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Abstract 
 
Next-generation sequencing (NGS) is a rapidly evolving set of technologies that can be used to 
determine the sequence of an individual's genome 1 by calling genetic variants present in an 
individual using billions of short, errorful sequence reads2. Despite more than a decade of effort 
and thousands of dedicated researchers, the hand-crafted and parameterized statistical models 
used for variant calling still produce thousands of errors and missed variants in each genome 3,4. 
Here we show that a deep convolutional neural network5 can call genetic variation in aligned 
next-generation sequencing read data by learning statistical relationships (likelihoods) between 
images of read pileups around putative variant sites and ground-truth genotype calls. This 
approach, called DeepVariant, outperforms existing tools, even winning the "highest 
performance" award for SNPs in a FDA-administered variant calling challenge. The learned 
model generalizes across genome builds and even to other mammalian species, allowing 
non-human sequencing projects to benefit from the wealth of human ground truth data. We 
further show that, unlike existing tools which perform well on only a specific technology, 
DeepVariant can learn to call variants in a variety of sequencing technologies and experimental 
designs, from deep whole genomes from 10X Genomics to Ion Ampliseq exomes. DeepVariant 
represents a significant step from expert-driven statistical modeling towards more automatic 
deep learning approaches for developing software to interpret biological instrumentation data. 

Main Text 
Calling genetic variants from NGS data has proven challenging because NGS reads are 

not only errorful (with rates from ~0.1-10%) but result from a complex error process that 
depends on properties of the instrument, preceding data processing tools, and the genome 
sequence itself1,3,4,6. State-of-the-art variant callers use a variety of statistical techniques to 
model these error processes and thereby accurately identify differences between the reads and 
the reference genome caused by real genetic variants and those arising from errors in the 
reads3,4,6,7. For example, the widely-used GATK uses logistic regression to model base errors, 
hidden Markov models to compute read likelihoods, and naive Bayes classification to identify 
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variants, which are then filtered to remove likely false positives using a Gaussian mixture model 
with hand-crafted features capturing common error modes6. These techniques allow the GATK 
to achieve high but still imperfect accuracy on the Illumina sequencing platform3,4. Generalizing 
these models to other sequencing technologies has proven difficult due to the need for manual 
retuning or extending these statistical models (see e.g. Ion Torrent8,9), a major problem in an 
area with such rapid technological progress1. 
 

Here we describe a variant caller for NGS data that replaces the assortment of statistical 
modeling components with a single, deep learning model. Deep learning is a machine learning 
technique applicable to a variety of domains, including image classification 10, translation 11, 
gaming 12,13, and the life sciences14–17. This toolchain, which we call DeepVariant, (Figure 1) 
begins by finding candidate SNPs and indels in reads aligned to the reference genome with 
high-sensitivity but low specificity. The deep learning model, using the Inception-v2 
architecture 5, emits probabilities for each of the three diploid genotypes at a locus using a pileup 
image of the reference and read data around each candidate variant (Figure 1). The model is 
trained using labeled true genotypes, after which it is frozen and can then be applied to novel 
sites or samples. Throughout the following experiments, DeepVariant was trained on an 
independent set of samples or variants to those being evaluated. 

 
This deep learning model was trained without specialized knowledge about genomics or 

next-generation sequencing, and yet can learn to call genetic variants more accurately than 
state-of-the-art methods. When applied to the Platinum Genomes Project NA12878 data 18, 
DeepVariant produces a callset with better performance than the GATK when evaluated on the 
held-out chromosomes of the Genome in a Bottle ground truth set (Figure 2A, Figure S1). For 
further validation, we sequenced 35 replicates of NA12878 using a standard whole-genome 
sequencing protocol and called variants on 27 replicates using a GATK best-practices pipeline 
and DeepVariant using a model trained on the other eight replicates (see methods). Not only 
does DeepVariant produce more accurate results but it does so with greater consistency across 
a variety of quality metrics (Figure 2B).  

