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The global efforts towards the creation of a 
molecular census of the brain using single-cell 
transcriptomics is generating a large catalog 

of molecularly defined cell types lacking spatial 
information. Thus, new methods are needed to map a 
large number of cell-specific markers simultaneously 
on large tissue areas. Here, we developed a cyclic 
single molecule fluorescence in situ hybridization 
methodology and defined the cellular organization of 
the somatosensory cortex using markers identified by 
single-cell transcriptomics.

Recent increase in single-cell RNA sequencing (scRNA-seq) 
throughput and sensitivity have stimulated efforts to unravel 
the molecular characteristics of the cell types that form the 
nervous system. Large-scale efforts are underway with the 
measurement of millions of single cell transcriptomes leading 
to the identification of large numbers of molecularly-defined 
cell types. However, even though scRNA-seq data can provide 
information on the cell type composition of a tissue, it lacks 
the spatial information required for the reconstruction of tissue 
architecture at a cellular level. Combinatorial sets of tens to 
hundreds of marker genes can be used to distinguish cell types, 
but methods are needed that can detect such marker sets in brain 
tissue with high sensitivity, accuracy and throughput.

Although methods to detect RNA and protein in situ have been 
a mainstay of biology for decades, classical methods such as 
in situ hybridization and immunofluorescence are only semi-
quantitative and do not afford high levels of multiplexing. 
By resolving individual mRNA molecules, it is possible to 
greatly improve sensitivity and quantitative accuracy, as well 
as to increase multiplexing1. Expressed RNA can be mapped 
in cells or tissue sections by in situ sequencing2–5, or by single 
molecule fluorescence in situ hybridization (smFISH)6–8. 
smFISH not only has the advantage of nearly 100% RNA 
detection efficiency9–11, but also can be multiplexed by both 
spatial and temporal barcoding6,7,12. However, marker gene 
selection in multiplexed smFISH methods is limited by 
either, optical crowding, where signal dots start to overlap, or 
transcript length, so that biologically relevant marker genes 
cannot always be targeted, therefore restricting the mapping of 
scRNA-seq defined cell types6,8. We decided to overcome these 
limitations by developing a non-barcoded and unamplified 
cyclic smFISH method (osmFISH) in which the number of 
targets scales linearly. Although this targeted approach limits 
the total number of genes that can be analysed, osmFISH has a 

wide dynamic range in detection of gene expression allowing 
large freedom in marker selection, benefiting the biological 
interpretation. In osmFISH each RNA molecule is visualized 
as a diffraction limited spot after the binding of 20 nt long 
fluorescently labelled DNA probes10,11. Multiple transcripts are 
targeted at each round of hybridization, separated by fluorescent 
color. After image acquisition, the detection probes are removed 
by formamide melting in preparation for the next round of 
hybridization (Supplementary Fig. 1a). Thus, the number of 
targets equals the number of fluorescence channels times the 
number of hybridization cycles (here, 3×13). Importantly, 
since no barcoding is used, each image can be fully analyzed 
separately, and highly expressed genes (where spots are difficult 
to resolve) do not affect the detection of lower-expressed genes. 
This provides the freedom to design optimal probe sets without 
strong constraints on expression levels.

osmFISH is characterized by a short hybridization time (2-4 
hours), achieved through a heat shock to make the RNA more 
accessible, and high signal-to-noise ratio due to background 
reduction by tissue clearing. Furthermore, in order to maintain 
tissue integrity and RNA stability for experiments lasting 
multiple weeks, we implemented a method to covalently 
bind the brain sections to the coverslip. Additionally, to 
increase throughput and reduce human errors, we developed 
a semi-automated system in which the sample is positioned 
in a custom-made aluminium frame that fits up to 6 individual 
hybridization/imaging chambers and the reagents are dispensed 
by a computer-controlled fluidic system (Supplementary Fig. 
1b-e) resulting in a staining protocol of 8 hours with minimal 
hands-on time. Finally, the key challenge for the application 
of smFISH based transcriptomics to biological questions, is 
processing the large, multi-terabyte, image datasets to obtain 
spatial single-cell gene expression profiles. Here we present a 
complete image analysis pipeline that we developed to process 
these large datasets, that is fully automated, efficient and easy 
to use, enabling the systematic analysis of spatial patterns at all 
scales.

