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ABSTRACT 

 Data independent acquisition (DIA) mass spectrometry is a powerful technique 

that is improving the reproducibility and throughput of proteomics studies. We introduce 

a new experimental workflow that uses this technique to construct chromatogram 

libraries that capture fragment ion chromatographic peak shape and retention time for 

every detectable peptide in an experiment. These coordinates calibrate information in 

spectrum libraries or protein databases to a specific mass spectrometer and 

chromatography setup, and enable sensitive peptide detection in quantitative 

experiments. We also present EncyclopeDIA, a software tool for generating and 

searching chromatogram libraries, and demonstrate the performance of our workflow by 

quantifying proteins in human and yeast cells. We find that by exploiting calibrated 

retention time and fragmentation specificity in chromatogram libraries, EncyclopeDIA 

can detect and quantify >50% more peptides from DIA experiments than with DDA-

based spectrum libraries alone. 

 

INTRODUCTION 

Over the past two decades the continued refinement of proteomics methods 

using liquid chromatography (LC) coupled to tandem mass spectrometry (MS/MS) has 

enabled a deeper understanding of human biology and disease(1, 2). Recently data 

independent acquisition(3, 4) (DIA), in which the mass spectrometer systematically 
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acquires MS/MS spectra irrespective of whether or not a precursor signal is detected, 

has emerged as a powerful alternative approach to data dependent acquisition(5) 

(DDA) for proteomics experiments.  In current DIA workflows, instrument cycle is 

structured such that the same MS/MS spectrum window is collected every 1 to 5 

seconds, enabling quantitative measurements using fragment ions instead of precursor 

ions. This approach produces data analogous to targeted parallel reaction monitoring 

(PRM), except instead of targeting specific peptides, quantitative data is acquired 

across a predefined mass to charge (m/z) range. One trade-off is that to cover the m/z 

space where the majority of peptides exist, the mass spectrometer must be tuned to 

produce MS/MS spectra with wide precursor isolation windows that often contain 

multiple peptides at the same time. These additional peptides produce interfering 

fragment ions, and database search engines for DDA that rely on a precursor isolation 

window of at most a few daltons can struggle to detect the signal for a particular peptide 

from that background interference. The PAcIFIC approach(6) attempts to overcome this 

difficulty by using multiple gas-phase fractionated injections of the same sample to 

increase precursor isolation at the cost of both sample and instrument time.  

Peptide-centric tools analyze DIA measurements for individual peptides across 

all spectra in a precursor isolation window. Spectrum library search tools for DIA 

data(7–9) use fragmentation patterns and relative retention times from previously 

collected DDA data. In contrast, other tools such as PECAN(10) query DIA data using 

just peptide sequences and their predicted fragmentation pattern without requiring a 

spectrum library. While library searching can achieve better sensitivity than PECAN, the 

approach is limited to detecting only analytes represented in the library. In addition, the 

quality of library-based detections is only as strong as the quality of the library itself. 

Because mapping fragmentation patterns and retention times across instruments and 

platforms is difficult, many researchers prefer to simultaneously acquire both DDA and 

DIA data from their samples(11, 12). While this implicitly increases the acquisition time 

and sample consumption, it becomes possible to detect peptides using the DDA data 

while making peptide quantitation measurements using the DIA data. However, 

detection sensitivity is inherently limited to that of the DDA data. 
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 Typically tens to hundreds of biological samples are processed and analyzed 

using LC-MS/MS in quantitative proteomics experiments. In DDA workflows each 

individual sample is informatically processed alone to account for stochastic variation in 

data acquisition. The regularity of DIA allows researchers to make peptide detections in 

one sample and transfer those detections to other samples(13). Here we extrapolate 

this concept by collecting certain runs where data acquisition is tuned to improve 

peptide detection rates, while collecting other runs with a focus on quantification 

accuracy and throughput. Results from runs dedicated to peptide detection are formed 

into a DIA-based chromatogram library. In a chromatogram library, we catalog retention 

time, precursor mass, peptide fragmentation patterns, and known interferences that 

identify each peptide on our instrumentation within a specific sample matrix.  

We have developed EncyclopeDIA, a library search engine that takes full 

advantage of chromatogram libraries, and we demonstrate a substantial gain in 

sensitivity over typical DIA and DDA workflows. EncyclopeDIA also contains several 

new approaches to automate transition refinement to remove fragment ion interference, 

improving the quality of quantification. This tool is instrument vendor neutral and 

available as an open source project with both a GUI and command line interface. 

 

RESULTS 

Chromatogram library generation. 

Chromatogram libraries differ from spectrum libraries in that they are generated 

from a small collection of narrow-window DIA experiments, rather than from DDA. We 

use a data acquisition scheme (Figure 1a) similar to PAcIFIC(6) for constructing 

chromatogram libraries. Briefly, for each experiment we create a representative sample, 

which pools subaliquots of each biological sample. We acquire six or more gas-phase 

fractionated runs from this pooled sample in an effort to comprehensively study all of the 

peptides in the pool. The gas-phase fractionated samples are injected into the mass 

spectrometer multiple times, with each injection staggered to acquire a fraction of the 
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m/z space via overlapping 4m/z "narrow" precursor isolation windows. After overlap 

deconvolution, these experiments effectively have 2 m/z precursor isolation (analogous 

to if we had conducted targeted PRM acquisition) except we are targeting all precursors 

between 400 to 1000 m/z. Previously we have shown that this type of DIA experiment 

can produce substantially richer peptide detection lists than similarly acquired DDA 

experiments(10). While this data acquisition strategy would be impractical to perform for 

every biological sample, when applied to the pool it provides the mass, retention time, 

and fragmentation coordinates for virtually every detectable peptide in the experiment, 

which we use to lookup the peptides in quantitative samples. 

 

The EncyclopeDIA workflow. 

 EncyclopeDIA is comprised of several algorithms for DIA data analysis (Figure 

1b) that can search for peptides using either DDA-based spectrum libraries or DIA-

based chromatogram libraries. The algorithms in this workflow are described in full 

detail in the Online Methods. Briefly, the EncyclopeDIA workflow starts with reading raw 

MS/MS data in mzML files into an SQLite database designed for querying fragment 

spectra across precursor isolation windows. If fragment spectra are collected using 

overlapping windows, they are deconvoluted on the fly during file reading. Libraries are 

read as DLIB (DDA-based spectrum libraries) or ELIB (EncyclopeDIA DIA-based 

chromatogram libraries). EncyclopeDIA determines the highest scoring retention time 

point corresponding to each library spectrum (as well as a paired reverse sequence 

decoy) using a scoring system modeled after the X!Tandem HyperScore(14). Fifteen 

auxiliary match features (not based on retention time) are calculated at this time point. 

