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ABSTRACT  

Most patients with advanced cancer eventually acquire resistance to targeted therapies, 

spurring extensive efforts to identify molecular events mediating therapy resistance. Many 

of these events involve synthetic rescue (SR) interactions, where the reduction in cancer cell 

viability caused by targeted gene inactivation is rescued by an adaptive alteration of 

another gene (the rescuer). Here we perform a genome-wide prediction of SR rescuer genes 

by analyzing tumor transcriptomics and survival data of 10,000 TCGA cancer patients. 

Predicted SR interactions are validated in new experimental screens. We show that SR 

interactions can successfully predict cancer patients' response and emerging resistance. 

Inhibiting predicted rescuer genes sensitizes resistant cancer cells to therapies 

synergistically, providing initial leads for developing combinatorial approaches to overcome 

resistance proactively. Finally, we show that the SR analysis of melanoma patients 

successfully identifies known mediators of resistance to immunotherapy and predicts novel 

rescuers. 

 

 

 

INTRODUCTION 

Despite major advances in cancer therapies, many patients eventually succumb to emerging 

resistance. Recent experimental and clinical studies have successfully characterized tumor-

specific molecular signatures of resistance to targeted therapies through DNA and RNA 

sequencing(1-8). However, these studies require the arduous collection and molecular profiling of 

paired pre- and post-treatment tumor biopsies(9) and cannot be conducted for drugs at early 

stages of their development. Thus, the development of a computational approach that can 
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expedite the identification of resistance determinants from existing large-scale cancer cohorts is 

warranted. 

 

We set out to predict synthetic rescue (SR) interactions (1-3, 10, 11), which are a 

generalization of suppressor interactions(12). Suppressor interactions, recently identified in yeast 

genome-wide(11), denote a functional interaction where following the inactivation of specific 

genes cells suppress additional genes to escape from harmful alterations(13-15). Their 

generalization, SR interactions, denotes a functional interaction where a fitness reducing 

alteration due to inactivation of one gene (termed the vulnerable gene) is compensated by altered 

activity (down-regulation or up-regulation) of another, rescuer gene(9, 16-18) (Figure 1a).  As 

rescue events are required to compensate for fitness reducing alterations occurring during the 

natural evolution of cancer (19), one may expect to detect the SR interactions forged in evolving 

tumors, even untreated ones(20-22). When a vulnerable gene is targeted by an anti-cancer 

drug(23), such SR interactions may manifest by changes in the activity of its interacting rescuer 

gene(s), thus mediating drug resistance. Both primary and adaptive resistance could be mediated 

by SR mechanisms. 

 

RESULTS 

We and others have recently developed computational approaches to identify synthetic 

lethal (SL) interactions(24-30), a widely studied class of genetic interactions. While SL 

interactions pinpoint molecular vulnerabilities in tumors that can be exploited to target them(31, 

32), SR interactions can rescue the cells from such vulnerabilities by actively modifying the 

interacting rescuers, leading to therapy resistance. As drugs mainly inhibit target genes, we focus 

herewith on two types of SR interactions (Figure 1a); (1) DU-SR interactions, where the 

Downregulation of a vulnerable gene is rescued by the Upregulation of a rescuer gene (2-4, 33-
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36); and (2) DD-SR (suppressor) interactions, where the Downregulation of a vulnerable gene is 

rescued by the Downregulation of a rescuer gene (10, 11, 19, 37, 38).  

 

 

The INCISOR Pipeline and the resulting Cancer SR networks 

 

 To predict SR interactions, we developed a new data mining approach, termed 

“IdeNtification of ClinIcal Synthetic Rescues in cancer” (INCISOR). Conceptually, INCISOR 

simply combines multiple lines of evidence – experimental, tumor transcriptomics, clinical and 

gene phylogeny – to ascertain if a gene pair is likely to be SR. Here we describe the algorithm of 

INCISOR that predicts DU-SR interactions, where the rescue event is mediated by over-

expression (DD-SR prediction follows an analogous approach, Methods, Suppl. Information 2, 

Fig. S1g). INCISOR analyzes in vitro screens and evaluates the extent which gene phylogeny, 

molecular, and survival data of patient tumor support the screens. It selects the clinically-relevant 

SR pairs that are supported by all four line of evidence outlined below. The specific order in 

which the following four steps are applied sequentially in INCISOR was chosen to minimize the 

computational cost (Figure 1b, see Methods for details): 

(1) In vitro essentiality screens: This step mines in vitro genome-wide shRNA(39-42) and drug 

response screens(43, 44) composed of 2.3 million measurements in 720 cancer cell lines. 

Adopting a recent approach(29), INCISOR systematically searches for candidate SR pairs.  In 

cell lines with a given gene knockdown, it searches the cell-line’s transcriptome for genes 

whose up-regulation is associated with increased cell growth. We term the first gene a 

vulnerable (V) gene and the second a candidate (DU) rescuer (R) gene. 

(2) Molecular survival of the fittest (SoF): By analyzing TCGA gene expression and somatic 

copy number alterations (SCNA) of 8,749 patients across 28 cancer types, INCISOR selects 

candidate SR pairs from step 1 that are observed in their rescued state (gene R is specifically 
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upregulated when gene V is inactive) significantly more than expected. This enrichment 

testifies to positive selection of samples in the rescued state, a key property of SR 

interactions. 

(3) Patient survival screening: This step further selects those candidate SRs whose rescued state 

in TCGA tumor samples exhibits worse patient's survival, as the reduced survival can serve 

as an indicator of increased tumor fitness. INCISOR uses a stratified Cox proportional hazard 

model to establish this relation while controlling for confounding factors including cancer 

type, sex, age, genomic instability, tumor purity(45), and ethnicity. 

(4) Phylogenetic screening:  Because functionally interacting genes known to co-evolve(28) in a 

species, we select SR pairs composed of genes with high phylogenetic similarity. The top 5% 

of phylogenetically similar pairs among the ones passing the previous steps are chosen as the 

final set of putative SR pairs. 

 

  The resulting DU-SR network, which is composed of all the pairwise interactions that 

pass all four steps described above, is scale-free (Figure 1c, Table S2,3) and consists of 1259 

genes and 1195 interactions (see Suppl. Information 2.1 for DD-SR; interactive networks 

available online, Methods; Table S4,5). Gene enrichment analysis revealed that the network 

nodes are enriched in cancer and resistance pathways (Suppl. Information 3.5-3.7). We also find 

that the activation of predicted rescuers increases with advanced cancer stages (Suppl. 

Information 3.9,  Fig. S2g,h).  
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Figure 1. The INCISOR pipeline and the resulting SR network: (a) The phenotypic effects of 

altering interacting gene partners in SL, DD-SR, and DU-SR interactions. (b) The four inference 

steps of INCISOR and the datasets analyzed (Methods, SoF stands for the survival of the fittest). The 

SR property tested (in red) and rationale (in brown) of each step are also displayed. (c) The resulting 

DU-SR network (purple nodes denote vulnerable genes and green rescuer genes; the size of nodes is 

proportional to the number of interactions they have). The complete network is provided in Fig. S1f. 

 

Benchmarking INCISOR against a collection of published DU-SR Interactions 

We first benchmarked the DU-SR predictions via a comparison to genes whose over-

expression rescues cancer cells,  via a set of genes that were previously shown to mediate cancer 

drug resistance(2, 36, 46-52) (Table S9, Methods, Suppl. Information 4.1). INCISOR successfully 

identified these published rescuer genes with AUCs of 70-85% (mean precision of 46% at 50% 

recall; Fig. S3o, Methods, Suppl. Information 4.1). We additionally tested and successfully 

validated predicted SR interactions using published data of patient-derived in vitro (53) and 
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mouse xenograft models (54) (Suppl. Information 4.4, 4.5).  As large cohorts of published rescue 

interactions are still quite scarce, we turned to conduct four new in vitro experiments to further 

test emerging rescue predictions of INCISOR of interest. 

 

Experimental testing of predicted DD-SR interactions of mTOR in Head & Neck 

Cancer cell lines 

Our first experiment tested DD-SR interactions involving mTOR, a key growth regulating kinase 

in Head & Neck Cancer.  To test the predicted rescue interactions involving mTOR, we knocked 

down (KD) 2200 genes in an experimental screen in a head and neck cancer cell line (HN12) and 

experimentally identified the (DD) rescue events occurring due to a subsequent mTOR inhibition 

by rapamycin treatment. 45 of these KDs, about 2.1%, were rescued by mTOR inhibition in the 

screen (Table S10, Methods). Independently, we applied INCISOR to identify genes that are 

predicted to be rescued by mTOR inhibition in a statistically significant manner (FDR = 0.05,). 