As a first application, we used osmFISH to build an atlas of 
the mouse somatosensory cortex. To determine the identity 
of the cells in the tissue section, we selected 33 marker genes 
from a previously published scRNA-seq dataset of mouse 
somatosensory cortex13,14 (Fig. 1b, Supplementary Table 
1). The markers were selected according to specificity and 
expression level in order to map all major cell types and most 
subtypes in 13 osmFISH cycles (Supplementary Table 2). A 
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Figure 1 | visualization of gene expression in the somatosensory cortex by osmFISH. (a) Image composite of 33 
target genes. RNA molecules are visualized as dots of different colors according to gene. The combination of high-res-
olution imaging and large area coverage exposes both the structure of the tissue such as white matter (WM, II) and 
ventricle (III) and the fine RNA subcellular organization in different cell types (I). The white lines overlaid on the RNA 
images represent the segmented cells (II-III). The asterisk marks the region imaged after stripping and the dashed lines 
highlight the layers of the cortex, white matter and CA1 region of the hippocampus. (b) Heatmap of the markers gene 
expression level and the corresponding scRNA-seq clusters
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3.8 mm2 tissue region including part of mouse somatosensory 
cortex, hippocampus and ventricle (Supplementary Fig. 2) was 
imaged in five fluorescence channels with 220 fields of view 
and 43-level Z stacks using an 100X objective to maximize 
the optical space. Imaging was the time limiting step, lasting 
around 14 hours per cycle. By optimizing the wash cycle, 
we achieved satisfactory stability of the RNA over the two-
week long experiment (5.3±6.9% RNA molecules lost/cycle, 
Supplementary Fig. 3,4).

A total of 1,976,659 RNA molecules were identified using the 
highly parallelised custom open source analysis pipeline (Fig. 
1a, Supplementary Fig 5). The analysis pipeline ingests raw 
images, automatically stitches them, aligns the hybridization 
rounds and locates the RNA molecules. Cells were identified 
by segmentation of total mRNA visualized by a probe targeting 
poly(A) tails (Supplementary Fig 6). Single-cell expression 
profiles were obtained by counting RNA molecules in segmented 
cell bodies. The output is a matrix of counts similar to scRNA-
seq data with the addition of the spatial coordinates of each 
cell and every RNA molecule mapped in the tissue section. 
The resulting dataset comprised 4839 cells. Molecule counts 
across cells were less sparse than the corresponding scRNA-seq 
data, showing only 30% zeros compared to 82% for scRNA-
seq data13. Although the absolute number of zero measurements 
will depend strongly on the specific gene set, the comparative 
result indicates that osmFISH is substantially more sensitive 
than scRNA-seq. This was confirmed by the fact that osmFISH 
detected an average of 10.2±10.9 times more molecules per cell 
for the same set of genes analyzed13 (Supplementary Fig. 3b).

Spatially resolved data (e.g. osmFISH) and scRNA-seq data 
can be aligned either by probabilistic cell type calling using the 
scRNA-seq clusters as ground-truth reference, or by separately 
clustering the osmFISH expression profiles and then aligning the 
resulting clusters with those obtained by scRNA-seq. Because of 
the higher sensitivity and low dropouts of smFISH compared to 
scRNA-seq we choose to independently cluster osmFISH data 
in order to allow for de-novo discovery of cell types. We used 
a custom iterative clustering method (see Methods) to identify 
a total of 31 distinct clusters, most of which correlated clearly 
with a counterpart in the scRNA-seq defined cell types (Fig 2 
A-D, Supplementary Fig. 3c). We observed astrocyte subtypes, 
microglia, choroid plexus epithelial cells, ependymal, pericytes, 
perivascular macrophages (PVM), vascular smooth muscle 
(VSM) and endothelial cells, as well as all types that form the 
oligodendrocyte lineage, including oligodendrocyte precursor 
cells (OPC), differentiation-committed oligodendrocyte 
precursors (COP), newly formed (NF), myelin forming (MF) 
and mature oligodendrocytes13,14 (Fig. 2a,c).