These features are aggregated and submitted to Percolator 3.1(15), a semi-supervised 

SVM algorithm for interpreting target/decoy peptide detections, for a first pass 

validation. EncyclopeDIA generates a retention time model from peptides detected at 

1% FDR using a non-parametric kernel density estimation algorithm that follows the 

density mode across time. Any target or decoy peptide in the feature set that does not 

match the retention time model is reconsidered up to 5 times until we find a highest 
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scoring retention time point that matches the model. The retention time-curated feature 

sets are submitted to Percolator for final pass validation at 1% FDR.  

 

Comparison between spectrum libraries and chromatogram libraries. 

 EncyclopeDIA can be used to query DIA data with DDA-based spectrum 

libraries. However, the benefit of the algorithms in EncyclopeDIA become transparent 

when using DIA-based chromatogram libraries. EncyclopeDIA can generate ELIB 

chromatogram libraries from gas-phase fractionated runs using DDA-based spectrum 

libraries if they are available, or using Walnut, which is a built-in, performance optimized 

re-implementation of the PECAN algorithm(10) to search protein sequence FASTA 

databases (see Supplementary Note 1 for further details). The resulting ELIB report can 

be fed back into EncyclopeDIA for chromatogram library searching. While this approach 

is inherently limited to the detectable proteins in the narrow-window pool, our 

perspective is that except for rare variants, very few quantitatively reliable peptides will 

be detectable in the wide-window data that are not also detectable in the narrow data. In 

cases where rare variants are important to a study or if samples are likely to represent 

very disparate proteomes, EncyclopeDIA can also generate chromatogram libraries 

from multiple batches of narrow-window acquisitions from different sample pools.  

 We evaluated the chromatogram library strategy using peptides derived from a 

HeLa S3 cell lysate as a representative high-complexity proteome. To this end we 

constructed a chromatogram library from six gas-phase fractionated DIA runs with 52 

overlapping 4 m/z-wide windows, which produced 300 2 m/z-wide windows spanning 

400.43 to 1000.70 m/z after deconvolution. Following the scheme in Figure 1a, we 

searched the narrow-window data against a HeLa-specific DDA spectrum library 

containing 166.4k unique peptides. This produced a chromatogram library containing 

99.6k unique peptides where the retention times, fragmentation patterns, and 

interference likelihoods were calibrated to our mass spectrometer and HPLC setup. We 

performed an analogous approach using Walnut to detect peptides directly from the 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 7, 2018. ; https://doi.org/10.1101/277822doi: bioRxiv preprint 

https://doi.org/10.1101/277822


narrow-window DIA data using a Uniprot Human FASTA database, which generated a 

53.2k peptide chromatogram library. The performance separation between these two 

library-generation methods is in part because the spectrum library represents a more 

targeted search space.  

In addition to generating the library, we also collected triplicate wide-window DIA 

runs with 52 overlapping 24 m/z-wide windows from the same sample. From these runs 

we were able to detect an average of 20.6k peptides from the Uniprot Human FASTA 

database using Walnut. In contrast, we found an average of 47.8k peptides (2.3x 

increase) when we searched the Walnut-based chromatogram library with 

EncyclopeDIA (Figure 2a). Requiring only an additional 6 injections, this search strategy 

found nearly an equal number of peptides compared to searching the SCX-fractionated, 

36 injection DDA-based spectrum library (an average of 48.7k peptides). Finally, we 

found an average of 72.3k peptides when searching against the chromatogram library 

constructed using the DDA-based spectrum library. Here we detected over 2x more 

peptides than our benchmark top-20 DDA experiments (Supplementary Figure 1). 

Despite this increased detection rate, we still find that DIA produces more consistent 

results compared to DDA, as indicated by the overlap in peptide detections between 

triplicate injections (Figure 2b and 2c).  

Confirming these results, we performed the same analysis using a yeast cell 

lysate and found similar improvement rates when comparing Walnut versus 

EncyclopeDIA using a Walnut-based chromatogram library (2.2x increase, Figure 2d). 

Here we observe more modest gains over top-20 DDA experiments, which likely reflects 

the lowered proteomic complexity of yeast versus human cells and is echoed in the tight 

overlap (86%) between triplicate DIA injections versus DDA (Figure 2e and 2f). As is 

possible with any computational strategy that incorporates machine learning, we were 

concerned with the potential for overfitting that might manifest in over exaggerated 

peptide detection rates. To answer this question we searched the HeLa wide-window 

DIA data using the yeast chromatogram library (and vice versa) to verify that we see a 

negative result when searching the wrong library. As expected this result (Figure 2a and 

2d) produced zero peptide detections that passed a 1% peptide FDR threshold. 
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We also find that DIA analysis with chromatogram libraries is more sensitive at 

detecting low abundance proteins at a 1% protein FDR. Using tandem affinity 

purification tagging and quantitative Western blots, Ghaemmaghami et al(16) quantified 

3868 yeast proteins with more than 50 estimated copies per cell. In this study we 

replicated strain and growing conditions as closely as possible to use their 

measurements as an independent benchmark. While both DDA and DIA confidently 

detect the majority of proteins at levels above 104 copies per cell, DIA outperforms DDA 

by 49% with proteins estimated to have between 103 and 104 copies per cell and by 2x 

with proteins estimated between 102 and 103 copies per cell (Figure 3). 

 

Improved retention time and fragmentation pattern calibration in chromatogram 
libraries.  

One of the primary reasons on-column chromatogram libraries enable such high 

performance is that they exploit within run retention time reproducibility. Accurate 

retention time filtering is an important consideration when analyzing high-complexity 

proteomes with DIA, and virtually all DIA library search engines make use of this data. 

Retention times in aggregate spectrum libraries are typically derived by linearly 

interpolating multiple DDA data sets to a known calibration space (such as that defined 

by the iRT standard (17)), which enables retention times to be comparable from run to 

run, or even across platforms. However, these measurements usually contain some 

wobble due to errors introduced by assuming a linear fit. Figure 4a shows a typical 

spread of retention times in EncyclopeDIA detected peptides using a DDA spectrum 

library, which is 95% accurate within a spread of 5.1 minutes (Figure 4c). In 

comparison, Figure 4b shows the typical spread of retention times in the chromatogram 

library, which is 95% accurate within 21 seconds (Figure 4d). This tightening of retention 

time accuracy is due to the fact that chromatogram libraries are collected on the same 

column as the wide-window acquisitions. Even if efforts are made to keep packing 

material, length, and gradient consistent, the dramatic gains in retention time accuracy 

with chromatogram libraries reflect variations that are difficult to control for, including 
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packing speeds, pressures, and pulled tip orifice shapes. In addition, we find that DDA 

fragmentation patterns (Figure 4e) are often somewhat different than those collected in 

DIA experiments (Figure 4f). While DDA instrument methods usually tune MS/MS 

collision energies to the precursor charge and mass, some of this variation is likely due 

to fixed assumptions in charge states and precursor masses required by DIA methods 

when multiple precursors must be fragmented at the same time.  