INCISOR predicted 17 such DD rescuer genes (Methods), 11 of which indeed overlapped with 

the 45 interactions identified experimentally (Fig. S5b). This yields a precision level of ~65% and 

recall of ~25% (Figure 2a, false positive rate < 0.003), a 31-fold increase over the 2.1% 

precision expected by chance. The validated rescuers were enriched with transcription factors, 

FoxO signaling and stress response genes (Table S30). We further validated the predicted DD-SR 

interactions of mTOR via multiple published in vitro shRNA(39-42) and drug response 

screens(43, 44) (Suppl. Information 4.2, 4.3). 

 

Experimental testing of predicted DU-SR rescuers via Drug Combinations and 

siRNA in Head & Neck cancer 

In the second experimental validation, we tested the ability of predicted DU-SRs to guide new 

synergistic drug combinations, where the combination of drugs hits both a primary cancer drug 
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target and its predicted DU rescuer (Methods).  We tested seven such predicted combinational 

therapies across five different head and neck cancer cell lines. We find that 5 out of 7 

combinations predicted are indeed synergistic (Figure 2b, Methods, Suppl. Information 4.7, Fig. 

S6,7). One validated pair involves PI3KCA and mTOR, which are important genes in the 

PI3K/AKT/mTOR pathway. PIK3CA activates AKT by converting PIP2 to PIP3(55), promoting 

cell growth and survival. mTOR also promotes cell growth and can activate AKT independent of 

PIK3CA(56), thus might compensate for PIK3CA inhibition and explain their synergism.  

 

In a third experiment, we conducted small-scale siRNA experiments to confirm that the 

synergism observed in above drug combinations is due to direct gene targeting and not due to off-

target effects of drugs. To confirm that enhanced sensitivity of the PI3KCA inhibitor, BYL719, is 

indeed due to mTOR inhibition we directly targeted mTOR by siRNA and showed BYL719 

enhanced sensitivity in 4 of these cell lines (Suppl. Information 4.7, Fig. S8). Similarly, we also 

performed by siRNA experiments to confirm that the enhanced sensitivity of Dasatinib is due to 

targeting of PIK3CA (Suppl. Information 4.7, Fig. S8).  

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 18, 2018. ; https://doi.org/10.1101/284240doi: bioRxiv preprint 

https://doi.org/10.1101/284240


	 9	

Figure 2: Large-scale in vitro experiments testing predicted SR interactions in Head and 

neck cancer (a) Evaluation of predicted SR (DD) interactions in a large-scale shRNA H&N HN12 

cell-line screen.  The Y-axis displays the precision and recall of INCISOR-predicted SRs in identifying the 

45 experimentally determined SR-DD rescuers of mTOR. The vertical dashed line denotes a threshold of 

FDR = 0.05 over the predicted INCISOR interaction scores. The stars indicate precision and recall at a 

threshold level where INCISOR identifies 75 genes as SR-DD rescuers. The horizontal line (in gray) shows 

the precision expected by the random chance. The inset displays top 10 predicted genes whose knockdowns 

are rescued by mTOR inhibition. (b) Experimental validation of predicted synergistic SR-based 

combinational therapies in head and neck cancer: A table summarizing the experimentally observed 

synergism between primary drugs and their predicted rescuer-targeting treatments in 5 HNSC cell lines, 

based on drug treatment experiments.  Synergism was estimated using a standard Fa-CI analysis. The table 

displays the average combination index (CI; synergism CI < 1, additivity effect CI = 1, antagonism CI > 1, 

NAN indeterminate CI) at 50% growth inhibition (Fraction affected). Combinations that are synergistic are 

colored blue (black otherwise) for each cell lines tested. The inset shows an example of CI calculation for 

BYL719 and Dasatinib combination in HN12 cell lines based on the corresponding dose matrix (number 

indicates % cell viability at 48h, n = 3), and Fa-CI curve. 

 

Targeting predicted DU-SR rescuers of DNMT1 sensitizes resistant NSCLC cell-

lines to DNTM1 inhibitor 

In the final and fourth in vitro experiment, we tested if targeting predicted DU rescuers could 

sensitize therapy-resistant tumor cells. We picked DNMT1 to test this hypothesis as it is a major 

hub in the DU-SR network (Figure 1c) and a key oncogene in non-small cell lung cancers 

(NSCLC). We studied 18 NSCLC cell lines (Methods) that are insensitive to Decitabine (a 

DNTM1 inhibitor). In each of these cell lines, we pharmacologically inhibited the 13 top 

predicted DU rescuers of DNTM1. A BLISS(57-59) independence model was used to estimate 

synergism, and its significance was determined by comparing expected vs. observed drug 

response of drug combinations across all doses tested (Methods). Targeting the predicted rescuers 
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synergistically sensitized these cell lines to Decitabine in 71% of the 234 (13 rescuers x 18 cell 

lines) conditions tested. In contrast, pharmacologically inhibition of two top predicted DD 

rescuers of DNMT1 showed the opposite, antagonistic effects, in 64% of the 36 conditions tested, 

with no synergistic effects, as expected (Figure 3a). Both the observed synergistic and 

antagonistic effects across cell lines were significant compared to control drug tested (P < 2.2E-

16). We further confirmed the ability of predicted SR interactions to predict resistant tumor 

sensitization in a large published patient-derived cell line collection(59)  and mice xenograft (54) 

(Suppl. Information 5.3, 5.4). 

 

 The effects of some of the SR interactions validated in drug combination screen 

described above can be explained by their known biology. E.g.,: (a) First, DNMT1 epigenetically 

silences E-cadherin(60). The silencing results in B-catenin accumulation in nucleus(61) that is 

necessary for maintaining cancer cell stemness. WNT signaling, however, was shown to regulate 

B-catenin(62) independently, explains why WNT1 activation rescues DNMT1 inhibition (Figure 

3b). (b) Second, DNMT1 also silences RASSFA1, which in turns stabilizes the proto-oncogene 

MDM2(63). Thus, concomitant over-expression of MDM2 could compensate for the loss of 

RASSFA1 due to DNMT1 inhibition. (c) Third, CDK1 over-expression may compensate 

DNMT1 inhibition because CDK1 is known stabilize DNMT1 by phosphorylating it(64). (d) 

Finally, PAK1 may compensate for DNMT1 inhibition because it independently regulates cell 

adhesion and motility.  These results testify that some rescue interactions may be explained by 

molecular interactions between genes proximally located on signaling pathways (17, 18) (Figure 

3b).  However, many of the emerging rescue interactions are not, either due to our limited 

knowledge of signaling pathways or due to functional interactions that go beyond the scope of the 

signaling pathways.  

Rescuer and vulnerable genes share functional annotations  
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Our observation that signaling architecture may explain a subset of SR interactions led to 

the hypothesis that rescuer and vulnerable genes of SR networks may share functional 

similarities.   Several lines of evidence support this hypothesis. First, Gene Ontology annotations 

(GO) of rescuers of the DU-SR network are similar to the GO annotations of their partners 

(Figure 3c). The similarity observed is significantly higher compared to both (i) random network 

interactions controlled for degree distribution (P < 3E-90), and (ii) shuffled network interactions 

generated by randomly shuffling the interactions between gene pairs of the DU-SR network (P < 

6E-33). Second, DU-SR rescuer genes are significantly closer (P < 2E-66 and P < 1E-16 

compared to the random network and the shuffled network) to their predicted partners in the 

protein interaction (PPI) network (Figure 3d). Notably, DU-SR interactions mediated by direct 

(physical) protein interactions are enriched in cancer drivers (Fisher exact test P < 6.5E-8, Suppl. 