Neurons constitute 59% of our dataset and were subdivided into 
seven inhibitory (16%) and nine excitatory types (43%). The 
excitatory neurons followed the expected spatial positioning in 
the layered structure of the cortex, confirming the robustness 
of our clustering approach (Fig. 2a,c, Supplementary Fig. 8). 
Noteworthy, we were able to identify layer 5 excitatory neurons 
without including a specific marker in the osmFISH but using 
the expression of the pan-excitatory marker Tbr1 and the 
absence of layer specific markers together with their anatomical 
location. However, two types of excitatory neurons showed 
novel characteristics. First, even though the cells of the Py 
L2/3 L5 cluster were identified by a high level of expression of 
Lamp5 in layers 2/3, they were also found in layer 5, suggesting 

a multi-layer specificity for this cell type, or that our probe 
set could not fully detect the heterogeneity in this population 
(Supplementary Fig. 8aI). Second, the cells of cluster Py L3/4, 
were identified by joint expression of layer 2/3 and layer 4 
markers (Lamp5 and Rorb, respectively). Interestingly, the cells 
were positioned at the interface between layer 2/3 and layer 4 
suggesting the presence of a transition region between the two 
layers (Supplementary Fig. 8aII).

Even though we were not able to fully resolve all the inhibitory 
neurons subclasses because of limited coverage of our selected 
markers, we found five known cortical subtypes characterized 
by the expression of a single gene or a combination of 
multiple markers (Fig. 2a-c). We also identified two additional 
inhibitory neuron types that were not present in the scRNA-
seq data (Inhib IC and Inhib CP) and showed a poorly defined 
expression profile but a distinct spatial localization in the 
internal capsule (Inhib IC) and the caudoputamen (Inhib CP) 
(Supplementary Fig. 8b). This demonstrate the power of using 
the spatial information inherent to osmFISH in improving the 
interpretation of expression profiles.

The knowledge of the cell types and their exact position 
in the tissue can be used for automatic, unbiased and data-
driven construction of tissue atlases. Classically, anatomical 
atlases are manually annotated based on cell morphology, cell 
densities, low-throughput immunohistochemistry and in situ 
hybridization. Because of the low throughput of these techniques, 
multiple consecutive sections need to be processed in order to 
chart the regions that form the tissue. Using an iterative graph-
based algorithm that we developed to find anatomical regions 
by determining the spatially dominating cell types on a single 
section, we show that osmFISH can be used to automatically 
delineate the regions of the tissue (Fig. 2e and Supplementary 
Fig. 9). Furthermore, because the cell types were mapped on 
the same single tissue section, osmFISH data also revealed the 
spatial relationships between the cell types that define the tissue 
architecture. For example, measuring the average distance 
between cells of the same type showed high spatial self-affinity 
of ependymal cells and region-specific cell types, and spatial 
self-avoidance of inhibitory neurons, microglia and astrocytes 
(Fig. 2f diagonal). Comparing instead cells of different types, 
we found strikingly that endothelial cells (i.e. blood vessels) 
were located in close proximity (64.7±9.5 μm) to all other cell 
types (Fig. 2f). Thus, the ability to map the full complexity of 
the tissue in the same section enables the study of the spatial 
relationships between all cell types, that work in concert to give 
rise to tissue function.