A subtle issue with DIA library searching when using generalized spectrum 

libraries is that many peptides generate the same fragment ions, either because of 

sequence variation, paralogs, or modified forms. While EncyclopeDIA attempts to 

control for this using background ion distributions to predict interference likelihoods, 

sequence variation due to homology or single nucleotide polymorphisms can be 

unintentionally detected as the wrong peptide sequence in certain circumstances. For 

example, a sequence variation of a valine to an isoleucine is relatively common, and the 

mass shift of a methyl group (+14/Z) will often place both peptides inside the same 

precursor isolation window when Z is 2 or greater. Using chromatogram libraries can 

provide some protection against these issues because the initial searches to generate 

the libraries are performed using narrow (2 m/z) precursor mass windows, and 

subsequent wide-window searches benefit from precise retention time filtering. 

Additionally, EncyclopeDIA requires at least 25% of the primary score to come from ions 

that indicate the modified form to detect modified peptides when modified/unmodified 

peptide pairs fall in the same precursor isolation window (e.g. methionine oxidation). 

 

Peptide and protein quantitation. 

We present a novel algorithm for automated transition refinement to remove 

fragment ion interference and alleviate the need for manual curation (see Online 

Methods for further details). In short, after unit area normalizing all transitions assigned 

to a single peptide (Supplementary Figure 2a), we determine the shape of the peak as 

the median normalized intensity at each retention time point (Supplementary Figure 2b). 
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Transitions that match this peak shape with Pearson’s correlation scores >0.9 are 

considered quantitative (Supplementary Figure 2c). We find that over 81% of peptides 

can be quantified with at least three transitions (Supplementary Figure 3a) and that the 

transitions picked by our approach produce reproducible quantitative measurements 

between technical replicates in HeLa experiments (Supplementary Figure 3b and 3c).  

Combining peptide detections across multiple samples often increases false 

discoveries because false detections are usually found only in individual runs(18). To 

combat this, we recalculate global peptide FDR across all experiments in each study 

with Percolator and generate parsimonious protein detection lists that are also filtered to 

a 1% FDR. We use cross-sample retention time alignment(13) to help quantify peptides 

that are missing in specific samples. After filtering peptides based on coefficient of 

variance and measurement consistency we estimate protein quantities by summing 

fragment ion intensities across only sequence-unique peptides assigned to those 

proteins. 

 

Determining global proteomic changes from serum starvation. 

 We used the chromatogram library approach to examine the effects of serum 

starvation in human cells. Serum starvation is a common step in signal transduction 

studies as serum contains several cytokines and growth factors that can confound 

signaling levels. It is commonly thought that serum starvation suppresses basal activity 

by reducing signaling activity that effectively resets cells to G0/G1 resting phase(19), 

although more recent experiments(20, 21) suggest otherwise. Serum starvation 

protocols vary widely from 2 to 24 hours, and this time frame is long enough to produce 

changes in protein levels resulting from transcriptional regulation. These changes are a 

source of variation that can have serious consequences when comparing between 

studies.  

 We designed a DIA quantitative experiment to map how the proteome of HeLa 

cells changes in response to serum starvation over time. We selected starvation times 
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to match commonly used protocols. Of the 99.6k unique peptides in our chromatogram 

library, we recapitulated 93.5k unique peptides from 6,802 protein groups in at least one 

quantitative sample at a global protein FDR <0.01. Of these, 48.6k peptides (from 5,781 

protein groups) produced at least three quantitative transition ions without interference, 

had <20% study-wide CVs, and were measured in every replicate of at least one time 

point. While at first these detection and quantification criteria may seem unusually 

stringent compared to typical proteomics experiments, narrowing our focus to confident 

measurements increased power in detecting subtle quantitative differences with high 

accuracy.  

We found that 1097 protein groups in the HeLa proteome changed significantly 

over time at an FDR of 0.01 (Supplementary Table 1). The temporal starvation profiles 

of these proteins fell into five groups (Figure 5) where the majority changing proteins 

increased in abundance. Several of these proteins are involved in expected pathways 

such as cell cycle regulation (GO enrichment FDR=0.011), metabolism (GO enrichment 

FDR=0.011), and ubiquitination regulation (GO enrichment FDR=0.018). One 

advantage of our method is that quantitation is performed by summing peaks from 

several low interference fragment ions, which allows us to accurately quantify small 

changes. For example, we found that all eight of the observed components of the 

nuclear proteasome increased significantly by approximately 25% (Supplementary 

Figure 4), which indicates nuclear maintenance consistent with G0/G1 resting phase.  

We also observed significant regulation of the abundance of  39 kinases and 7 

phosphatases (Supplementary Figure 5). In particular, we found that EGFR levels 

increased by 30% over a 24 hour serum starvation time course (Supplementary Figure 

6), effectively sensitizing HeLa to the growth factor EGF. To confirm these experiments, 

we monitored relative changes in the phosphoproteome of HeLa after EGF stimulation 

at two common serum starvation times: 4 hours and 16 hours. We found that while 

phosphopeptide measurements at both time points directionally agreed, some 

phosphopeptide responses to EGF were stronger when cells were starved for 16 hours 

compared to when starving for only 4 hours (Supplementary Figure 7). This increase 

corroborated our observation that EGFR protein levels increased from 4 to 16 hours of 
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starvation. These protein and phosphopeptide-level changes underline a potentially 

significant source of variation when comparing phosphorylation signaling studies. 

 

DISCUSSION 

 We have demonstrated an experimental strategy that enables comprehensive 

detection of peptides and proteins using chromatogram libraries. These libraries can be 

seeded either with a DDA spectrum library or generated in a DIA-only mode using 

Walnut for initial peptide searches. Finally, we showed that at the cost of only six 

additional narrow-window DIA runs, both of these strategies are more sensitive and 

reproducible relative to comparable DDA experiments. While this approach may be 

unrealistic for one-off experiments, we feel that in most quantitative proteomics studies 

the addition of these runs are a minor cost in exchange for a significant increase in 

sensitivity.  

One important limitation of our method is that each chromatogram library is tuned 

for a specific mass spectrometer and chromatographic set up. In particular, we have 

observed that with the hand-pulled and packed columns used here, there is significant 

retention time variation between replicates run on different columns, even if effort is 

made to insure column consistency. We hypothesize that minor variations in packing 

speeds, packing pressures, tip shapes, and column lengths can affect elution times and 

even peptide retention time ordering. This issue may be mitigated by acquiring a new 

library after a column change and retention time aligning the libraries to insure 

consistency. Future work remains to model these minor retention time shifts.  