 
Like many variant calling algorithms, the GATK relies on a model that assumes read 

errors are independent6. Though long-recognized as an invalid assumption 2, the true likelihood 
function that models multiple reads simultaneously is unknown 6,19,20. Because DeepVariant 
presents an image of all of the reads relevant for a putative variant together, the convolutional 
neural network (CNN) is able to account for the complex dependence among the reads by virtue 
of being a universal approximator21. This manifests itself as a tight concordance between the 
estimated probability of error from the likelihood function and the observed error rate, as seen in 
Figure 2C where DeepVariant's CNN is well calibrated, strikingly more so than the GATK. That 
the CNN has approximated this true, but unknown, inter-dependent likelihood function is the 
essential technical advance enabling us to replace the hand-crafted statistical models in other 
approaches with a single deep learning model and still achieve such high performance in variant 
calling. 

 
To further confirm the performance of DeepVariant, we submitted variant calls for a 

blinded sample, NA24385, to the Food and Drug Administration-sponsored variant calling Truth 
Challenge  in May 2016 and won the "highest performance" award for SNPs by an independent 
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team using a different evaluation methodology. For this contest DeepVariant was trained only 
on data available from the CEPH female sample NA12878 and was evaluated on the unseen 
Ashkenazi male sample NA24385, achieving high accuracy (SNP F1 = 99.95%, indel F1 = 
98.98%) and showing that DeepVariant can generalize beyond its training data. We then 
applied the same dataset and evaluation methodology to a variety of both recent and commonly 
used bioinformatics methods including the GATK, FreeBayes22, samtools23, 16GT24, and 
Strelka 25 (Table 1). DeepVariant demonstrated a more than 50% reduction in total number of 
errors per genome (4,652 errors) compared to the next best algorithm (9,531 errors). We also 
evaluated the same set of methods using the synthetic diploid sample CHM1-CHM13 26 (Table 
2). In our tests DeepVariant outperformed all other methods for calling both SNP and indel 
mutations without needing to adjust filtering thresholds or other parameters. 

 
We further explored how well DeepVariant’s CNN generalizes beyond its training data. 

First, a model trained with read data aligned to human genome build GRCh37 and applied to 
reads aligned to GRCh38 has similar performance (overall F1 = 99.45%) to one trained on 
GRCh38 and then applied to GRCh38 (overall F1 = 99.53%), thereby demonstrating that a 
model learned from one version of the human genome reference can be applied to other 
versions with effectively no loss in accuracy (Table S1). Second, models learned using human 
reads and ground truth data achieve high accuracy when applied to a mouse dataset27 (F1 = 
98.29%), out-performing training on the mouse data itself (F1 = 97.84%, Table S4). This last 
experiment is especially demanding as not only do the species differ but nearly all of the 
sequencing parameters do as well: 50x 2x148bp from an Illumina TruSeq prep sequenced on a 
HiSeq 2500 for the human sample and 27x 2x100bp reads from a custom sequencing 
preparation run on an Illumina Genome Analyzer II for mouse 27. Thus, DeepVariant is robust to 
changes in sequencing depth, preparation protocol, instrument type, genome build, and even 
mammalian species. The practical benefits of this capability is substantial, as DeepVariant 
enables resequencing projects in non-human species, which often have no ground truth data to 
guide their efforts27,28, to leverage the large and growing ground truth data in humans.  

 
To further assess its capabilities, we trained DeepVariant to call variants in eight 

datasets from Genome in a Bottle 29 that span a variety of sequencing instruments and protocols, 
including whole genome and exome sequencing technologies, with read lengths from fifty to 
many thousands of basepairs (Table 3 and S6). We used the already processed BAM files to 
introduce additional variability as these BAMs differ in their alignment and cleaning steps. The 
results of this experiment all exhibit a characteristic pattern: the candidate variants have the 
highest sensitivity but a low PPV (mean 57.6%), which varies significantly by dataset. After 
retraining, all of the callsets achieve high PPVs (mean of 99.3%) while largely preserving the 
candidate callset sensitivity (mean loss of 2.3%). The high PPVs and low loss of sensitivity 
indicate that DeepVariant can learn a model that captures the technology-specific error 
processes in sufficient detail to separate real variation from false positives with high fidelity for 
many different sequencing technologies.  