Information 3.4). Third, using the STRING database, which integrates multiple resources of 

direct and indirect associations of protein interactions, we find that partner genes of DU-SR 

network are more likely to be functionally related (Figure 3e): Rescuer genes are significantly 

closer (P < 2E-76 and P < 6E-19 compared to the random network and the shuffled network) to 

their predicted partner gene in STRING network.  Moreover, the observed functional similarities 

between DU-SR pairs are not merely due to co-expression between gene partners; shuffled DU-

SR gene pairs with similar co-expression levels as those of predicted DU-SR pairs exhibit 

significantly less GO similarity (P < 5E-05).  An analogous functional similarity was also 

observed for gene pairs in DD-SR network (Suppl. Information 3.8, Fig S2e). 
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Figure 3. Large-scale experiments testing predicted SRs in NSCLC and studying their functional 

similarity. (a) Experimental testing of the predicted SR (DU) rescuers of DNMT1 via drug 

combination experiments in 18 NSCLC cell lines insensitive to Decitabine.  The matrix displays drug 

interactions between Decitabine, a DNMT1 inhibitor, and inhibitors of its predicted rescuer genes (X-axis) 

across 18 NSCLC cell lines (Y-axis) that are insensitive to Decitabine. Row labels present rescuer genes 

and their inhibitors. Colors in the matrix show whether the interactions found are significantly synergistic 

(red), antagonistic (green) or non-significant (in gray). Values in the matrix show average synergism (<1 

synergism and >1 antagonism, Methods). 13 predicted SR-DU rescuers (red lines), two predicted DD SR 
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rescuers (green lines) of DNMT1 and one random control (JAK3i) were tested. (b) Some SR interactions 

of DNMT1 occur between genes proximally located on the signaling pathway. DU rescuer genes of 

DNMT1 are colored blue. (c-e): Functional similarities between gene pairs in the DU-SR network. 

Comparison of functional similarities between interactions in (i) the DU-SR network (ii) Random-pairs: the 

network is generated by random pairing between protein-coding genes, having a degree distribution similar 

to that of the DU-SR network (iii) shuffled-pairs: the network is generated by shuffling pairing of the DU-

SR network.  Functional similarities of genes in each pair were evaluated in terms of their: (c) GO 

similarity, (d) distance between the paired genes in PPI network, and (e) distances in the STRING network.  

 

SR interactions predict drug response in patients  

 We next turned to evaluate the ability of INCISOR to predict the response of cancer 

patients to cancer drug treatments(65, 66) by analyzing the transcriptomics of their pre-treated 

samples.   To this end, we applied INCISOR to identify the rescuers of (the targets of) 28 FDA-

approved cancer drugs (for which treatment response data is available in the TCGA collection). 

During the identification of SR interactions of targets of a given drug, we removed from TCGA 

patients who were administered with that drug, to remove any potential circularity (Methods, Fig. 

S10e). To predict the response of an individual patient’s to a given drug, we defined the drug-

tumor SR-score as the number of upregulated rescuers of the drug’s targets in that patient’s tumor 

(Methods). We reasoned that a drug is expected to be less effective in tumors where many of its 

DU rescuers are upregulated. Using a Cox model to control for confounding variables (Methods), 

we find that the SR-scores predict the patients’ survival after treatment in a statistically 

significant manner for 22 of the 28 drugs tested (Figure 4a shows the result for the 26 drugs 

tested with hazard ratios > 1, Methods).  Evaluating the patients’ response in terms of tumor size 

(based on the RECIST criteria), we find that the non-responders exhibit significantly higher drug-

SR rescue scores than the responders for 14 out of 19 drugs for which tumor size information was 

available, as expected (Figure 4b, Methods).  An analysis of independent (non-TCGA) 
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ovarian(67) and breast cancer datasets(68) further shows that SRs successfully predict both 

primary and acquired therapy resistance (Suppl. Information 5.2). In contrast, a randomly 

shuffled network (generated by randomly shuffling rescuer genes for each drug target, 

maintaining the original SR node degree) fails to predict patients’ response to any of the drugs 

tested, both in the survival based and response based analyses. Drug-SLs inferred from 

DAISY(27) also showed no predictive signal here (log rank P=0.49). Obviously, INCISOR 

cannot predict response to drugs without known gene targets. 

 

 

 

 

Figure 4. SR networks predict cancer drug response in patients. (a) Prediction of drug response in 

terms of survival: The Y axis displays the hazard ratio of patients as a function of upregulation of 

predicted rescuers (Methods). (b) Analyzing drug response in terms of tumor size reduction (RECIST 

criteria): the predicted DU-SR rescuers of drugs are differentially over-expressed in non-responding 

tumors.  The Y-axis denotes the fraction of the predicted drug-specific rescuers that are over-expressed (out 

of all predicted rescuers of that drug) in tumors of responders (red) and non-responders (blue). Significant 

results are marked by stars (Wilcoxon Rank sum P < 0.05, aggregate Wilcoxon rank sum is P < 2.2E-16, 

Methods).    
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Comparative evaluation of INCISOR’s performance in predicting drug response vs. 

other recent large-scale genomic methods 

We compared the performance of INCISOR with other extant methods for predicting cancer drug 

response. Iorio et al.(43) identified cancer functional events (CFE) and demonstrated that they 

could be used to predict drug response of 265 drugs in vitro.  Similarly, Mina et al. (69) identified 

genetic interactions involving these CFEs and demonstrated they predict drug response in cell 

lines. To systematically evaluate whether these could also determine drug response in patients, 

we used the occurrence of CFEs and CFE interactions in patients' tumor as features to build 

supervised models (Methods) predicting the response for each drug in TCGA. We analyzed 22 

FDA-approved cancer drugs in TCGA, including 19 targeted drugs shown in Figure 4b and three 

drugs without known gene targets (Carboplatin, Cisplatin, and Oxaliplatin). As shown in Figure 

5, the predicted CFEs of (Iorio et al.) significantly predict drug response for 8, which includes six 

targeted and two non-targeted therapies drugs. However, the CFE-related genetic interactions 

identified by Mina et al. do not have a predictive signal for any of these drugs in patients. 

INCISOR, in turn,  outperforms these other methods for 15 out of the 22 FDA drugs analyzed 

(Figure 5). Notably, INCISOR predictions are not based on any supervised training on specific 

drug response training data and are based on the interactions inferred solely from pre-treated 

samples (supervised predictors of drug response based on INCISOR-predicted rescuers are on 

average  9.5% more accurate than unsupervised predictors, Fig. S10j).  
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Figure 5: Comparative analysis of INCISOR: A comparative study of INCISOR's performance (red 

bars) in predicting patients drug response (TCGA) compared to different CFE based approaches (other 

colors). The Area under the curve (Y-axis) displays the predictive performance of different methods for 22 

FDA approved drugs in TCGA. Predictions of CFE (cancer functional events) identified by Iorio et al. are 

displayed separately for CFEs inferred from mutation, methylation, and SCNA data.    

 

SR interactions determine efficacy of immune checkpoint blockades in patients  

Finally, we hypothesized that SR-mediated transcriptomic changes mediate resistance to 

Immune checkpoint blockade (ICB)(20). Accordingly, we turned to study the ability of INCISOR 

to predict SRs that can account for key transcriptomic changes occurring in patients' tumors 

following checkpoint immunotherapy and to study the match between the rescuers predicted and 

key resistance modulators identified in mouse studies. To predict the SR rescuers of the 

checkpoint genes, we removed in vitro essentiality screens (step 1) from the INCISOR pipeline as 

they are conducted in in vitro systems lacking an immune component (Methods). We find that the 

pretreatment expression levels of INCISOR predicted rescuers of PD1 successfully predict 
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resistance to PD1-blockade in melanoma patients (Figure 6a, Prat et al. (70) & Hugo et al. (71), 

Suppl. Information 5.5). Similarly, the pretreatment expression of the INCISOR predicted 

rescuers of CTLA4 successfully predicts patients’ resistance to CTLA4 blockade in melanoma 

patients (Figure 6a, Van Allen et al. (72)).  

 

To further study the role of SRs in immunotherapy, we consented 40 patients with 

metastatic melanoma in ongoing clinical trials for treatment with different ICB therapies and 

carried out whole transcriptomics profiling of their 90 matched pre-, on- and post-treatment tumor 

biopsies (Methods, Data available online). 40 biopsies were taken from patients treated with anti-

PD1/anti-PDL1 (collated together in the analysis and referred as anti-PD1), 43 biopsies with anti-

CTLA4, and 17 with a combination of anti-CTLA4 and anti-PD1 (patients who sequentially 

underwent from first ICB regiment to another were also considered for individual analysis of the 

first ICB). Notably, post-treatment biopsies were performed when the patients stopped 

responding to the ICB, denoting the emergence of resistance. 