Another important consideration is library quality. All library searching strategies 

assume that entries in the library are correctly identified and consequently false 

positives in the library can be propagated as “true” positives by target/decoy 

analysis(22). This concern is potentially compounded in our approach, which can 

include up to two levels of library creation. Further work is necessary to improve FDR 

estimates for library searching in DIA experiments. In the meantime, we feel orthogonal 
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filtering strategies are necessary to maintain conservative peptide detection lists. In 

addition to retention time fitting and 1% protein-level FDR filtering, in this work we 

require a minimum of three interference-free transitions and impose stringent 

measurement reproducibility requirements for peptides to be considered quantitative. 

We have observed a complementarity of DDA and DIA through the use of 

building spectrum libraries to seed chromatogram libraries. Here the stochasticity of 

DDA sampling when coupled with offline peptide separation methods such as SCX 

fractionation can be exploited as a benefit in that only one observation of a peptide is 

necessary for inclusion in the library. With human samples, libraries constructed using 

previously recorded retention times and fragmentation patterns contained nearly twice 

the peptides as those constructed without prior knowledge. However, PECAN/Walnut 

can build on that knowledge by detecting peptide sequence variants illuminated by 

whole exome sequencing(10), and we are exploring ways of generating chromatogram 

libraries that incorporate both pieces of data. 
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Figure 1 

 

An approach for quantifying peptides with chromatogram libraries. (a) The 
chromatogram library generation workflow. Briefly, in addition to collecting wide-window 
DIA experiments on each quantitative replicate, a pool containing peptides from every 
condition is measured using several staggered narrow-window DIA experiments. After 
deconvolution, these narrow-window experiments have 2 m/z precursor isolation, which 
is analogous to targeted parallel reaction monitoring (PRM) experiments, except 
effectively targeting every peptide between 400 and 1000 m/z. We detect peptide 
anchors from these experiments using either EncyclopeDIA (searching a DDA spectrum 
library) or PECAN (using a protein database) and chromatographic data about each 
peptide is stored in a chromatogram library with retention times, peak shape, fragment 
ion intensities, and known interferences tuned specifically for the LC/MS/MS setup. 
EncyclopeDIA then uses these precise coordinates for m/z, time, and intensity to detect 
peptides in the quantitative samples. (b) The EncyclopeDIA algorithmic workflow for 
searching spectrum and chromatogram libraries. After reading and deconvoluting DIA 
raw files, EncyclopeDIA calculates several retention time independent feature scores for 
each peptide that are amalgamated and FDR corrected with Percolator. Using high 
confidence peptide detections, EncyclopeDIA retention time warps detections to the 
library, determines the retention time accuracy, and reconsiders outliers. After a second 
FDR correction with Percolator, EncyclopeDIA autonomously picks fragment ion 
transitions that fit each non-parametrically calculated peak shape and quantifies 
peptides using these ions. 
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Figure 2

 
Untargeted peptide detection rates using DDA and DIA from human and yeast cell 
lysates. We used EncyclopeDIA to search chromatogram and spectrum libraries, while 
we used Comet and Walnut to search DDA and DIA data directly using FASTA protein 
databases. (a) The number of peptide detections at 1% peptide FDR in triplicate HeLa 
injections. (b) The overlap in HeLa S3 peptide detections between replicates using DDA 
searched by Comet and (c) using DIA searched by EncyclopeDIA where the size of 
Venn diagram circles in HeLa analyses are consistent with the number of detections. (d) 
The number of peptide detections at 1% peptide FDR in triplicate BY4741 yeast 
injections. (e) The overlap in yeast peptide detections between replicates using DDA 
searched by Comet and (f) using DIA searched by EncyclopeDIA where the size of 
circles are consistent with the number of yeast peptide detections. 

 
  

20969 

11712 

25564 

0 

20579 

11431 

25480 

0 

20462 

11732 

25522 

0 

0 5000 10000 15000 20000 25000 

Comet (DDA) 

PECAN 

EncyclopeDIA / PECAN-based 
Chromatogram Library 

EncyclopeDIA / HeLa 
Chromatogram Library 

Rep 1 
Rep 2 
Rep 3 

33597 

20682 

47689 

47815 

71587 

0 

34111 

20585 

47715 

47372 

72085 

0 

33687 

20428 

47897 

48402 

72608 

0 

0 20000 40000 60000 80000 

Comet (DDA) 

PECAN 

EncyclopeDIA / PECAN-based 
Chromatogram Library 

EncyclopeDIA / DDA Library 

EncyclopeDIA / DDA-based 
Chromatogram Library 

EncyclopeDIA / Yeast 
Chromatogram Library 

Rep 1 
Rep 2 
Rep 3 

2.3x

1.5x

2.2x

7%

7% 7%

6% 5%

6%

63%

4%

4% 5%

4% 5%

5%

73%

6%

6% 7%

5% 5%

6%

65%

2%

2% 2%

3% 3%

3%

86%

HeLa DDA-based
Chromatogram Library

Comet (DDA)

Comet (DDA)

a b c

d e f

Comet (DDA)

Walnut

Walnut-based
Chromatogram Library

HeLa DDA 
Spectrum Library

HeLa DDA-based
Chromatogram Library

Yeast
Chromatogram Library

Comet (DDA)

Walnut

Walnut-based
Chromatogram Library

HeLa
Chromatogram Library

Walnut-based
Chromatogram Library

H
eL

a
R

ep
lic

at
es

Ye
as

t 
R

ep
lic

at
es

Number of Peptides

Number of Peptides

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 7, 2018. ; https://doi.org/10.1101/277822doi: bioRxiv preprint 

https://doi.org/10.1101/277822


Figure 3 

 

Protein detection rates scale with abundance. The (a) number and (b) fraction of 
proteins detected in yeast at different orders of magnitude of abundance. 
Ghaemmaghami et al comprehensively estimated protein copies per cell in yeast (light 
blue area) using high-affinity epitope tagging. While top-20 DDA (red line) can measure 
some low abundant proteins at 1% protein-level FDR, the strategy only detected 48% of 
mid-range proteins with estimated copies per cell between 103 and 104. In contrast, at 
1% protein-level FDR, wide-window DIA using a Walnut-based chromatogram library 
(blue line) detected 71% of these proteins and overall recapitulated 91% of proteins 
found in the entire Walnut-based chromatogram library (black line).  
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Figure 4 

    

Retention time and fragmentation accuracy of the DDA spectrum library and the 
DIA chromatogram library. Scatterplots comparing retention times from the (a) DDA 
spectrum library and the (b) DIA chromatogram library to those from in a single HeLa 
DIA experiment. Each point represents a peptide, where blue peptides fit the retention 
time trend (green) within a Bayesian mixture model probability of 5% and red peptides 
are outliers (see Online Methods for more details). (c) Retention times in the DDA 
spectrum library are 95% accurate to a window of 5.1 minutes, while (d) retention times 
in the chromatogram library are 95% accurate to 21 seconds. (e) The distribution of 
Pearson correlation coefficients between spectra in the DDA spectrum library and those 
detected from a single HeLa DIA experiment shows charge state bias, while (f) the 
distribution of correlation coefficients between spectra in the DIA chromatogram library 
and those from the same experiment shows much less bias. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 7, 2018. ; https://doi.org/10.1101/277822doi: bioRxiv preprint 

https://doi.org/10.1101/277822


Figure 5 

 