 
As we already shown above that DeepVariant performs well on Illumina WGS data, we 

analyze here the behavior of DeepVariant on two non-Illumina WGS datasets and two exome 
datasets from Illumina and Ion Torrent. The SOLID and Pacific Biosciences (PacBio) WGS 
datasets have high error rates in the candidate callsets. SOLID (13.9% PPV for SNPs, 96.2% 
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for indels, and 14.3% overall) has many SNP artifacts from the mapping short, color-space 
reads. The PacBio dataset is the opposite, with many false indels (79.8% PPV for SNPs, 1.4% 
for indels, and 22.1% overall) due to this technology's high indel error rate. Training 
DeepVariant to call variants in an exome is likely to be particularly challenging. Exomes have far 
fewer variants (~20-30k)30 than found in a whole-genome (~4-5M)31. The non-uniform coverage 
and sequencing errors from the exome capture or amplification technology also introduce many 
false positive variants32. For example, at 8.1% the PPV of our candidate variants for Ion 
Ampliseq is the lowest of all our datasets.  

 
Despite the low initial PPVs, the retrained models in DeepVariant separate errors from 

real variants with high accuracy in the WGS datasets (PPVs of 99.0% and 97.3% for SOLID and 
PacBio, respectively), though with a larger loss in sensitivity (candidates 82.5% and final 76.6% 
for SOLID and 93.4% and 88.5% for PacBio) than other technologies. Additionally, despite the 
challenges of retraining deep learning models with limited data, the exome datasets also 
perform strikingly well, with a small reduction in sensitivity (from 91.9% to 89.3% and 94.0% to 
92.6% for Ion and TruSeq candidates and final calls) for a substantial boost in PPV (from 8.1% 
to 99.7% and 65.3% to 99.3% for Ion and TruSeq). The performance of DeepVariant compares 
favorably to those of callsets submitted to the Genome in a Bottle project site using tools 
developed specifically for each NGS technology and to callsets produced by the GATK or 
samtools (Table S7). 
 

The accuracy numbers presented here shouldn't be viewed as the maximum achievable 
by either the sequencing technology or DeepVariant. For consistency, we used the same model 
architecture, image representation, training parameters, and candidate variant criteria for each 
technology. Because DeepVariant achieves high PPVs for all technologies, the overall accuracy 
(F1), which is the harmonic mean of sensitivity and PPV, is effectively driven by the sensitivity of 
the candidate callset. Improvements to the data processing steps before DeepVariant and the 
algorithm used to identify candidate variants will likely translate into substantial improvements in 
overall accuracy, particularly for multi-allelic indels. Conversely, despite its effectiveness, 
representing variant calls as images and applying general image-classification models is 
certainly suboptimal, as we were unable to effectively encode all of the available information in 
the reads and reference into the three-channel image.  

 
Taken together, our results demonstrate that the deep learning approach employed by 

DeepVariant is able to learn a statistical model describing the relationship between the 
experimentally observed NGS reads and genetic variants in that data for potentially any 
sequencing technology. Technologies like DeepVariant change the problem of calling variants 
from a laborious process of expert-driven, technology-specific statistical modeling to a more 
automated process of optimizing a general model against data. With DeepVariant, creating a 
NGS caller for a new sequencing technology becomes a simpler matter of developing the 
appropriate preprocessing steps, training a deep learning model on sequencing data from 
samples with ground truth data, and applying this model to new, even non-human, samples. 