 

We find that the top INCISOR predicted DU (DD) rescuers of anti-PD1 therapy 

(Methods) are preferentially upregulated (downregulated) in anti-PD1 post-treatment tumor 

biopsies, as expected (paired Wilcoxon p <4E-14) (Figure 6b top and bottom panels, their 

pathway enrichment is provided in Supp. Table S28). Notably, the knockdown of 7 of the 17 

predicted upregulated DU rescuers of anti-PD1 therapy has been recently found to promote 

melanoma's sensitivity to anti-PD1 blockade in mice models (Hypergeometric enrichment of p < 

8E-17; colored red in Figure 6b)(73). Three of 21 the predicted DD rescuers have also been 

identified in that study as enhancing resistance, as expected (Hypergeometric enrichment of p < 

5.5E-7). More specifically, our results provide evidence in humans that support the mice findings, 

that gene inactivation of IFNGR1, RABEPK and MIF induce tumors resistant to PD1 blockade 

and gene inactivation of PDIA3, STUB1, CDC7, UBQLN1, NCSTN, GNG12 and GPI  co-
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simulates immune response to PD1 blockade in melanoma. Interestingly, we identify CTLA4 as a 

DU rescuer of anti-PD1 therapy, supporting the rationale of their combination. Other notable 

upregulated DU rescuers of PD1 are the immune checkpoint genes VTCN1 and TOP2A.  The 

latter suggest combinations involving DNA topoisomerase inhibitors such as Doxorubicin and 

Epirubicin. Analogously, top predicted DU (DD) rescuers of anti-CTLA4 therapy were up-

regulated (downregulated) in post-treatment tumor biopsies derived from patients treated with 

anti-CTLA4 therapy ((Paired Wilcoxon p < 5E-11, Figure 6c; see Table S29 for pathways 

enrichment). Notably, we find that anti-CTLA4 blockade can be DU-rescued by a class of 

inhibitory checkpoints -- Killer-cell immunoglobulin-like receptors (KIR2DL2 & KIR3DL3), 

which are known to interact with MHC1 and facilitate cell death(74), putting forward the 

potential benefits of combinations targeting these genes. Analyzing samples of post-treatment 

combination therapy involving both anti-PD1 and anti-CTLA4 we find that many DU/DD 

rescuers respond as predicted but their individual response is evidently weaker (Figure 6d).  

Notably, the expression of some of the rescuers is altered in the predicted direction already in on-

treatment tumor biopsies (Fig. S10h,i), suggesting that these alterations are selected for and thus 

functionally significant (this does not occur for randomly chosen genes that are not rescuers (P < 

2.2E-16)).  
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Figure 6.  (a) SR predicts resistance to PD1/PDL1 and CTLA4 blockade in patients.  Cross-validation 

accuracy of SR-based supervised predictors in predicting resistance to PD1 (Prat et. al. & Hugo et. al.) and 

CTLA4 blockade (Van Allen et al.), reported in terms of the corresponding Receiver Operating (ROC) 
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curves. Expression of the predicted rescuer genes of PD1 (CTLA4) was used to train an SVM supervised 

predictor of PD1 (CTLA4) blockade. For comparison, we also display the ROC curves of supervised 

predictors trained on the expression of all genes (shown as "All") and on the expression of genes selected 

randomly and controlled for the number of rescuers predicted (shown as "Random").  (b-d) The 

transcriptomic alterations of rescuer genes post PD1/PDL1 and CTLA4 blockade in patient tumor 

biopsies: Their post (vs. pre) treatment expression changes of DU/DD rescuers after anti-PD1 (b), anti-

CTLA4 (c), and PD1 + CTLA4 combination therapies (d). Each panel displays the expression fold change 

of each predicted rescuer gene (rows) for different tumor samples (columns) and the P-value of over-all 

paired Wilcoxon test of the expression changes observed in paired samples. Significantly altered up/down-

regulated genes are marked by (*). Genes marked in red are those whose CRISPR knockdown enhances 

melanoma sensitivity to anti-PD1 blockade in mice models.   

 

DISCUSSION 

In summary, INCISOR prioritizes clinically relevant SRs amongst candidate SRs 

emerging from in vitro screens, by analyzing functional genomic and clinical survival data in an 

integrated manner. Due to the scarcity of published gold standards of SR interactions, we 

conducted new large-scale in-vitro experiments to validate our predictions. The paucity of known 

rescue interactions in the literature further underscores the importance of developing tools like 

INCISOR. Overall, INCISOR attained precision levels of an average 48% (at 50% recall) in the 

identification of true SR interaction across all published and new experiments. INCISOR 

predictions are limited to targeted therapies. Finally, and importantly, we show that SR mediates 

both primary and adaptive resistance in patients: e.g., we show that the pre-treatment expression 

data of TCGA tumors is predictive of their response to drug treatments (primary resistance, 

Figure 4) and on the other hand, SRs can predict the post-treatment alterations following 

checkpoint inhibitors (adaptive resistance, Figure 6b-d). 
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Like many genome-wide approaches, INCISOR has several limitations, including pitfalls 

arising from gene co-expression and from correlations in the copy number alterations of proximal 

genes, which may lead to the inference of false positive SRs. We have verified that the SR 

interactions are not biased towards genes lying on the same chromosome (Suppl. Information 

2.3). We aimed to mitigate false positives in the design of INCISOR by selecting candidate SR 

pairs only when they are additionally supported by the shRNA and phylogenetic data that testify 

to causal rescue effects. Although INCISOR explains molecular mechanism of resistance to 

targeted therapies, it fails to capture resistance mechanism of untargeted therapies. Further, for 

many drugs, resistance can emerge via mechanisms independent of SRs, e.g., resistance due to 

alteration in drug efflux. Finally, as this is the first genome-wide study of cancer SR interactions, 

we focused on identifying SRs that are common across many cancer types. Future studies, 

however, will further identify cancer type-specific SR networks as more data accumulates. 

 

Multiple rescuer genes could rescue and cause resistance to a given cancer drug. Three 

different strategies could be adapted to prioritize gene target amongst such multiple rescuers to 

maximize their clinical benefit: First, INCISOR quantifies that extent of the rescue based on its 

clinical significance observed in patients, which is determined specifically and may be different 

for each rescuer gene. This could be used for prioritization. Second, post-treatment transcriptomic 

data from a patient’s tumor, if available, could be used to further narrow down rescuer alterations 

specific to that tumor.  Finally, combining experimental testing in a patient’s tumor material using 

organoids or PDXs with INCISOR predictions would be a powerful approach to systematically 

identify true clinically relevant rescuer among the multiple predicted SR rescuers. 

 

This study has focused on the genome-wide prediction of SR interactions. Evidently, 

different signaling functional and physical interactions may be manifested in these rescue 

interactions (Figure 3b-e). SRs are much less known and studied compared to another type of 
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genetic interactions, known as synthetic lethal (SL) interactions. The difference between SL 

interactions and DD-SR interactions is obvious, by definition. Their difference from DU-SR 

interactions is more intricate: It manifests itself in cells where a given gene is in its wild-type 

state and its partner interacting gene is knocked down; if the two genes SL-interact there will be 

no reduction in cellular fitness in that case, but if they DU-SR interact, then the knockdown will 

reduce cellular fitness (as the rescuer is not up-regulated).  Consequently, our results demonstrate 

that a given cancer drug may be effective in cells where its predicted rescuer is in its wild-type 

state but may become resistant as it is over-expressed. As expected we found no overlap between 

predicted DU-SR interactions and SL interactions, predicted by a similar data-mining approach 

(30) (Suppl. Information 2.2).  

 

In summary, we present a novel approach to tackle resistance to targeted and immune 

cancer therapy by mining thousands of tumors available in TCGA to infer cancer-specific SR 

interactions. We conducted cell lines experiments demonstrating that targeting predicted DU-SRs 

could sensitize therapy-resistant tumor cells, identifying synergistic drug combinations. As SR 

interactions are derived directly from analyzing the patients' clinical samples, they are more likely 

to be clinically relevant(8) than findings based on cell-screens and mouse models. Our results lay 

a basis for the development of new combination therapies based on the molecular characteristics 

of an individual patient’s tumor to proactively overcome resistance in a precision based manner. 