Protein quantification changes following serum starvation. (a) Heatmap of 1097 
proteins found to be quantitatively changing at a FDR corrected p-value<0.01 in HeLa. 
Colors are Z-score normalized and indicate the number of standard deviations away 
from the level at time 0. (b) Protein changes grouped into five K-means clusters (see 
Supplementary Figure 12 for more details) showing separation between fast responding 
proteins (light blue, dark green, and pink) and delayed responses (dark blue, light 
green).  
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METHODS 

HeLa cell culture and sample preparation. HeLa S3 cervical cancer cells (ATCC) 

were cultured at 37°C and 5% CO2 in Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with L-glutamine, 10% fetal bovine serum (FBS), and 0.5% 

strep/penicillin. Six cell culture replicates were grown to approximately a 50% density in 

6-well plates prior to FBS starvation staggered for 24, 16, 8, 4, 2, and 0 hours (one time 

point in each well, one plate per replicate). At the 0 hour time point cells were quickly 

washed three times with refrigerated phosphate-buffered saline and immediately flash 

frozen with liquid nitrogen. Frozen cells were lysed in a buffer of 9 M urea, 50 mM Tris 

(pH 8), 75 mM NaCl, and a cocktail of protease inhibitors (Roche Complete-mini EDTA-

free). After scraping, cells were subjected to 2x 30 seconds of probe sonication, 20 

minutes of incubation on ice, followed by 10 minutes of centrifugation at 21,000 x g and 

4°C. The protein content of the supernatant was estimated using BCA. The proteins 

were reduced with 5 mM dithiothreitol for 30 minutes at 55°C, alkylated with 10 mM 

iodoacetamide in the dark for 30 minutes at room temperature, and quenched with an 

additional 5 mM dithiothreitol for 15 minutes at room temperature. The proteins were 

diluted to 1.8 M urea and then digested with sequencing grade trypsin (Pierce) at a 1:50 

enzyme to substrate ratio for 12 hours at 37°C. The digestion was quenched by adding 

10% trifluoroacetic acid to achieve approximately pH 2. Resulting peptides were 

desalted with 100 mg tC18 SepPak cartridges (Waters) using vendor-provided protocols 

and dried with vacuum centrifugation. Peptides were brought to 1 μg / 3 μl in 0.1% 

formic acid (buffer A) prior to mass spectrometry acquisition. For the reproducibility 

experiments and to build a chromatogram library we pooled aliquots from all six time 

points for three of the replicates to ensure that the pool contained virtually every peptide 

present in the individual time points.  

With the phosphoproteomics experiment, four replicates were performed for each of the 

four conditions:  20 minute EGF (100 ng/ml) or phosphate-buffered saline (PBS) 

stimulation following 4 hour starvation, and 20 minute EGF/PBS stimulation following 16 

hour starvation.  Sample generation and processing was performed in the same fashion 

with the following exceptions: 1) in addition to protease inhibitors, a cocktail of 
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phosphatase inhibitors (50 mM NaF, 50 mM β-glycerophosphate, 10 mM 

pyrophosphate, and 1 mM orthovanadate) was also added to the lysis buffer, 2) proteins 

were digested for 14 hours, and 3) phosphopeptides were enriched using immobilized 

metal affinity chromatography (IMAC) using Fe-NTA magnetic agarose beads (Cube 

Biotech). Enrichment was performed with a KingFisher Flex robot (Thermo Scientific), 

which incubated peptides with 150 μl 5% bead slurry in 80% acetonitrile, 0.1% TFA for 

30 minutes, washed them three times with the same solution, and eluted them with 60 

μl 50% acetonitrile:1% NH4OH. Phosphopeptides were then acidified with 10% formic 

acid and dried. Phosphopeptides were brought to 1 μg / 3 μl in 0.1% formic acid 

assuming a 1:100 reduction in peptide abundance from the IMAC enrichment. Again, to 

build a chromatogram library we pooled aliquots from all four conditions for three of the 

replicates to ensure that the pool contained virtually every peptide present in the 

individual conditions. 

Yeast cell culture and sample preparation. Yeast strain BY4741 (Dharmacon) was 

cultured at 30°C in YEPD and harvested at mid-log phase. Cell pellets were lysed in a 

buffer of 8 M urea, 50 mM Tris (pH 8), 75 mM NaCl, 1 mM EDTA (pH 8) using 7 cycles 

of 4 minutes bead beating with glass beads followed by one minute rest on ice. Lysate 

was collected by piercing the tube, placing it into an empty eppendorf, and centrifuging 

for 1 minute at 2000 rpm and 4C. Insoluble material was removed from the lysate by 15 

min centrifugation at 14000 rpm and 4C. The protein content of the supernatant was 

estimated using BCA. The proteins were reduced with 5 mM dithiothreitol for 30 minutes 

at 55°C and alkylated with 10 mM iodoacetamide in the dark for 30 minutes at room 

temperature. The proteins were diluted to 1.8 M urea and then digested with 

sequencing grade trypsin (Pierce) at a 1:50 enzyme to substrate ratio for 16 hours at 

37°C. The digestion was quenched using 5N HCl to achieve approximately pH 2. 

Resulting peptides were desalted with 30 mg MCX cartridges (Waters) and dried with 

vacuum centrifugation. Peptides were brought to 1 μg / 3 μl in 0.1% formic acid (buffer 

A) prior to mass spectrometry acquisition. 

Liquid chromatography mass spectrometry. Peptides were separated with a Waters 

NanoAcquity UPLC and emitted into a Thermo Q-Exactive HF or a Thermo Fusion 
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tandem mass spectrometer. Pulled tip columns were created from 75 μm inner diameter 

fused silica capillary in-house using a laser pulling device and packed with 3 μm 

ReproSil-Pur C18 beads (Dr. Maisch) to 300 mm. Trap columns were created from 150 

μm inner diameter fused silica capillary fritted with Kasil on one end and packed with the 

same C18 beads to 25 mm. Solvent A was 0.1% formic acid in water, while solvent B 

was 0.1% formic acid in 98% acetonitrile. For each injection, 3 μl (approximately 1 μg) 

was loaded and eluted using a 90-minute gradient from 5 to 35% B, followed by a 40 

minute washing gradient. Data were acquired using either data-dependent acquisition 

(DDA) or data-independent acquisition (DIA). Three DDA and DIA HeLa and yeast 

technical replicates were acquired by alternating between acquisition  modes to 

minimize bias. Serum-starved HeLa acquisition was randomized within blocks to enable 

downstream statistical analysis. 