 
At its core, DeepVariant (1) generates candidate entities with high sensitivity but low 

specificity, (2) represents the experimental data about each entity in a machine-learning 
compatible format and then (3) applies deep learning to assign meaningful biological labels to 
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these entities. This general framework for inferring biological entities from raw, errorful, indirect 
experimental data is likely applicable to other high-throughput instruments. 
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Limitations 
This manuscript documents the work on DeepVariant leading up to the precisionFDA Truth 
Challenge in May 2016 in which DeepVariant won the “Highest SNP Performance” award. Since 
then, at the request of the scientific community, we have entirely rewritten DeepVariant from 
scratch in order to make it available as open source software. As a result, several improvements 
to the DeepVariant method aren’t captured in the analyses presented here including switching 
to TensorFlow33 to train the model, using the inception_v3 neural network architecture, and 
using a multichannel tensor representation for the genomics data instead of an RGB image. The 
latest results and DeepVariant code are available on GitHub 
(https://github.com/google/deepvariant/) and additional benchmarking analyses are available 
from a variety of independent third parties. 

Figures 
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Figure 1: DeepVariant workflow overview. Before DeepVariant, NGS reads are first aligned to 
a reference genome and cleaned up with duplicate marking and, optionally, local assembly. 
(Left box) First, the aligned reads are scanned for sites that may be different from the reference 
genome. The read and reference data is encoded as an image for each candidate variant site. A 
trained convolutional neural network (CNN) calculates the genotype likelihoods for each site. A 
variant call is emitted if the most likely genotype is heterozygous or homozygous non-reference. 
(Middle box) Training the CNN reuses the DeepVariant machinery to generate pileup images for 
a sample with known genotypes. These labeled image + genotype pairs, along with an initial 
CNN which can be a random model, a CNN trained for other image classification tests, or a prior 
DeepVariant model, are used to optimize the CNN parameters to maximize genotype prediction 
accuracy using a stochastic gradient descent algorithm. After a maximum number of cycles or 
time has elapsed or the model's performance has convergence, the final trained model is frozen 
and can then be used for variant calling. (Right box) The reference and read bases, qualities 
scores, and other read features are encoded into an red-green-blue (RGB) pileup image at a 
candidate variant. This encoded image is provided to the CNN to calculate of the genotype 
likelihoods for the three diploid genotype states of homozygous reference (hom-ref), 
heterozygous (het), or homozygous alternate (hom-alt). In this example a heterozygous variant 
call is emitted as the most probable genotype likelihood here is "het". In all panels blue boxes 
represent data and red boxes are processes. Details of all processes are given in the “Online 
methods”. 
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Panel B 
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Panel C 

 
Figure 2: DeepVariant accuracy, consistency, and calibration relative to the GATK. (A) 
Precision-recall plot for DeepVariant (red) and GATK (green, blue) calls for the Genome in the 
Bottle benchmark sample NA12878 using 2x101 Illumina HiSeq data from the Platinum 
Genomes project. The GATK was run in two ways. In the first, GATK best-practices were 
followed and the variant filtering step (VQSR) was provided data for known variants on both the 
training and test chromosomes, allowing VQSR to use population variation information to better 
call variants on the test chromosomes. In the second, we removed all population variation 
information for the test chromosomes chr20-22, relying on the VQSR model learned only on the 
training chromosomes, which is more representative of the GATK's calling performance on 
novel variation. See Supp. Mats. for additional details and figures. (B) DeepVariant (red circles) 
and the GATK (blue triangles) were run on 27 independently sequenced replicates of NA12878 
(PCR-free WGS 2x151 on an Illumina X10 with coverage from 24x-35x). Each panel shows the 
distribution of values for the given metric (panel label) for DeepVariant and the GATK. 
DeepVariant produces more accurate SNP and indel calls (F1) when compared to the Genome 
in a Bottle standard for NA12878 with a higher fraction of sites having the correct genotype 
assigned (Genotype concordance). DeepVariant finds a similar numbers of indels to the GATK, 
but has a more consistent ratio of insertions to deletions. DeepVariant finds more SNPs than 
GATK with a similar ratio of heterozygous variants to homozygous alternative variants (Het/hom 
ratio). (C) Comparison of likelihoods assigned to heterozygous and homozygous alternate 
genotypes emitted by DeepVariant and the GATK shows the likelihood model learned by 
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DeepVariant is substantially better calibrated than that employed by the GATK. On the x-axis is 
the reported genotype quality (GQ) for calls for DeepVariant (red) and GATK (blue) compared to 
the observed error rate in each of these GQ bands (y-axis), for true heterozygous and 
homozygous variants (vertical facet) and SNPs and indels (horizontal facet) separately. The size 
of each calibration point reflects the number of variant calls used to estimate the empirical 
accuracy. The calibration curves were calculated using genotype likelihoods from the held-out 
evaluation data in eight sequenced replicates of NA12878. For example, the set of all Q30 
heterozygous calls should be in aggregate accurate at a rate of 999 in 1000. Genotypes should 
be correct at a rate declared by their confidence; perfect calibration would follow the marked x=y 
line.  
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Tables 
 