 
 

METHODS 

The INCISOR pipeline for identifying SR interactions 

INCISOR identifies candidate SR interactions employing four independent statistical 

screens (Figure 1b), each tailored to test a distinct property of SR pairs. We describe here 

the identification process for the DU-type SR interactions (Down-Up interactions, where 
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the up-regulation of rescuer genes compensates for the down-regulation of a vulnerable 

gene (e.g., by an inhibitor compound, Fig. S1a). Then we discuss how to modify DU-

INCISOR to detect the other SR types (DD, UD, and UU). We identify pan-cancer SRs 

(that are common across many cancer types) analyzing gene expression, somatic copy 

number alteration (SCNA), and patient survival data of TCGA (75) from 8,749 patients 

in 28 different cancer types. INCISOR also integrates predictions from TCGA data with 

genome-wide shRNA(39, 40, 42) and drug response (43, 44) screens in around 720 cell 

lines composing in the total of 2.3 million shRNA measurements. The same approach can 

be used to identify cancer type specific SRs, in an analogous manner. INCISOR is 

composed of four sequential steps (an FDR threshold was set 0.05 for each step):  

(1) In-vitro screening (using in vitro cancer data): Mining large scale in vitro shRNA and 

drug response datasets, INCISOR examines all possible gene pairs to identify putative 

SR. The screen adopts an analogous approach (29) to mine shRNA screen in a reference 

collection of cell line to identify pairs where vulnerable genes V and rescuer genes R 

fulfill the following two conditions: (i) knockdown of the V exhibits an increase in cell 

growth in cell lines with R upregulated (relative to cell line with R downregulated), and 

(ii) knockdown of the R is lethal in cell lines where V downregulated. We use both gene 

expression and SCNA data to identify such putative SR as follows: We divide the cell 

lines into those having high or low expression of gene R and compare the cell growth of 

V in these two the groups using a Wilcoxon rank sum test. Similarly, we determine 

conditional essentiality of R in two groups with high and low expression of R.  SCNA 

based conditional essentiality is determined analogously, where the groups are 

determined based on SCNA of V or R. Pairs that pass both tests (i) and (ii) either using 

gene expression or SCNA are referred as putative SR.  

 

Analogously, Drug-response screen is based on the condition that treatment of a 

drug inhibitor targeting vulnerable gene V will be resistant in cell lines where its rescuer 

gene R is active. Accordingly, we integrate gene-expression and SCNA of cell lines with 

drug response to identify such putative SR pairs that exhibit significant in vitro 

conditional resistance. Putative SR pairs significant either in shRNA screen or Drug-

response screen following the standard FDR correction (76) are passed on to the next 

screen. 
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(2) Molecular survival of the fittest (SoF, analyzing tumor molecular data): This screen 

mines gene expression and SCNA data of the input tumor samples to identify vulnerable 

gene (V) and rescuer gene (R) pairs having the property that tumor samples in the non-

rescued state (that is samples with underactive gene V and non-overactive gene R, 

activity states 1 and 2 in Fig. S1a) are significantly less frequent than expected, whereas 

samples in the rescued state (that is samples with under-active gene V but over-active 

gene R) appear significantly more than anticipated (testifying to the positive selection of 

rescued state of the pairwise interaction). The significance of the enrichment/depletion of 

rescued/non-rescued state is determined via a hypergeometric test followed by standard 

false discovery rate correction. A gene is defined as inactive (respectively, overactive) if 

its expression level is less (greater) than the 33rd-percentile (67th-percentile) across 

samples for each cancer type (to control for cancer-type). Otherwise, it is considered to 

have a normal activation level. Out of total N tumor samples, if n1 (n2) is the number of 

samples in the rescued/non-rescued state using specific activation level of gene R (V) 

independently, k is the number of samples in the activity state using both genes R and V, 

the significance of enrichment/depletion of the observed number of samples in the 

rescued/non-rescued state is determined using hypergeometric test: 

ℎ𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑘, 𝑛1, 𝑁, 𝑛2 . Enrichment/depletion of the activity state using SCNA 

is set analogously. Pairs significant (FDR < 0.05) in both SCNA and mRNA are passed 

on to the next screen. 

 

(3) Clinical screening (using patient survival data): This step selects a gene pair as SR if it 

has the property that tumor samples in rescued state (that is samples with underactive 

gene V and overactive gene R) exhibits significantly poorer patient's survival and 

samples in non-rescued state tumors exhibits better survival than rest of the other 

samples. Specifically, INCISOR uses a stratified Cox proportional hazard model to check 

such observed associations of SR rescued/non-rescued state are significantly larger 

compared to the expected additive survival effect of their individual genes, while 

controlling for confounding factors including cancer type, sex, age, genomic instability, 

tumor purity, and race (shown here for expression analysis for an activity state A and a 

similar model is used to analyze SCNA data): 

  
h3 t, patient ~h;3 t exp β>	I V, R + 	βDg V + βF	g R +	βG	age + βH	GII + βJ	TP ,						 1  
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Where g is a variable over all possible combinations of patients' stratifications based on 

cancer-type, race, and sex. h3  is the hazard function (defined as the risk of death of 

patients per unit time), and h;3 t 	is	the	baseline-hazard function at time t of the gth 

stratification. The model contains five covariates: (i) I V, R  : indicator variable 

representing if the patient’s tumor is in the activity state A, (ii) g(V) and (iii) g(R): gene 

expression of  V and R, (iv) age: age of the patient, (v) GII: genomic instability index of 

the patient, and (vi) TP: tumor purity. The βs are the unknown regression coefficient 

parameters of the covariates, which quantify the effect of covariates on the survival.  

All covariates are quantile normalized to N(0,1). The  βs are determined by standard 

likelihood maximization (77, 78) of the model using the R-package "Survival."  The 

significance of β>, which is the coefficient for the SR interaction term is determined by 

comparing the likelihood of the model with the NULL model without the interaction 

indicator I A, B  followed by a likelihood ratio test and Wald’s test (77, 78), i.e., 

hTUVV,3 t, patient ~h;3 t exp 	βDg V + βF	g R +	βG	age + βH	GII + β6	TP . 								 2  

The p-values obtained are corrected for multiple hypothesis testing. We pass a putative 

SR pair to the next screen if its rescued state exhibits significantly poorer survival and 

the non-rescued state exhibits better survival both regarding mRNA and SCNA (all FDR 

< 0.05).   

 

Tumor purity is obtained for each TCGA samples from Aran et al. (45). They 

combined following four methods to estimate an aggregate estimate of tumor purity: (i) 

ESTIMATE(79), (ii) ABSOLUTE(80), (iii) LUMP; and (iv) IHC. We control for tumor 

purity estimated from each of these four methods in addition to the aggregated tumor 

purity in the survival analysis.   

  

(4) Phylogenetic profiling screening: we further filter and select SR pairs composed of genes 

having high phylogenetic similarity, motivated by the findings of Srivas et al. (28). This 

is done by comparing the phylogenetic profiles of the SR-paired genes across a diverse 

set of 87 divergent eukaryotic species adopting the method of Tabach et al. (81, 82). The 

resulting matrix of the phylogenetic scores of all candidate genes is clustered using a non-

negative matrix factorization (NMF) (83), and the Euclidian distance between the cluster 

membership pattern of each gene in given candidate pair is computed. The significant 

(empirical-FDR < 0.05) phylogenetically similar pairs are predicted as the final set of SR 

pairs. 
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Both SCNA and transcriptomic data are useful to determine the SR interactions 

because gene expression is closer to the phenotype than SCNA, and the later are inherited 

during clonal cancer growth. Therefore, INCISOR (SoF, Clinical and shRNA screenings) 

uses both SCNA and gene expression as independent evidence of gene-activity to infer 

SR interactions that are more likely to be causal. Specifically, we check that the statistical 

tests used in each screening are significant both in terms of SCNA and gene expression 

for an SR interaction to be significant. 

To process half a billion gene pairs for around 9,000 patient tumor samples in a 

reasonable time, the most computationally intensive parts of INCISOR are coded in C++ 

and ported to R. Further; INCISOR uses open Multiprocessing (OpenMP) programming 

in C++ to use multiprocessor in large clusters. Also, INCISOR performs coarse-grained 

parallelization using R-packages “parallel” and “foreach”. Finally, INCISOR uses 

Terascale Open-source Resource and QUEue Manager (TORQUE) to uses more than 

1000 cores in the large cluster to efficiently infer genome-wide SR interactions.  

 

Applying INCISOR to construct the DD-SR network 
Constructing the DD-SR network. We modified INCISOR in DD-SR network 

inference to account for the fact that rescuer gene down-regulation leads to synthetic 

rescues. In DD, the rescued state is defined as co-inactivation of vulnerable (V) and 

rescuer gene (R); and non-rescued state is defined as underactive gene V and active gene 

R (Fig. S1b). Accordingly, the four screens of INCISOR, described above for DU 

identification, were modified as follows: (i) SoF and Survival screening: The statistical 

tests (i.e., hypergeometric test and Cox regression) are modified so as to account for DD 

interactions that have different activity states (i.e., rescued and not-rescued states, Fig. 