DDA acquisition and processing. The Thermo Q-Exactive HF was set to positive 

mode in a top-20 configuration. Precursor spectra (400-1600 m/z) were collected at 

60,000 resolution to hit an AGC target of 3e6. The maximum inject time was set to 100 

ms. Fragment spectra were collected at 15,000 resolution to hit an AGC target of 1e5 

with a maximum inject time of 25 ms. The isolation width was set to 1.6 m/z with a 

normalized collision energy of 27. Only precursors charged between +2 and +4 that 

achieved a minimum AGC of 5e3 were acquired. Dynamic exclusion was set to “auto” 

and to exclude all isotopes in a cluster. Thermo RAW files were converted to mzXML 

format using ReAdW and searched against a Uniprot Human FASTA database (87613 

entries) with Comet (version 2015.02v2), allowing for variable methionine oxidation, and 

n-terminal acetylation. Cysteines were assumed to be fully carbamidomethylated. 

Searches were performed using a 50 ppm precursor tolerance and a 0.02 Da fragment 

tolerance using fully tryptic specificity (KR|P) permitting up to two missed cleavages. 

Search results were filtered to a 1% peptide-level FDR using Percolator (version 3.1). 

DIA acquisition and processing. For each chromatogram library, the Thermo Q-

Exactive HF was configured to acquire six chromatogram library acquisitions with 4 m/z 

DIA spectra (4 m/z precursor isolation windows at 30,000 resolution, AGC target 1e6, 

maximum inject time 55 ms) using an overlapping window pattern from narrow mass 
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ranges using window placements optimized by Skyline (i.e. 396.43 to 502.48 m/z, 

496.48 to 602.52 m/z, 596.52 to 702.57 m/z, 696.57 to 802.61 m/z, 796.61 to 902.66 

m/z, and 896.66 to 1002.70 m/z). See Supplementary Figure 8 and Supplementary 

Table 2 for the actual windowing scheme. Two precursor spectra, a wide spectrum 

(400-1600 m/z at 60,000 resolution) and a narrow spectrum matching the range (i.e. 

390-510 m/z, 490-610 m/z, 590-710 m/z, 690-810 m/z, 790-910 m/z, and 890-1010 m/z) 

using an AGC target of 3e6 and a maximum inject time of 100 ms were interspersed 

every 18 MS/MS spectra.  

For quantitative samples, the Thermo Q-Exactive HF was configured to acquire 

25x 24 m/z DIA spectra (24 m/z precursor isolation windows at 30,000 resolution, AGC 

target 1e6, maximum inject time 55 ms) using an overlapping window pattern from 

388.43 to 1012.70 m/z using window placements optimized by Skyline. See 

Supplementary Figure 9 and Supplementary Table 2 for the actual windowing scheme. 

Precursor spectra (385-1015 m/z at 30,000 resolution, AGC target 3e6, maximum inject 

time 100 ms) were interspersed every 10 MS/MS spectra. Phosphopeptide samples 

were analyzed in the same way using 20x 20 m/z DIA spectra in an overlapping window 

pattern from 490.47 to 910.66 m/z. 

All DIA spectra were programed with a normalized collision energy of 27 and an 

assumed charge state of +2. Thermo RAW files were converted to .mzML format using 

the ProteoWizard package (version 3.0.7303) where they were peak picked using 

vendor libraries. A HeLa-specific Bibliospec(1) HCD spectrum library was created from 

unpublished Thermo Q-Exactive DDA data using Skyline (version 3.1.0.7382). This 

BLIB library and accompanying iRTDB normalized retention time database were 

converted into a ELIB library and used to search the mzMLs for peptides. EncyclopeDIA 

searches DIA data using +1H and +2H b/y ion fragments that could be found in library 

spectra. EncyclopeDIA was configured with default settings (10 ppm precursor, 

fragment, and library tolerances, considering both B and Y ions, and trypsin digestion 

was assumed). EncyclopeDIA was configured to use Percolator version 3.1. 

Phosphopeptides were processed the same way except a HeLa-specific 

phosphopeptide HCD spectrum library was used(2) and phosphopeptides detected in 
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EncyclopeDIA searches were localized using Thesaurus (Searle et al in review). 

Overlapping DIA deconvolution. When using the overlapping DIA scheme, every 

spectrum in the entire raw file must be deconvoluted. In an effort to maintain 

consistency between analysis techniques, we used MSConvert to deconvolute RAW 

files in this study. However, we have also implemented a simple deconvolution 

algorithm in EncyclopeDIA that can be performed on-the-fly while reading spectra in a 

narrow I/O buffer. In a DIA data set, at each cycle (T) every MS/MS spectrum (STi) 

comprises fragments from precursors within the precursor isolation window (i). Spectra 

in consecutive half cycles are overlapped by 50%, such that precursors from the lower 

50% of the window in MS/MS spectrum STi should also be present in the previous/next 

half cycles lower offset spectra (S(T-1)(i-1) and S(T+1)(i-1)) while precursors from the upper 

50% of the window should also be present in the corresponding upper offset spectra 

(S(T-1)(i+1) and S(T+1)(i+1)).  We divide these windows into two bins and attempt to 

determine which fragments were derived from precursors in the upper half or the lower 

half using previous and next half cycles. Fragment ions that are found exclusively on the 

lower previous/next spectra (S(T-1)(i-1) and S(T+1)(i-1)) are assigned to the lower bin, while 

those found exclusively in the upper previous/next spectra (S(T-1)(i+1) and S(T+1)(i+1)) are 

assigned to the upper bin. Ions that are found in both sets of spectra are assigned 

proportionally to each bin where the proportion is set to the summed peak intensity for 

both spectra, e.g.: (S(T-1)(i-1) + S(T+1)(i-1)) / (S(T-1)(i-1) + S(T+1)(i-1) + S(T-1)(i+1) + S(T+1)(i+1)) for the 

lower bin. Peaks that are found in none of the previous and next overlapping spectra 

are assumed to be noise. New spectra are built from the deconvoluted peaks in both the 

lower and upper bins. Since this algorithm only needs to consider three half cycles at a 

time, deconvolution can happen quickly and in memory, with minimal impact on file 

reading speeds. 

Decoy library entries. A decoy library entry is created for every target library entry. To 

generate a decoy, first the target peptide sequence (except for digestion enzyme-

specific termini) is reversed, insuring that the decoy maintains its appearance as a 

tryptic peptide. Then fragment ions corresponding to amino acids (B/Y for CID, C/Z/Z+1 

for ETD) or their expected neutral losses due to modifications (e.g. phosphorylation) are 
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calculated for both target and decoy entries. If the precursor charge state is greater than 

+2, then +2 fragment ions are also considered. Uncommon neutral loss ions such as A-

type ions or loss of water or ammonia are not considered to limit the likelihood of false 

detections. Fragment ions that correspond to target sequence m/zs are transferred to 

new decoy m/zs such that their ion type and index are kept consistent. Delta mass 

errors in each fragment ion are also maintained to preserve consistency, and all peaks 

corresponding to the fragment delta mass window are transferred if the library is 

collected in profile mode. Ions that cannot be assigned to amino acids (such as those 

corresponding to precursor ions, background noise or interference) are not used by 

EncyclopeDIA. 