Method Type F1 Recall Precision TP FN FP FP.gt FP.al Version 

DeepVariant 
(live github) INDEL 0.99507 0.99347 0.99666 357641 2350 1198 217 840 

latest github 
v0.4.1-b4e8d37d 

Strelka INDEL 0.99227 0.98829 0.99628 355777 4214 1329 221 855 2.8.4-3-gbe58942 

DeepVariant 
(pFDA) INDEL 0.99112 0.98776 0.99450 355586 4405 1968 846 1027 

precisionFDA 
submission 05/2016 

GATK INDEL 0.99010 0.98454 0.99573 354425 5566 1522 343 909 3.8-0-ge9d806836 

FreeBayes INDEL 0.94091 0.91917 0.96372 330891 29100 12569 9149 3347 v1.1.0-54-g49413aa 

16GT INDEL 0.92732 0.91102 0.94422 327960 32031 19364 10700 7745 v1.0-34e8f934 

samtools INDEL 0.87951 0.83369 0.93066 300120 59871 22682 2302 20282 1.6 

DeepVariant 
(live github) SNP 0.99982 0.99975 0.99989 3054552 754 350 157 38 

latest github 
v0.4.1-b4e8d37d 

DeepVariant 
(pFDA) SNP 0.99958 0.99944 0.99973 3053579 1727 837 409 78 

precisionFDA 
submission 05/2016 

Strelka SNP 0.99935 0.99893 0.99976 3052050 3256 732 87 136 2.8.4-3-gbe58942 

16GT SNP 0.99583 0.99850 0.99318 3050725 4581 20947 3476 3899 v1.0-34e8f934 

GATK SNP 0.99436 0.98940 0.99937 3022917 32389 1920 80 170 3.8-0-ge9d806836 

FreeBayes SNP 0.99124 0.98342 0.99919 3004641 50665 2434 351 1232 v1.1.0-54-g49413aa 

samtools SNP 0.99021 0.98114 0.99945 2997677 57629 1651 1040 200 1.6 

 
Table 1: Evaluation of several bioinformatics methods on the high coverage, whole 
genome sample NA24385. The dataset used in this evaluation is the same as in the 
precisionFDA Truth Challenge. Several methods are compared including the DeepVariant 
callset as submitted to the contest as well as the most recent DeepVariant version from GitHub. 
Each method was run according to the individual authors’ best practice recommendations and 
represents a good faith effort to achieve best results. Comparisons to the Genome in a Bottle 
truth set for this sample was performed using the hap.py software available on GitHub at 
http://github.com/Illumina/hap.py using the same version of the GIAB truth set (v3.2.2) used by 
precisionFDA. The overall accuracy (F1, sort order within each variant type), recall, precision, 
and numbers of true positives (TP), false negatives (FN), and false positives (FP) are shown 
over the whole genome. False positives are further divided by those caused by genotype 
mismatches (FP.gt) and those cause by allele mismatches (FP.al). Finally, the version of the 
software used for each method is provided.  
 