S1b). (ii) shRNA screening: Similarly, the conditional knockdown of a DD rescuer gene, 

now increases the cell proliferation due to activation of DD synthetic rescue. The 

significance of the increase in the cell proliferation due to a rescuer down-regulation is 

quantified in an analogous manner using Wilcoxon rank sum test. (iii) Phylogenetic 

screen: it remains the same as the case of DU identification (refer to Suppl. Information 2 

for additional details).  
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Interactive SR networks 
The four types of SR networks for pan-cancer were created using Cytoscape (84) and are 

accessible online in an interactive manner at 

http://www.umiacs.umd.edu/~vinash85/private/SR/ (with username: “sr” and password: 

“sr123”). 

Genomic instability index  
Genomic instability index measures the relative amplification or deletion of genes in a 

tumor based on the SCNA. Given 𝑠Z be the absolute of log ratio of SCNA of gene i in a 

sample relative to normal control, GII of the sample is given as  (85):  

𝐺𝐼𝐼 = 1/𝑁 𝐼(𝑠Z > 1).
`

>

 

 

Calculation of INCISOR interaction-score 

INCISOR evaluates each of the candidate SR gene pairs based on the strength of their SR 

interactions. We define INCISOR interaction-score, which combines the significance 

levels of the four statistical tests in the INCISOR pipeline. First, for each screen, the 

statistical significance levels of all gene pairs tested were rank-normalized to a value 

between 0 and 1 (with 0 representing a pair with the highest significance and 1 with the 

lowest). The final INCISOR interaction-score for a gene pair i is given as:  

Interaction	score = rd 1 + rd 2 + rd 3 + rd 4 ,																	 3  

where rd k  represents the rank normalized value of the kth screen of INCISOR.  

Mapping of drugs to their gene targets  

The drugs were mapped to their targets based on the mapping reported in CCLE, CTRP, 

and DrugBank (43, 86, 87) with exception of target genes whose mechanism of action is 

explicitly denoted as an agonist in DrugBank.  

Effect size via Cohen’s d 

Throughout the manuscript, whenever applicable, to quantify a difference between two 

groups, we use an effect-size measure called cohen’s d (88). It is defined as the difference 
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of means divided by pooled standard deviation. Given 𝑠> and 𝑠D as standard deviations of 

two groups and 𝑛> and 𝑛D  are a number of samples in each group, the pooled standard 

deviation is defined as:  

𝑛> − 1 𝑠>D + 𝑛D − 1 𝑠DD

𝑛> + 𝑛D − 2
.								(4)	 

Pathway enrichment 

GO, and KEGG enrichment analyses were conducted using R-packages clusterprofiler 

and GOFunction using default settings. 

Precision and Recall 

Using standard definitions, we define INCISOR's precision as the fraction of true SR 

interaction among the predicted SR interaction by INCISOR. The INCISOR's recall is 

defined as the fraction of true SR interactions that are retrieved by INCISOR among all 

true SR interactions. 

Benchmarking DU-SR networks using literature compiled SR interactions 

The seven datasets of the published SR interactions were compiled using extensive 

literature survey of large clinical and experimental studies (Datasets, dataset pairs, and 

associated publications are listed in Table S9). Each dataset consists of a drug and 

experientially and/or clinically validated genes whose over-expression cause resistance to 

the drug treatment in patient samples/cell lines. In each study, the pairings between the 

drug targets (vulnerable genes) and the corresponding resistance-causing genes (rescuer 

genes) form the positive set; and the pairings between the targets and all other genes 

tested, which do not exhibit resistance, forms the negative set. Using the INCISOR 

interaction-score of individual SR-pairs as the prediction for the strength of SR 

interaction, we performed standard ROC and precision-recall analysis (Suppl. 

Information 4.1). 

Constructing the drug DU-SR network  
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To remove any potential circularity in drug response prediction, for each drug analyzed, 

we excluded from TCGA dataset the samples of the patients who were treated with that 

drug. Next, we applied INCISOR to the remaining TCGA samples to identify rescuers of 

the targets of the drug. The resultant drug-DU-SR network applied for 28 targeted drugs 

constitutes 182 rescuer genes of 24 drug targets (Suppl. Information 5.1). 

Predicting pan-cancer drug response in patients  

Prediction of drug response using patient survival: Using the drug-DU-SR network, 

we analyzed 4,328 TCGA samples, which is the collection of samples of patients who 

were treated with the drugs that were administered to at least 30 patients in TCGA. We 

predicted that patient tumors would be resistant to drug treatment if multiple DU rescuer 

genes of the drug targets are upregulated in their tumor. Therefore, the number of rescuer 

gene over-expressed will be predictive of patients' drug response. Accordingly, for a drug 

tested D and each patient administering D, we estimate the fraction (C ) of DU rescuer 

genes upregulated of its drug targets (deduced from their gene expression and SCNA 

values in the pre-treatment tumor sample) in the patient sample. To predict the response 

of TCGA patients treated, we evaluated the association of C with the patients' survival 

using stratified Cox model, which also controls for confounding factors(cancer-type, age, 

sex, and race) as follows:  

h3 t, patient ~h;3 t, patient exp β>	C +	βD	age	 + βF	GII ,									(5)  

Where h3, h;3, βs age, and GII are defined as in the equation (1). Co-variates C, age, and 

GII are quantiles normalized to N(0,1).  The significance of β>, which is the coefficient 

of  C, is determined by comparing the likelihood of the model with the NULL Cox 

model, which is similar to (3) but without the covariates C, followed by likelihood ratio 

and Wald’s tests (77, 78). As evident, SRs can be successfully used to predict drug 

response in an unsupervised manner (which is hence less prone to over-fitting).  

Prediction of patient drug response based on post-treatment patient tumor size: We 

evaluated the performance of our prediction vs. TCGA drug response based on patient 

tumor size following the treatment. Based on RECIST drug response profile of 3872 

patients in TCGA, which were annotated into Complete Response (CR), Partial Response 

(PR), Stable Disease (SD), and Progressive Disease (PD), we divided the samples into 
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responders (CR and PR) vs. non-responders (PD and SD). To determine the ability of SR 

to predict drug response of each drug, we compared the fraction of the DU rescuers (of 

the drug's targets) upregulated in patients' tumors (C), and their significance is 

determined using Wilcoxon rank sum test. 

 

Comparative performance of INCISOR in predicting drug response 

DU-SR based unsupervised predictor:  To predict the response of a drug in an 

unsupervised manner, we first identified responders and non-responders in TCGA 

dataset. The fraction of over-expressed rescuers of targets of the drug in each patient was 

used to estimate the area under the curve (AUC). If AUC > 0.5 and mean fraction of 

over-expressed rescuers was higher in responders compared to non-responders (1-AUC) 

was used as the final estimate of AUC. 

 

Supervised prediction of patient response using CFE (43): The list of CFEs were 

collected from Iorio et al. (43). It provides four distinct types of CFEs: (i) mutation, (ii) 

methylation, and (iii) somatic copy number alteration (SCNA).  Predictive performance 

each type of CFEs were evaluated individually. Using TCGA data, we generated a matrix 

of CFE occurrence across all TCGA patients. The CFE occurrence matrix was used as 

features to train supervised models for predicting patients’ response for each of 22 FDA 

approved drugs as follows. 

To predict the response of a drug in a supervised manner, we first identified 

responders and non-responders in TCGA dataset. Given the CFE occurrence matrix as 

features described above, we built a random forest based supervised predictor that 

discriminates responders from non-responders. The random forest was preferred over 

SVM because its performance was superior as compared to SVM for this prediction task. 

Twofold cross-validation was used to estimate AUC. 

 

Supervised prediction of patient response using CFE interaction (Mina et al. (69)): The 

list of CFEs were collected from Mina et al. (69).  ANOVA p-value < 0.05 was used to 

filter out non-significant drug and CFE pairs, resulting 1444 drug CFE pairs with 

significant association. CFE occurrence in TCGA patients was downloaded from 
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ciriellolab.org/select/select.html, and was used to identify if CFE-pairs co-occur in the 

patient's tumor, which is represented as an indicator variable. To predict the response of a 

drug, we used CFE-pairs reported to significantly associated with the drug by Mina et al. 

as features. The corresponding matrix of CFE-pairs co-occurrence in patients was used to 

train a supervised model in an analogous manner described above for Iorio et. al.  

 

Experimental testing of INCISOR-predicted SR interactions involving mTOR 

We used Rapamycin because it is a highly specific mTOR inhibitor and hence 

enables targeting of a predicted rescuer gene by a highly specific drug, combined with the 

ability to knock down predicted vulnerable genes in a clinically-relevant lab setting. 