Ion weighting estimation. While searching, a unique background is calculated for each 

precursor isolation window using the prevalence of each fragment ion in the library 

spectra considered for that window (Supplementary Figure 10). This background helps 

estimate the interference frequency for any given ion and is used to weight some 

scores. This distribution is calculated as the frequency that any nominal m/z fragment 

ion (rounded by truncation) appears in entries from the library within the specified 

precursor window filter. m/z frequencies are calculated out to 4000 and a pseudocount 

is applied to every m/z bin to avoid “zero” frequency errors. 

Primary scoring and feature scoring functions. The primary score in EncyclopeDIA 

conceptually draws on the X!Tandem HyperScore. Unlike scoring functions like XCorr in 

Sequest, the HyperScore does not attempt to account or penalize for ions that do not 

match the peptide in question, making it ideal for DIA analysis where coeluting peptides 

are common. The score function is the weighted dot product of the intensities in the 

acquired spectrum (I) and the library spectrum (P), weighted by a correlation score 

vector (C), which is discussed in detail in the Chromatogram Library ELIB Generation 

section. Again, any ions in the library spectrum that do not correspond to the amino acid 

sequence are not considered in this score. The dot product is multiplied by the factorial 

of the number of matching ions: 
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Sometimes modified peptides (for example, oxidized peptides) are present in the same 

precursor isolation window as their unmodified forms. Since often these peptides share 

several fragment ions in common, we require that at least 25% of the score contribution 

for modified peptides come from ions that exclusively indicate that modification in cases 

where any of up to four isotopic peaks from the modified/unmodified peptide pairs fall in 

the same window. 

Several more computationally expensive secondary feature scores 

(Supplemental Table 5) are calculated once peaks are assigned. Briefly, the scores are 

divided to cover various classes of features: overall scoring (deltaCN, eValue, 

logDotProduct, logWeightedDotProduct, xCorrLib, xCorrModel), fragment ion accuracy 

(sumOfSquaredErrors, weightedSumOfSquaredErrors, numberOfMatchingPeaks, 

averageAbsFragDeltaMass, averageFragmentDeltaMass), precursor ion accuracy 

(isotopeDotProduct, averageAbsPPM, averagePPM), and retention time accuracy 

(deltaRT). The deltaRT score is only used after retention time alignment has been 

performed. All of these scores are fed to Percolator 3.1 for target/decoy FDR analysis. 

Retention time alignment. Accuracy and stability of retention time alignments is critical 

for EncyclopeDIA. Consequently, we designed a new algorithm that works analogous to 

how we visualize densities. This approach uses two dimensional kernel density 

estimates (KDE) that are much less prone to failure as compared to typical line fitting 

approaches such as LOESS in situations with grossly variable numbers of points and 

outliers. In this approach each X/Y coordinate is estimated as a symmetrical, two-

dimensional kernel based on a cosine-based Gaussian approximation. Following 

Silverman’s rule(3) the KDE bandwidth is set to: 

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ = 𝑁EFG ∙ HIJKLM(O)QIJKLM(R)
S

T  
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where N is the number of matched peptides. The kernel’s standard deviation is set to 

the bandwidth (analogous to full width at half max) divided by 2V2 ∙ 𝑙𝑛(2). This 

distribution is stamped at every X/Y coordinate on a 1000 by 1000 grid mapping from 

the lowest and highest retention times in both the X and Y dimensions. Once the KDE is 

calculated, the optimal fit is traced using a ridge walking algorithm that traces the mode 

of the KDE across retention time (Supplementary Figure 11). In this algorithm the 

highest point in the KDE is identified and the line is fit in increasing retention time by 

moving to the highest local grid point to the north (increased sample retention time), 

east (increased library retention time), or northeast. If north and east are both the 

highest local point, then the line moves to the northeast. This is performed iteratively 

until the line is fit across the increasing retention time. Then the same ridge walk is 

performed in decreasing retention time by moving south, west, or southwest. This 

approach forces a monotonic line (it can never find a negative retention time change) 

that follows where the most number of X/Y coordinates lie. 

Retention time alignment mixture model. After the alignment is performed, we use 

the delta retention time data to produce a mixture model to determine outliers. We 

calculate a Gaussian distribution representing “correct” retention time matches using the 

median delta retention time as the Gaussian mean and interquartile range divided by 

1.35 as the Gaussian standard deviation. We use a unit distribution to represent 

“incorrect” retention time matches. Starting where the distribution priors are set to 0.5, 

we run 10 iterations of a PeptideProphet-like mixture model(4) to fit the two distributions 

to the delta retention time data using an Expectation Maximization algorithm(5). Peptide 

matches with posterior error probability estimations that are less than 5% likely to be in 

the “correct” retention time distribution are considered outliers. 

Retention time alignment across experiments. For each passing peptide, we 

determine the experiment that produced the best scoring match and set that match 

aside as a “canonical” peptide representation. We chose the experiment with the most 

canonical peptides as an anchor and retention time align all of the experiments (and 

their canonical peptides) to that anchor. Mixture models (described above) for these 

retention time alignments are calculated and outliers are removed if the local-anchor 
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delta retention time is less than 0.1% likely to fit the mixture model. New retention times 

for outlier-removed peptides and peptides that were only assigned globally are inferred 

using the anchor retention time.  

FDR filtering peptide and protein detections across experiments. We concatenate 

peptide feature files from all experiments in a study and run Percolator 3.1 to perform 

global peptide FDR filtering at 0.01. Using this list of peptides, we generate a 

parsimonious list of protein groups using a greedy algorithm. Here peptides are 

assigned to protein groups with the highest protein score: 

𝑝𝑟𝑜𝑡𝑒𝑖𝑛	𝑠𝑐𝑜𝑟𝑒(𝑃) = 𝑁 −3(𝑃𝐸𝑃Y)	
Z

Y∈\

 

where the the sum of the peptide (p) posterior error probabilities (PEPp) is subtracted 

from the number of peptides (N) assigned to that protein (P). Protein groups are sorted 

on the lowest PEPp assigned to them(6) and then stringently target/decoy filtered to 

0.01 protein FDR. 

