa patient developing metastasis after surgery.

3.2 Clinical Validation

In order to study the clinical significance of DGS and highlight the unity
of our method over other development methods, we assessed its ability
to predict metastatic PCa when adjusted for established clinicopathologic
risk factors and previously published genomic signatures.

3.2.1 DGS predicts PCa metastasis
In the blinded validation we found that our DGS method is highly
significant for predicting metastatic disease across our five test datasets
(CCF, Mayo II, JHMI, TJU, and MetaSet) with AUCs ranging from 0.67
to 0.83 (Table 1). Our signature outperformed all previously published
signatures in four testing cohorts (CCF, Mayo II, TJU, and MetaSet). Erho
et al. (2013)’s signature was found to be the most predictive classifier in
JHMI. Likewise, Mo et al. (2017)’s signature tied DGS for highest AUC in
Mayo II. Erho et al. (2013)’s signature had the second highest AUC in three
datasets (Mayo II, TJU, and MetaSet). Penney et al. (2011)’s signature was
the second most predictive classifier in JHMI and MetaSet (tied with Erho
et al. (2013)). Mo et al. (2017)’s signature had the second best performance
in one testing dataset (CCF). Penney et al. (2011)’s signature had the
third highest AUC in three datasets (CCF, Mayo II, and TJU). Cuzick
et al. (2011)’s signature had the third highest AUC in MetaSet cohort.
Likewise, our signature was the third most predictive classifier in JHMI
testing dataset.

3.2.2 DGS captures novel information in addition to clinicopatholgic
risk factors alone

In order to evaluate DGS for clinical use, we preformed UVA and MVA
survival analysis in the Metaset against clinical and pathologic risk factors
(Table 2). UVA revealed that, except for surgical margins and PSA, DGS
(HR 1.23, p < 0.001) along with all the clinicopatholgic variables were
significantly associated with metastasis. Likewise, in MVA, when DGS
is adjusted for the same clinicopathologic variables, DGS still remains
significantly associated with metastasis (HR of 1.14, p-value<0.001). This
indicates that DGS captures additional information for prognosis beyond
these standard clinicopatholgic risk factors.
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Table 1. Comparison of signatures based on AUC (with confidence interval) of prediction of metastasis on independent cohorts.

Study/Dataset CCF Mayo II JHMI TJU MetaSet

(Penney et al., 2011) 0.80 (0.74-0.87) 0.71 (0.65-0.78) 0.72 (0.65-0.78) 0.68 (0.53-0.83) 0.70 (0.65-0.76)
(Cuzick et al., 2011) 0.73 (0.65-0.81) 0.64 (0.57-0.72) 0.63 (0.55-0.70) 0.67 (0.51-0.82) 0.67 (0.60-0.73)
(Erho et al., 2013) 0.78 (0.70-0.85) 0.74 (0.67-0.81) 0.73 (0.67-0.79) 0.74 (0.61-0.87) 0.70 (0.64-0.76)
(Mo et al., 2017) 0.81 (0.74-0.88) 0.79 (0.73-0.85) 0.58 (0.51-0.66) 0.59 (0.35-0.83) 0.65 (0.59-0.72)
(Tyekucheva et al., 2017) 0.71 (0.62-0.79) 0.64 (0.56-0.71) 0.63 (0.56-0.70) 0.55 (0.39-0.72) 0.58 (0.51-0.64)
DGS 0.83 (0.76-0.89) 0.79 (0.73-0.85) 0.67 (0.61-0.74) 0.79 (0.69-0.88) 0.73 (0.68-0.79)

All methods are trained on Mayo I; boldface indicates the best method of that corresponding dataset; underline indicates the second best method(s) for that dataset, the third
best method(s) are indicated in italic form.

Table 2. UVA and MVA Cox Model with random effects on the MetaSet.

Variable UHR P-value AHR P-value

Age 0.97 (0.94-0.99) 0.020* 0.96 (0.93-0.99) 0.007*
PSA 1.23 (0.99-1.52) 0.065 1.02 (0.80-1.29) 0.89
GS 4.73 (2.76-8.10) <0.001* 3.31 (1.88-5.81) <0.001
EPE 3.86 (2.23-6.68) <0.001* 1.90 (1.02-3.52) 0.042*
SM 1.61 (0.99-2.62) 0.055 1.39 (0.86-2.26) 0.179
SVI 3.21 (2.06-5.00) <0.001* 1.78 (1.10-2.90) 0.020*
LNI 4.65 (2.71-8.00) <0.001* 2.19 (1.21-3.95) 0.009*
DGS 1.23 (1.14-1.32) <0.001* 1.14 (1.05-1.22) <0.001*

UHR: Unadjusted Hazard Ratio; AHR: Adjusted Hazard Ratio;
*:statistically significant; PSA: log2 transformed PSA level; GS:
pathological Gleason group (binarized by group 3, 4, and 5 against 1 and 2);
EPE: extent of extracapsular extension; SM: surgical margin; SVI: semivacal
invasion; LNI: lymph node invasion; .