Rapamycin is known to specifically targets mTOR in its complex 1 (89). Its selectivity 

stems from the need to act on a protein FKBP12, which binds to the FKBP12-binding 

region (FRB) in mTOR (90). This was confirmed in our earlier work (91) (particularly in 

the HN12 cell line, which we used in our experiment) by expressing an FRB mutant 

mTOR that cannot bind to the rapamycin- FKBP12 complex, which rescued these cells 

from the anti-tumor effect of Rapamycin in vitro and in vivo. This retro-inhibition 

approach further supported the specificity of rapamycin for mTOR, in a biologically 

relevant context. And therefore we choose HN12 to conduct this experiment.  

Fig. S5a provides the overview of overall experimental procedure (Suppl. 

Information 4.6). We performed the shRNA knockout and mTOR inhibition in the 

following steps. 2214 gene kinases (Table S10) were knocked down in HN12 cell lines, 

after which mTOR was inactivated via Rapamycin treatment. HN12 cells were infected 

with a library of retroviral barcoded shRNAs at a representation of ~1,000 and a 

multiplicity of infection (MOI) of ~1, including at least two independent shRNAs for 

each gene of interest and controls. At day three post infection cells were selected with 

puromycin for three days (1µg/ml) to remove the minority of uninfected cells. After that, 

cells were expanded in culture for three days, and then an initial population-doubling 0 

(PD0) sample was taken. For in vitro testing, the cells were divided into six populations, 

three were kept as a control, and three were treated with Rapamycin (100nM). Cells were 

propagated in the presence or not of a drug for an additional 12 doublings before the 
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final, PD13 sample was taken.  shRNA barcode was PCR-recovered from genomic 

samples and samples sequenced to calculate the abundance of the different shRNA 

probes.  From these shRNA experiments, we obtained cell counts for each gene knock-

down at the following three time points:  (a) post shRNA infection (PD0, referred as 

initial count), (b) shRNA treatment followed by either Rapamycin treatment (PD13, 

referred as treated count, 3 replicates) or control (PD13, referred as untreated count, 3 

replicates) (c) shRNA infected cell injected to mice (tumor, referred as in-vivo count, 2 

replicates).   

Significant experimental (DD) rescue event was determined by using Mageck 

(92), where read counts from pooled shRNA were the first median normalized for both 

rapamycin treated samples (3 replicates) and controls (3 replicates). The difference of 

read counts in rapamycin-treated samples and controls was then modeled as a negative 

binomial model and was used to test if the difference is significant for each gene tested in 

pooled shRNA (92).  

Next, we applied INCISOR to TCGA to specifically predict DD-SR interactions 

between 2214 genes tested and mTOR as DD rescuer. Each gene pairing (between 2214 

genes and mTOR) were quantified using INCISOR interaction-score. The score was used 

to estimate precision and recall.    

To quantify the lethality of vulnerable knockdown in the experiment, we 

performed a one-sided Wilcoxon rank-sum test between initial normalized count with in 

vivo normalized count for in vivo lethality (and with the untreated normalized count for 

in vitro lethality). To compare rescue effect of Rapamycin treatment between shRNA 

knockdown of mTOR’s vulnerable gene partner and control gene knockdown, we 

performed a one-sided Wilcoxon rank-sum test between Rapamycin effects of mTOR 

partner vulnerable genes and control genes. 

Fig. S5b was generated as follows: To obtain normalized counts at each time 

point, cell counts of each shRNA at each time point were divided by corresponding a 

total number of cell count. To estimate cell growth rate at treated, untreated and in vivo 

time points for each gene X, normalized counts were divided by initial normalized count 

as follow: 
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growth	rate X =
	normalized	count(X)

	initial	normalized	count(X)
 

 Effect of Rapamycin treatment on cell growth on knockdown of gene X was calculated 

as:  

rapamycin	effect(X) 	=
	treated	growth	rate(X)

	mean	untreated	growth	rate(X)
 

 

 

Experimental Testing of SR-predicted Synergistic Drug Combinations in head and neck cancer 
cell lines 

 Seven drug combinations tested in this experiment were chosen as follows. Among the 

important cancer genes captured by DU-SR network, we focused on testing SR 

interactions between 5 important HNSC oncogenes (mTOR, PIK3CA, KIT, AKT, and 

PTK2).  INCISOR predicted 5 SR-DU interaction between these oncogenes. Two 

different inhibitors (Rapamycin and ink128) were included for mTOR, and one inhibitor 

each for PIK3CA, KIT/SRC, AKT and PTK2 were included in the experiment. This 

resulted seven combinations tested (Figure 2b).  

 

Rapamycin was purchased from LC Laboratories (Woburn, MA). Dasatinib, Erlotinib, 

BYL719, INK128 were purchased from Selleckchem (Houston, TX).Vita-Blue Cell 

Viability Reagent was purchased from Bio-tools (Jupiter, FL). CAL33, HN12, Detroit 

562 and SCC47 cell lines were cultured in 96-well-plate, then treated with drugs for 48 

hours (Raw Data in Table S11-17). Assays were performed according to the 

manufacturer's instructions. Combination index for quantitation of drug synergy was 

analyzed by CompuSyn software (93, 94). CI values represent synergism (CI<1), 

additivity (CI=1), and antagonism (CI>1), respectively (Suppl. Information 4.7). 

Experimental Testing of SR-predicted rescuers via siRNA  

siRNAs for non-targeting control and PIK3CA were purchased from GE Healthcare (two 

ON-TARGETplus PIK3CA siRNAs 5'-GCGAAAUUCUCACACUAUU, and 5'-

GACCCUAGCCUUAGAUAAA, Lafayette, CO). siRNAs for mTOR were purchased 
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from Sigma (two MISSION® siRNA human mTOR SASI_Hs02_00338641 and 

SASI_Hs01_00203144). Cells were cultured in 96-well-plate, transfected with 

lipofectamin RNAiMAX reagent (Life Technologies, Carlsbad, CA) for 24 hours, then 

cells were treated with drugs for another 48 hours (Raw Data in Table S18,19). Viability 

assays were completed as previous described (Suppl. Information 4.7). 

To test whether the KD of INCISOR-predicted rescuers acts as sensitizers, we checked 

the sensitivity of cells to the primary drug increases upon the KD of the rescuer. The 

efficacy of the rescuer KD to sensitizes cancer cells to a primary drug was estimated as 

the percentage increase in the sensitivity to the drug following the rescuer KD relative to 

the sensitivity of the primary drug alone without rescuer KD. Specifically, we used a 

targeted siRNA to knockdown the specific rescuer gene, while an untargeted non-specific 

siRNA was used as a control. Cell counts were measured for the untargeted/targeted 

siRNA post primary drug treatments. The normalized-response of (targeted/untargeted) 

siRNA-treated-cells to drug treatment was quantified as a change in cell counts relative to 

the cell counts following the respective siRNA inhibition alone. Next, using this 

normalized-response, DRC was estimated for both targeted and untargeted siRNA using 

DRC R-package. Percentage increase in sensitivity of the primary therapy (Y-axis, Fig. 

S8i) due to the rescuer siRNA-KD was estimated as the percentage decrease in IC50 of 

the combination of primary drug treatment and siRNA inhibition relative to the primary 

therapy in untargeted siRNA combination. The significance of the increase in drug 

response was estimated using a standard ANOVA test. 

Drug combination testing of SR interaction involving DNMT1  

Drug combination Screen 
Drug screening was performed using automated liquid handling in a 1536 well plate 

format(59). The drug doses used were chosen based on previous single agent screening at 

the Center for Molecular Therapeutics of the Massachusetts General Hospital Center for 

Cancer Research (Table S24). 

The screen of two drug A and B was performed in a 1x5 format with one dose of drug A 

combined to 5 doses of drug B and compared to the effects of the five doses of drug B 

alone. The five doses of drug B followed a four-fold dilution series (Table S24, 25). 
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Cells were seeded at densities optimized for proliferation based on the pre-screen 

experimental determination in 1536 well plate format. Cells were seeded, placed 

overnight at 37°C and drugs added the next day using a pin tool. After five days in drug 

cells were fixed permeabilized and nuclei stained in a single step by adding a PBS Triton 

X100 / Formaldehyde / Hoechst-33342 solution directly to the culture medium. Final 

concentrations: 0.05% Triton X-100 / 1% Formaldehyde / 1 ug/ml Hoechst-33342. Plates 

were covered and placed at 4°C until imaging.  

Imaging was performed on an ImageXpress Micro XL (Molecular Devices) using a 4X 

objective. Cell nuclei enumeration was performed using the MetaXpress software, and 

count accuracy were routinely checked visually during acquisition. The screening was 

conducted in two replicate (two separate 1536 well plates, Table S25). 