 

Method Type F1 Recall Precision TP FN FP Version 

DeepVariant INDEL 0.95806 0.92868 0.98936 529137 40634 5690 v0.4.1-b4e8d37d 

Strelka INDEL 0.95074 0.91623 0.98796 522039 47732 6363 2.8.4-3-gbe58942 

16GT INDEL 0.94010 0.90803 0.97452 517369 52402 13527 v1.0-34e8f934 
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GATK INDEL 0.91212 0.84497 0.99087 481441 88330 4437 3.8-0-ge9d806836 

FreeBayes INDEL 0.90438 0.83025 0.99305 473053 96718 3313 v1.1.0-54-g49413aa 

Samtools INDEL 0.86976 0.79089 0.96611 450626 119145 15807 1.6 

DeepVariant SNP 0.99103 0.98888 0.99319 3518118 39553 24132 v0.4.1-b4e8d37d 

Strelka SNP 0.98865 0.98107 0.99636 3490314 67357 12749 2.8.4-3-gbe58942 

16GT SNP 0.97862 0.98966 0.96782 3520894 36777 117078 v1.0-34e8f934 

FreeBayes SNP 0.96910 0.94837 0.99075 3373984 183687 31492 v1.1.0-54-g49413aa 

GATK SNP 0.96895 0.94542 0.99368 3363476 194195 21379 3.8-0-ge9d806836 

Samtools SNP 0.96818 0.94386 0.99378 3357947 199724 21012 1.6 

 
Table 2: Evaluation of several bioinformatics methods on the high coverage, whole 
genome synthetic diploid sample CHM1-CHM13. Several methods are compared including 
the most recent DeepVariant version from GitHub. Each method was run according to the 
individual authors’ best practice recommendations and represents a good faith effort to achieve 
best results. Comparisons to the CHM1-CHM13 truth set was performed using the CHM-eval.kit 
software available on GitHub at https://github.com/lh3/CHM-eval  release version 0.5. The 
overall accuracy (F1, sort order within each variant type), recall, precision, and numbers of true 
positives (TP), false negatives (FN), and false positives (FP) are shown over the whole genome. 
Finally, the version of the software used for each method is provided.  
 

 Sensitivity PPV F1 

Dataset 
Candidate 
variants 

Called 
variants 

Candidate 
variants 

Called 
variants 

Candidate 
variants 

Called 
variants 

10X Chromium 75x WGS 99.66% 98.73% 89.55% 99.91% 94.34% 99.32% 

10X GemCode 34x WGS 97.03% 94.34% 75.19% 99.47% 84.73% 96.84% 

Illumina HiSeq 31x WGS 99.88% 99.76% 95.14% 99.98% 97.45% 99.87% 

Illumina HiSeq 60x WGS 99.95% 99.88% 90.90% 99.98% 95.21% 99.93% 

Ion AmpliSeq exome 91.94% 89.28% 8.05% 99.70% 14.81% 94.21% 

PacBio 40x WGS 93.36% 88.51% 22.14% 97.25% 35.79% 92.67% 

SOLID SE 85x WGS 82.50% 76.62% 14.27% 99.01% 24.33% 86.39% 

Illumina TruSeq exome 94.04% 92.58% 65.31% 99.31% 77.08% 95.83% 

Mean 94.79% 92.46% 57.57% 99.33% 65.47% 95.63% 

Median 94.79% 92.58% 65.31% 99.47% 77.08% 95.83% 

 
Table 3: Training DeepVariant to call variants on a variety of sequencing technologies 
and experimental protocols. Datasets are labeled to indicate instrument, protocol, target area 
(WGS for whole genome, gene regions as exome), with sequencing depth shown for whole 
genome targets. For each dataset, a set of candidate variants were identified across the 
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genome in the NGS reads (methods). The baseline Illumina model was retrained using the 
candidate variants with labeled genotypes on chromosomes 1-19. This retrained model was 
then used to assign genotype likelihoods to the candidate variants, keeping those confidently 
non-reference on the held-out chromosomes 20-22. The sensitivity, positive predictive value 
(PPV), and overall accuracy (F1) are shown for the candidate and called variants on chr20-22 
only. 