Table 3. MVA adjusting other competitors as well as
clinical variables on Meta Set.

Method AHR P-value

Erho et al. (2013) 1.21 (1.06-1.38) 0.006
DGS 1.09 (1.00-1.18) 0.039*
Penney et al. (2011) 1.42 (1.22-1.65) <0.001*
DGS 1.14 (1.06-1.23) <0.001*
Cuzick et al. (2011) 1.09 (0.95-1.25) 0.235
DGS 1.10 (1.01-1.20) 0.024*
Tyekucheva et al. (2017) 0.99 (0.89-1.10) 0.825
DGS 1.14 (1.05-1.23) <0.001*
Mo et al. (2017) 1.04 (0.98-1.11) 0.178
DGS 1.12 (1.04-1.21) 0.004*

AHR: Adjusted Hazard Ratio; *: statistically significant.

3.2.3 DGS contains novel information not captured by other
prognostic models

We also performed multivariable survival analysis of DGS with each of
the previously published prognostic genomic signatures. When assessed
against these five genomic signatures individually, DGS was found to be
significant and hence containing independent information not captured by
the previously published signatures (Table 3). In order to determine if DGS
captured novel prognostic information beyond what was captured by the
previously published signatures in combination, we performed a single
MVA of DGS adjusting for all published genomic signatures (6 variables
in total). Here we found that again DGS remained significant indicating it
captures information that no other signature has captured (Table 4).

Table 4. DGS MVA analysis adjusting for 5 published
genomic signatures.

Methods AHR P-value

Erho et al. (2013) 1.16 (1.01-1.33) 0.040*
Cuzick et al. (2011) 1.35 (1.16-1.57) <0.001*
Penney et al. (2011) 1.16 (1.00-1.34) 0.048*
Mo et al. (2017) 1.04 (0.97-1.10) 0.261
Tyekucheva et al. (2017) 1.00 (0.91-1.11) 0.951
DGS 1.10 (1.01-1.20) 0.031*

AHR: Adjusted Hazard Ratio; (.): Confidence Interval; *:
statistically significant

3.3 Biological Evaluation

In addition to providing evidence for the clinical significance of the
signature obtained by the DGS method, we evaluated the DHW genes
and the final signature to demonstrate that our method was able to
select genes which drive PCa disease progression. we explored the co-
expression network among the entire 141 DHW genes. Co-expression
network analysis showed that these DHW genes fall into 6 highly correlated
modules with distinct distribution and distinct biology (Figure 2- part
A). The modules are capturing key molecular pathways involved in PCa
progression and metastasis including AR-signaling, cell adhesion, ERG-
fusion, and prostate specific antigen processing. ERG-fusion is the most
common genomic event in PCa that occurs in about 40% of patients. Cell
adhesion is a key molecular event that is associated with metastasis in
several solid tumors including PCa; loss of expression of cell adhesion
genes leads to increased potential of cell invasion and metastasis. This
suggest that even DHW genes in DGS method represent the underlying
biology of aggressive PCa.

We used GSEA to capture the signaling pathways dysregulated by
the 38-gene signature with non-zero coefficients (Figure 2- part B). We
obtained pathways such as Muscle Contraction (p = 7x10-8) and Actin-
Cytoskeleton Regulation (p = 6x10-5) as our top-hits. These pathways are
critical for the migration of metastatic initiating cells from the primary
site of the tumor to the circulatory system invading the stroma (Yamazaki
et al., 2005; Pollard and Cooper, 2009). this 38-gene signature was also
enriched for Androgen Response pathway (p = 4x10-5) which is critical for
PCa progression (Chen et al., 2017). We also studied Kaplan-Meier (KM)
survival analysis for the DGS model score. KM curve by tertiles in MetaSet
(the independent large multi-institutional cohort) demonstrated that the
DGS can successfully distinguish primary PCa tumors with metastatic
potential from indolent ones (Figure 2- part C).
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Fig. 2. Biological validation and evaluation of the DHW genes and the signature obtained by DGS method (A) Co-expression modules for 141 DHW genes which shows DAE is capturing
different distinct biology related to PCa. (B) GSEA for those genes with non-zero coefficients in the classifier (K, R, and H denotes KEGG, REACTOME, and Hallmarks resources
respectively). (C) KM curve for DGS signature which indicates it can successfully distinguish indolent tumors from metastatic ones.