While previously published protocols have focused on 
increasing the number of genes targeted using multiplexed 
smFISH techniques6,8, most commonly in cultured cells, here 
we focused on the complementary challenge of processing large 
tissue areas by reducing tissue background and building image-
processing tools to handle large image datasets. Furthermore, 
with the goal of building cell type atlases, osmFISH offers 
high dynamic range of detectable gene expression levels, 
and freedom from the interference between genes commonly 
observed in barcoded methods. As a result, osmFISH permits 
more freedom in marker selection from scRNA-seq reference 
datasets facilitating cell type identification, and the resulting 
data can be used for systematic analysis of wide-area gene 
expression and cell type distribution. The ability to map the 
expression level of a large number of genes in a wide area of the 
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same tissue section creates the opportunity for the development 
of data-driven reference atlases of healthy human tissue, but 
also for mapping alterations of tissue in diseases. 
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METHODS 

Tissue collection
Animal handling and tissue harvesting followed the guidelines 
and recommendations of local animal protection legislation and 
were approved by the local committee for ethical experiments 
on laboratory animals (Stockholms Norra Djurförsöksetiska 
nämnd, Sweden, N 68/14). Postnatal day 22 wild type CD1 
female mice were perfused with cold and oxygenated artificial 
spinal fluid solution. The brains were then harvested, snap 
frozen in Tissue-Tek O.C.T. (Sakura) and stored at -80°C until 
used.

Probes design
For each of the selected markers we selected the transcript 
regions that showed reads in the single cell dataset and used them 
as a template to generate up to 48 probes using the online design 
tool from Biosearch technologies1. If the number of probes was 
too low, the mRNA reference sequences were selected from 
the UCSC genome browser (mouse GRCm38/mm10), aligned 
in order to determine the common sequence and added to the 
original template after removing the overlapping regions. The 
probes were directly labelled using Quasar 570, California Red 
610 and Quasar 670 (Biosearchtech). Probe sequences are listed 
in Table 1.

Coverslips functionalization
Coverslips (Marienfeld) were rinsed twice with distilled water 
for 20 min and incubated for 24 hours in concentrated nitric 
acid (Sigma Aldrich). The coverslips were then washed with 
distilled water 4 times for 1 hr, sterilized by autoclaving and 
stored in 95% ethanol. Before use, the coverslips were air 
dried and functionalized by incubation in 2% (3-aminopropyl)
triethoxysilane (APES, Sigma Aldrich) in acetone for 1 min, 
followed by a 1 min rinse in water and air drying2. Functionalized 
coverslips can be stored in a dry environment up to a month.

Tissue sample preparation
Thin tissue sections (10 μm) were cut on a cryostat and 
mounted on functionalized coverslips. Directly after mounting 
the sections were fixed for 10 min with PBS buffered 4% PFA 
(Merck), rinsed twice with PBS (Ambion), dehydrated by 3 min 
incubation in propan-2-ol (Sigma Aldrich), air dried and stored 
at -80°C until used.

Imaging flow cell setup
To ensure repeated imaging of the same tissue area, the coverslip 
with tissue was mounted in an aluminium frame engineered 
to fit in the microscope stage. A 500μl flow cell was then 
assembled on the coverslip to which reagents can be dispensed 
by both pipetting or using a microfluidic pump (Dolomite Mitos 
P-Pump) connected to a computer and controlled by a custom 
script (Supplementary fig. 1b-e, availability see below). Except 
for the pump, the system was placed in an oven set at 38.5°C. 
The pump was connected to the flow cell with a tube running 
through a bottle of water positioned inside the oven in order to 
equilibrate the buffers to the oven temperature before entering 
the flow cell. The system was equipped with a separate line 
connected to a syringe, for manual purging of air bubbles and 
shut-off valves to close the fluid path when the flow cell was 
disconnected for imaging.