Automated transition refinement. Fragment ion interference is common when 

analyzing wide-window data. While fragment ions that show interference may still be 

useful for detecting peptides, those ions must be screened prior to quantitation to 

ensure an accurate measurement. We designed a new non-parametric approach to 

selecting the best ions for quantitation. We first Savizky-Golay smooth(7) the fragment 

ion chromatograms and then normalize them to have unit integrated intensity. To 

simplify the smoothing mathematics, we make the assumption that cycle times are 

consistent within the time frame of a single peak, thus removing the need for 

interpolation over retention time. After normalization the chromatograms of 

quantitatively useful ions line up while those of interfered ions will have either higher or 

lower unit-normalized intensities at different retention times. We calculate the median 

normalized intensity at each retention time point as an approximation for the peptide 

peak shape. We then determine peak boundaries by tracing descent of the median 

peak shape from the maximum normalized intensity on either side of the peak. The 
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boundaries are set to the minimum point at which the median peak trace starts 

increasing for >2 consecutive spectra or any point where the trace drops to less than 

1% of the maximum. At that point we calculate a Pearson’s correlation coefficient for the 

similarity between each fragment ion chromatogram with that of the median peak shape 

between those boundaries. Peaks that match with a correlation coefficient of at least 0.9 

are considered quantitative, while those that match with coefficients of at least 0.75 are 

considered useful for detection purposes. 

Fragment ion quantification and background subtraction. We calculate trapezoidal 

peak areas across Savitsky-Golay smoothed chromatograms. Analogous to Skyline, 

peak intensities are background subtracted by removing a peak area rectangle with a 

height equal to the largest intensity of either of the boundary edges. If the area of the 

rectangle is larger than the area of the peak the intensity is set to zero.  

Peptide quantification and transition choice across experiments. Transition 

interference changes on a sample by sample basis. We rank quantitative transitions 

(>0.9 correlation) based on the sum of their correlation scores across all experiments 

(effectively counting the number of samples in which they are observed). In addition, for 

each transition we calculate a global interference score: 

𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝑠𝑐𝑜𝑟𝑒(𝑡) = ∑ _`,b[d`,be0.g]b
∑ _`,b[d`,bi:0.g]b

  

Which represents the sum of transition (t) intensities (It,s) across experiments (s) that 

show interference (Ct,s<0.9) over those that do not (Ct,s≥0.9). Transitions with 

interference scores > 0.2 are deemed untrustworthy for quantification and are dropped. 

Peptide quantities are set to the sum of the top 5 transitions that pass these criteria, 

where peptides with fewer than 3 quantitative transitions are not carried forward. We 

require additional stringent criteria for our time course study. Specifically, we required 

that each peptide be measured in every replicate of at least one time point, and that 

cross experiment CVs (estimated using quantities from each time point corrected with a 

linear model) be less than 20%. 
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Protein quantification and statistical testing. Protein quantities were calculated as 

the sum of peptide quantities. We used Extraction of Differential Gene Expression 

(EDGE) 3.6(8) to statistically test for reproducible changes across the time course 

study. We performed k-means clustering of proteins that passed an EDGE q-value filter 

of 0.01 using 5 groups using 1,000 random starting points with 1,000 iterations. We 

estimated 5 groups by calculating the sum of within squared errors of each K model 

from 1 to 15 and estimating the first point where the change in the sum of within 

squared errors was flat (Supplementary Figure 12). 

Gene Ontology enrichment. We performed Gene Ontology enrichment of significantly 

changing proteins using the online PANTHER Overrepresentation Test(9) (release 

20170413) with the Homo sapiens Gene Ontology database (release 2017-10-24) using 

a background of all proteins consistently detected in our experiments. After removing 

terms with fewer than 20 proteins (to avoid weakly powered classes)  and more than 

1,000 proteins (to avoid vague classes), we applied Benjamini-Hochberg FDR 

correction and filtered enrichment tests to a FDR<0.05. 

EncyclopeDIA implementation and software/data availability. EncyclopeDIA is 

implemented in Java 1.8 as both a command line and a stand-alone GUI application. 

EncyclopeDIA supports the HUPO PSI mzML standard for reading raw MS/MS data, 

and can construct DLIB DDA-based spectrum libraries from Skyline/Bibliospec BLIB 

files, NIST MSP files, or HUPO PSI TraML files. Additionally, EncyclopeDIA results can 

be imported into Skyline(10) to enable further visualization and downstream processing. 

EncyclopeDIA is heavily optimized and multi-threaded such that searches can be 

performed on conventional desktop computers with limited RAM and processing power. 

We have released source code and cross platform (Windows, Mac OS X, Linux) 

binaries for EncyclopeDIA on Bitbucket at: https://bitbucket.org/searleb/encyclopedia 

under the open source Apache 2 license. All mass spectrometry mzML and RAW data 

files are available on the Chorus Project (Supplementary Table 3).  

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 7, 2018. ; https://doi.org/10.1101/277822doi: bioRxiv preprint 

https://doi.org/10.1101/277822


SUPPLEMENTARY REFERENCES 

1. Frewen BE, Merrihew GE, Wu CC, Noble WS, MacCoss MJ. Analysis of peptide 
MS/MS spectra from large-scale proteomics experiments using spectrum libraries. 
Anal Chem. 2006;78:5678-5684. 

2. Lawrence RT, Searle BC, Llovet A, Villén J. Plug-and-play analysis of the human 
phosphoproteome by targeted high-resolution mass spectrometry. Nat Methods. 
2016;13:431-434. 

3. Silverman BW. Density estimation for statistics and data analysis. CRC press; 
1986 

4. Keller A, Nesvizhskii AI, Kolker E, Aebersold R. Empirical statistical model to 
estimate the accuracy of peptide identifications made by MS/MS and database 
search. Anal Chem. 2002;74:5383-5392. 

5. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via 
the EM algorithm. Journal of the royal statistical society Series B (methodological). 
19771-38. 

6. The M, MacCoss MJ, Noble WS, Käll L. Fast and Accurate Protein False 
Discovery Rates on Large-Scale Proteomics Data Sets with Percolator 3.0. J Am 
Soc Mass Spectrom. 2016;27:1719-1727. 

7. Savitzky A, Golay MJE. Smoothing and differentiation of data by simplified least 
squares procedures. Analytical chemistry. 1964;36:1627-1639. 

8. Storey JD, Xiao W, Leek JT, Tompkins RG, Davis RW. Significance analysis of 
time course microarray experiments. Proc Natl Acad Sci U S A. 2005;102:12837-
12842. 

9. Mi H, Muruganujan A, Casagrande JT, Thomas PD. Large-scale gene function 
analysis with the PANTHER classification system. Nat Protoc. 2013;8:1551-1566. 

10. MacLean B, Tomazela DM, Shulman N et al. Skyline: an open source document 
editor for creating and analyzing targeted proteomics experiments. Bioinformatics. 
2010;26:966-968. 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 7, 2018. ; https://doi.org/10.1101/277822doi: bioRxiv preprint 

https://doi.org/10.1101/277822