4 Discussion
In this paper, we investigated the problem of signature discovery for PCa
metastasis and addressed the challenge of small training datasets with
clinical outcomes (labelled). We proposed to extract knowledge from a
large unlabelled cohort with DAE. This information was used to extract
DHW genes to build an accurate logistic regression model to predict
metastasis. We found a novel signature based on those genes that had non-
zero coefficients in this classifier. To our knowledge, this is the first study
of the applicability of information from an unlabelled cohort to predict a
phenotype (metastasis) in cancer research.

The prognostic capability of the discovered signature by DGS method
was successfully validated in five independent cohorts involving a total of
1,157 patients and showed superior performance compared to the state-
of-the-art signatures for PCa metastasis. More importantly, the signature
obtained by our DGS provided independent prognostic information in
addition to the clinical variables. Moreover, our signature also provided
novel information to each and all of the state-of-the-art signatures
(separately and combined) according to MVA. This observation was
indicative of effectiveness of the proposed gene signature for prognostic
purposes.

Characterizing the selected DHW genes (extracted from the DAEs) and
those genes that had non-zero coefficients (in the classifier) revealed several
interesting biological events. First, the RAE captured highly correlated

gene modules that were related to the metastatic potential of PCa. Each of
these modules represented unique distribution that was representative of a
molecular pathway. More importantly, the signature obtained by our DGS
method showed enriched pathways highly relevant to PCa metastasis and
also revealed novel genes (e.g PGM5P4-AS1) that have not been associated
with PCa metastasis and thus require further experimental validation.

In addition to the proposed DGS method, we experimented with several
other alternative methods based on DAEs. For example, we attempted
building a classifier based on the hidden representation of the RAE (hRet).
To our surprise, this model was not able to predict metastasis accurately
(AUC=0.64 on the Mayo I test set instead of 0.72 of the current model).
From the computational point of view, one possible explanation is that the
hidden representation had not converged to a stable state. We argue that if
this was the case, we would not have been able to build an accurate logistic
regression model based on DHW genes which are essentially extreme cases
in capturing factors of variation. We also built another logistic regression
classifier based on high weight genes obtained from the PAE (the first
DAE trained with the unlabelled data) and its performance was still fairly
competitive. Another explanation is that using the RAE deludes salient
features extracted from the unlabelled data. We analyzed this by building
two logistic classifiers based on hidden representations of the PAE (hPro)
and the RAE (hRet) separately and observed an increment in AUC (from
0.60 in the PAE to 0.64 in the RAE). This observation indicated that
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the RAE made the hidden representation more suitable for prediction
of metastasis. We believe the explanation for the poor performance of
the classifier based on hidden representation was that the generic learned
factors of variation by DAEs were associated with some other unobserved
phenotype(s) (not metastasis). In the abstract hidden representation level,
signals which were associated with metastasis were deluded with strong
factors of variation associated with that unobserved phenotype(s). On the
other hand, this delusion was less severe at the input (genes) level because
we only focused on those genes that had high weights and were more
distinguished than the others. These genes captured most of the factors of
variation in both of the unlabelled and labelled cohorts with less delusion
by the other genes.

5 Conclusion
In this paper, we proposed the Deep Genomic Signature (DGS) method
for transferring knowledge from an unlabelled cohort to a labelled one in
order to build an accurate prognostic model in PCa to predict metastasis.
DGS consisted of four steps: training a DAE for the unlabelled cohort,
training a DAE for the labelled cohort, DHW genes selection from the
second DAE, and training a classifier with those selected DHW genes. We
showed that 141 DHW genes in the second DAE are carrying significant
amount of information that can be used to train a logistic regression model
to predict PCa metastasis. after training the classifier in the last step, 38
genes ended up with non-zero coefficients and were considered as a new
signature for PCa metastasis. This signature was successfully validated
on five independent cohorts and demonstrated superior performance and
outperformed state-of-the-art signatures for metastatic PCa in terms of the
prediction accuracy (AUC). We further analyzed and interpreted clinical
and biological significance of our signature and found mounting amount
of evidence that this 38-gene signature for PCa metastasis can provide
patient management valuable information.

In further studies we aim to explore the use of both supervised
and unsupervised deep transfer learning in PCa and integrate multiple
types of biological information to further improve PCa patient metastasis
prediction.
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