osmFISH 
After setting up the hybridization flow cell, the tissue section 

was rehydrated in 2X SSC (Sigma-Aldrich) for 5 min and 
cleared 2 times for 5 min with 4% SDS in 200mM boric-acid 
pH 8.5 (Merck). Tissue clearing was followed by 5 washes with 
2X SSC for 1 min and 2 washes with TE pH 8 (Thermo). A 
heat shock was then performed for 10 min at 70°C followed 
by 3 washes with 2X SSC at room temperature. The tissue 
was then incubated for 5 minutes with hybridization mix 
(2X SSC, 10% w/v dextran sulfate (Sigma-Aldrich), 10% 
v/v formamide (Ambion), 1mg/ml E. coli tRNA (Roche), 
2mM RVC (Sigma-Aldrich) and 0.2mg/ml Bovine Serum 
Albumin (Sigma-Aldrich)) at 38.5°C. Three different probe 
sets targeting 3 transcripts were added to the hybridization mix 
at a final concentration of 250nM (Stellaris, LGC Biosearch 
technologies). The probe containing hybridization mix was 
added to the flow cell and incubated for 4 hours at 38.5°C. The 
tissue was then washed 4 times 15 min with 20% formamide 
and 1mg/ml Hoechst (Sigma-Aldrich) in 2X SSC at 38.5°C 
followed by a single wash with 2X SSC. After injection of Slow 
Fade imaging medium (Thermo) the flow cell was transferred 
to the microscope for imaging (described below). After imaging 
the sample was then washed 5 times with 2X SSC and the 
probes were melted off their target by a 30 min incubation in 
65% formamide in 2X SSC at 30°C followed by 5 washes with 
2X SSC. To verify successful stripping, a small region of the 
tissue was imaged, which was later excluded of analysis (Fig 1a 
asterisk). In order to measure counting dropout or to cover the 
whole gene marker set the hybridization-stripping cycles were 
repeated 10 and 13 times respectively. After the osmFISH cycles 
the total mRNA was labeled using 500nM 30-nucleotide-long 
poly-T-Alexa488 (IDT) labelled probe in hybridization mix.

Immunohistochemistry
The immunolabeling was performed inside the hybridization 
flow cell after the poly-A labeling was stripped off in 1.5 hour 
with the stripping buffer. The tissue was washed 5 times with TBS 
and blocked with 5% goat serum (Jackson immunoresearch) in 
0.2% Tween (Merk)-TBS for 1 hr at room temperature. After 
blocking, the tissue was incubated overnight at 4°C with 1:100 
Lectin-DyLight-488 (DL-1174 Vector) and 1:3000 rabbit-anti-
GFAP (Z0334 Dako). After washing with 0.2% Tween-TBS, 
the tissue was incubated for 2 hrs at room temperature with 
1:400 goat-anti-rabbit-Alexa647 (A-21245 Thermo) and then 
washed 3 times with 0.2% Tween-TBS, 2 times with TBS and 
then imaged after injection of slow fade (Thermo).

Imaging
Imaging was performed on a standard epifluorescence 
microscope (Nikon Ti eclipse, Nikon), equipped with a motorized 
stage (Nikon or HLD117 Prior), a Nikon CFI Plan Apo Lambda 
100X oil immersion objective, a SOLA white light source 
(Lumencor) or a Spectra X 7-line LED light source (Lumencor) 
and Zyla 4.2 plus scMOS camera (Andor) for detection. The 
hybridization/imaging flow cell frame fit the stage with minimal 
displacement therefore the later displacement between imaging 
cycles was minimal and the same region could be image 
multiple rounds. For each cycle we imaged 220 xy positions 
with 10% overlapping and collected z-stack of 0.3 μm steps. 
The exposure times were 30ms for Hoechst, 200 ms for FITC 
and 1s for all remaining channels (Quasar 570, California red 
610, Quasar 670). During imaging the hybridization chamber 
was cooled to approximately 15°C with cold air.

Image processing
Image processing was performed using a custom Python 
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pipeline, which is freely available as open source (see below). 
All analysis steps were parallelised due to the large size of the 
dataset and performed on an MPICH running cluster.
 