 Calculation of drug combination synergy score 
Due to a limited number of dose combination used in the experiments per each drug pair 

(1 concentration of Decitabine (five replicates) and five concentration of each rescuer 

inhibitor (2 replicates)), Fa-CI analysis is not feasible.  The drug dose tested are provided 

in Table S24. 

We used Bliss independence model (57-59) to determine synergistic drug combination 

which is suitable per such experimental setting. More specifically, to determine 

Decitabine  synergism with a rescuer inhibitor (R) tested in a cell line, we compared 

following two ratios of experimentally determined cell counts for each dose (C) of 

rescuer inhibitor (Table S25):  

Ratio X =
	𝐶𝑒𝑙𝑙	𝑐𝑜𝑢𝑛𝑡	(	𝐷𝑒𝑐𝑡𝑎𝑏𝑖𝑛𝑒 + 		𝑅(𝐶))

	𝐶𝑒𝑙𝑙	𝑐𝑜𝑢𝑛𝑡	(	𝐷𝑒𝑐𝑖𝑡𝑎𝑏𝑖𝑛𝑒)	
 

 

Ratio Y =
	𝐶𝑒𝑙𝑙	𝑐𝑜𝑢𝑛𝑡	(𝑅(𝐶))

	𝐶𝑒𝑙𝑙	𝑐𝑜𝑢𝑛𝑡	(	𝑈𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑)
 

Where 𝐶𝑒𝑙𝑙	𝑐𝑜𝑢𝑛𝑡	(𝑋), denotes cell count following the treatment of X. R(C) denotes 

rescuer inhibitor at dose C. The effect size of synergism at dose C of rescuer inhibitor 

was estimated as Synergism(R, C) 	= 	 ���d� �
���d� �

. This calculation is separately done for 

each of two replicates of R dose, generating 10 data points ( 5 dose x 2 replicate) for each 

rescuer inhibitors. 
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The final synergism of rescuer inhibitor R was estimated as the median of Synergism of 

the 10  data points, i.e., Synergism R = 	𝑚𝑒𝑑𝑖𝑎𝑛 ���d� �
���d� �

. Significance of synergism 

of R was estimated by a Wilcoxon rank sum test comparing Ratio(Y) and Ratio(X) of the 

10 data points of R. Finally, R was estimated to be significantly synergistic with 

Decitabine, if Synergism R > 1.25  and p-value adjusted for multiple hypothesis 

corrections is less .05 (i.e., FDR < 0.05, Table S26).   

Analogously, R was considered to be significantly antagonistic with Decitabine, if 

Synergism R < 0.75 and p-value adjusted for multiple hypothesis corrections are less 

.05 (i.e., FDR < 0.05, Table S26).   

  

Functional similarity of SR  
Gene ontology similarity:  Gene ontology semantic similarity(95) was used to quantify 

the similarity of GO terms between a gene pair. When multiple GO terms were associated 

with a gene, similarity between all combinations of rescuer GO terms, and vulnerable GO 

terms were calculated, and the maximum of these scores was taken as final similarity 

score (average of scores as final similarity gives similar result qualitatively). Distribution 

of GO similarity of DU-SR pairs was compared with two sets of controls: (a) shuffled 

network: interactions between rescuer and vulnerable genes of DU-SR network randomly 

shuffled, and (b) random network: gene pairs selected randomly from all protein-coding 

genes and controlled for similar degree distribution as the original DU-SR network. For 

each set of control, we determined the similarity measure in an analogous manner as 

described above for DU-SR network. Wilcoxon rank sum test was used to calculate the 

significance of GO similarity of DU-SR network relative to each control. 

 

PPI distance: IGraph was used to estimate the distance between two genes in human 

protein-protein interactions (PPI) network compiled from (96, 97). The PPI distance 

between gene pairs was compared with two controls the random network and shuffled 

network as described above. 

 

STRING database distance: The STRING network version 10 was downloaded using R-

package StringDB. STRING database is composed of gene pairs that are likely to share 
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functional similarities. The functional similarity scores provided in the database were 

estimated using various sources including direct (physical) and indirect (functional) 

associations. The comparison control networks were made analogous manner as in case 

of GO similarity described above.  

 

For DD-SR network GO similarity, PPI distance, and STRING database distance were 

estimated analogously (Suppl. Information 3.8). 

 

PPI specific DU-SR interactions 

To identify DU-SR interactions likely to be mediated by PPI interactions, we applied 

INCISOR on human PPI network compiled from (96, 97).  The details of the analysis and 

resultant network are provided in Suppl. Information 3.4. The enrichment of cancer 

driver genes in PPI-SR network was calculated using Fisher exact test. 

 

Identification of DU and DD rescuers of immune checkpoints 

To identify rescuers of immune checkpoints we removed filtering step 1 (in vitro 

essentiality screens) from INCISOR because the dataset used in step 1 were conducted in 

in vitro models that are deficient of the immune system. Next, we applied the INCISOR 

to the TCGA to identify the DU and DD rescuers of PD1/PDL1 and CTLA4 down-

regulation. We call an SR identified by INCISOR as clinically significant if the 

interaction shows association with survival either in pancancer or melanoma cohort in 

TCGA patient dataset.   

Immunotherapy samples patient samples collection and processing 

 Patient samples  
A cohort of patients with metastatic melanoma treated was enrolled in clinical trials 

ongoing at Massachusetts General Hospital for treatment with three immune checkpoint 

blockades: (i) anti-PD1 or anti-PDL1 (collated together in the analysis and referred as 

anti-PD1), (ii) anti-CTLA-4, and (iii) combination of anti-PD1 and anti-CTLA-4. Patients 

were consented for tissue acquisition per Institutional Review Board (IRB)-approved 
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protocol (98). These studies were conducted according to the Declaration of Helsinki 

following informed consent (DF/HCC protocol 11- 181) was obtained from all patients.  

  
RNA sequencing (RNA-seq) 
Tumors were biopsied or surgically removed from the consented patients and snap frozen 

in liquid nitrogen or fixed in formalin. Qiagen AllPrep DNA/RNA mini or AllPrep 

DNA/RNA FFPE kit was used to purify RNA from the frozen or fixed tumor biopsies. 

RNA libraries were prepared from 250 ng RNA per sample using standard Illumina 

protocols. Samples were treated with ribo-zero, and then Epicentre's ScriptSeq Complete 

Gold kit was used for library preparation. The quality check was done on the Bioanalyzer 

using the High Sensitivity DNA kit, and quantification was carried out using KAPA 

Quantification kit. RNA sequencing was performed at Broad Institute (Illumina 

HiSeq2000) and The Wistar Institute (Illumina NextSeq 500). BAM files of raw RNA-

seq data were used to summarize read counts by featureCounts (99)  with parameters that 

only paired- ended, not chimeric and well mapped (mapping quality >= 20) reads are 

counted (Data available online).  

Differential expression analysis was conducted by generalized linear model 

implementation (100) of R package “edgeR” and following a standard pre-processing of 

read count analysis (101). Transcript per million (TPM) were used to estimate fold 

change.  

If a patient is treated sequentially with ICBs A and B and the biopsies are available 

pretreatment, post-A-treatment and post A+B treatment. Comparison of pretreatment vs. 

post-A-treatment of the patient was considered in the analysis for the resistance of 

therapy A.  In case of multiple biopsies for pre-, on- or post-treatment are available per 

patient all biopsies were considered in the analysis as follows. For the analysis of 

differential expression using edgeR, an indicator variable per patient was introduced in 

design matrix as recommended in reference manual of edgeR, which controls for 

individual specific transcriptome. To calculate the fold change displayed in Figure 6, 

mean of TPM was taken in case of multiple pre-treatment biopsies per patients; and in 

case of multiple post- or on-treatment each biopsy were displayed in the figure 

(subscripted by ".X[biopsises number]"). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 18, 2018. ; https://doi.org/10.1101/284240doi: bioRxiv preprint 

https://doi.org/10.1101/284240


	 39	

Code availability 

We have included the code as Suppl. Data (for DU-SR identification). All the data used 

in INCISOR inference along with code are hosted in homepage at 

(http://www.umiacs.umd.edu/~vinash85/public/incisor.tar.gz). The longer version of the 

code is available on Github (https://github.com/vinash85/INCISOR; username=vinash85; 

password=incisor2sr).  The code will be made available as R-package upon publication 

and will be submitted to Bio-conductor.  
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