Illumination correction was performed for each channel in every 
hybridization. The illumination function was determined by 
calculating the max projection of the gene average image after 
filtering with a 3D gaussian with large standard deviation. Each 
xy 3D tile was then normalized with the illumination function 
and the background calculated by blurring the illumination-
corrected image with a gaussian with standard deviation larger 
than the smFISH dots or the nuclei depending on the channel 
processed. The nuclei signal of each hybridization was used to 
calculate the similarity transformation matrix used to stitch all 
the xy positions together, using a modified version of Preibisch 
et al.3. For RNA counting, after background subtraction the dots 
were enhanced with a laplacian of a gaussian with sigma smaller 
than the dots. The RNA dots were defined as the local maxima 
above a threshold automatically calculated, after removal of 
connected components larger than dots. The threshold was 
defined as the point that belongs to the distribution of the total 
number of local maxima calculated for different thresholds, 
with the maximum distance from the segment that connect the 
two extremities of the distribution. The raw RNA molecules in 
each hybridization were identified in the whole field of view 
of each xy tile and mapped to the stitched image using the 
previously calculated similarity transform (raw counts). After 
mapping the molecules for all xy tiles the duplicated dots in 
the xy overlapping regions were removed. After processing 
of all hybridizations, we used the stitched nuclei images to 
calculate a second similarity transformation matrix used to 
register all the hybridization. We then defined the cell objects 
by watershed-based segmentation of the total mRNA labelled in 
the last hybridization step. For each cell object the number and 
coordinates of RNA molecules for each gene was calculated as 
described above (cell mapped counts).

Analysis of cell types
Cells included in the analysis were located outside the region 
imaged after stripping (Fig. 1a), had a size between 5μm2 and 
275μm2 and contained at least one detected molecule. Data 
were normalized by total number of molecules of all genes per 
cell and the sum of each gene over all cells and subsequently 
multiplied by the total number of genes times cells. Cells were 
clustered with a custom iterative clustering algorithm using 
Scikit-learn agglomerative hierarchical clustering4. In brief, 
each iteration splits the dataset in two and evaluates whether the 
daughter-clusters are homogeneous (all cells having a similar 
expression profile) or heterogeneous (containing multiple 
homogeneous clusters). To decide if a daughter-cluster is 
heterogeneous, it is split into two granddaughter-clusters which 
are tested for differentially expressed genes. A differentially 
expressed gene is defined as having an expression level above 
550 in at least one cluster (after normalization) and a two sided 
Mann-Whitney U test p-value below 0.1x10-20 comparing the 
enriched gene(s). Furthermore, a minimal cluster size of 15 
cells was used. This process is repeated until all clusters are 
homogeneous. A split that separated a group of cells based only 
on an expression level difference was not allowed. However, 
not all cases were caught, so similar clusters were merged 
afterwards based on correlation.
 
To compare the osmFISH clusters with the clusters of the 
scRNA-seq, Pearson’s correlation coefficient was calculated for 

the mean expression levels of all cluster pairs. For visualization, 
t-SNE was used to embed the high dimensional data in 2D5.

Spatial Analysis
To infer tissue regions based on the location of the cell types 
we first selected spatially organized clusters according to the 
Ripley’s K estimate6. Ripley’s K estimate was calculated on the 
centroids of all cells of each cluster with a radius of 750 pixels 
(~50 μm) and the cluster with a Ripley’s K above 2x107 were 
selected. Then the cells in the sample were converged iteratively 
to the most common cluster label in their local neighbourhood, 
using a k=20 nearest neighbour network and a maximal 
distance that varied between 1000 and 1500 pixels (65-97.5μm) 
for 20 iterations. After iteration 5, 7, 10 and 16 a connected 
graph was made for each unique label with a maximum distance 
of 3000 pixels (195μm), and disconnected sub-graphs with a 
size smaller than 75 cells were reset to their original value, 
to prevent small local inflation of one label. Finally, isolated 
regions with the same label were split and cells that were far 
away from other cells were forced to adapt the identity of its 
closest 10 neighbours without maximum distance.

To visualize spatial relationships between cells of all types 
on the small scale, the distance of each cell to the closest 
neighbour of the same type (self-affinity) and all other types 
was measured. The mean distances of all permutations of cell 
types were plotted as a heatmap, where values above 500μm 
were excluded.

Code
All code was written in Python and is available online: 
linnarssonlab.org/osmFISH The following Python packages 
were used: Astropy7, Dask-Distributed8, H5py9, Loompy, 
Matplotlib10, Mpi4py11, N2reader, Networkx12, Numpy13, 
Pandas14, Pyserial, Scikit-Image15, Scikit-Learn4, Scipy16 and 
Sympy17.
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