Online methods 

Haplotype-aware realignment of reads 
Mapped reads are preprocessed using an error-tolerant, local De-Bruijn-graph-based read 
assembly procedure which realigns them according to their most likely derived haplotype. 
Candidate windows across the genome are selected for reassembly by looking for any evidence 
of possible genetic variation such as mismatching or soft clipped bases. The selection criteria 
for a candidate window are very permissive so that true variation is unlikely to be missed. All 
candidate windows across the genome are considered independently. De-Bruijn graphs are 
constructed using multiple fixed k-mer sizes (from 20 to 75, inclusive, with increments of 5) out 
of the reference genome bases for the candidate window as well as all overlapping reads. 
Edges are given a weight determined by how many times they are observed in the reads. We 
trim any edges with weight less than three, except edges found in the reference are never 
trimmed. Candidate haplotypes are generated by traversing the assembly graphs and the top 
two most likely haplotypes are selected which best explain the read evidence. The likelihood 
function used to score haplotypes is a traditional pair HMM with fixed parameters that do not 
depend on base quality scores. This likelihood function assumes that each read is independent. 
Finally, each read is then realigned to its most likely haplotype using a Smith-Waterman-like 
algorithm with an additional affine gap penalty score for homopolymer indels. This procedure 
updates both the position and the CIGAR string for each read.  

Finding candidate variants 
Candidate variants for evaluation with the deep learning model are identified with the following 
algorithm. We consider each position in the reference genome independently. For each site in 
the genome we collect all the reads that overlap that site. The CIGAR string of each read is 
decoded and the corresponding allele aligned to that site is determined, which are classified into 
either a reference-matching base, a reference-mismatching base, an insertion with a specific 
sequence, or a deletion with a specific length. We count the number of occurrences of each 
distinct allele across all reads. An allele is considered a candidate if it satisfies: 
 
def is_candidate(counts , allele ): 
  allele_count = counts [allele] 
  total_counts = sum (counts.values()) 
  return  not  is_reference_base(allele )  

and allele_count >= min_count 
and allele_count / total_count >= min_fraction 
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If any candidates pass our calling thresholds at a site in the genome, we emit a VCF-like record 
with chromosome, start, reference bases and alternate bases, where reference bases and 
alternate bases are the VCF-compatible representation of all of the passing alleles. 
 
We filter away any unusable reads (see is_usable_read() below) if it is marked as a duplicate, 
as failing vendor quality checks, isn't aligned or if this isn't the primary alignment, mapping 
quality is less than 10, or the read is paired and not marked as properly placed. We further only 
include read bases as potential alleles if all of the bases in the alleles have a base quality >= 10. 
We only emit variant calls at standard (ACGT) bases in the reference genome. It is possible to 
force candidate variants to be emitted (randomly with probability of p) at sites with no alternate 
alleles, which are used homozygous reference training sites. There's no constraint on the size of 
indels emitted, so long as the exact position and bases are present in the cigar string and they 
are consistent across multiple reads. 

Creating images around candidate variants 
The second phase of DeepVariant encodes the reference and read support for each candidate 
variant into an RGB image. The pseudo-code for this component is shown below; it contains all 
of the key operations to build the image, leaving out for clarity error handling, code to deal with 
edge cases like when variants occur close to the start or end of the chromosome, and the 
implementation of non-essential and/or obvious functions.  
 
WIDTH = 221 
HEIGHT = 100; 
 

def create_pileup_images(candidate_variants ): 
  for  candidate in candidate_variants: 
    for biallelic_variant in split_into_biallelics (candidate ): 
      start = biallelic_variant .start - (WIDTH -1) / 2 
      end = WIDTH - span_start 
      ref_bases = reference .get_bases (start , end) 
      image = Image (WIDTH , HEIGHT) 
      row_i = fill_reference_pixels (ref , image) 
      for read in reads .get_overlapping (start , end ): 
        if row_i < HEIGHT and is_usable_read(read ): 
          add_read(image , read , row_i) 
          row_i += 1 
      yield image 
 

def fill_reference_pixels(ref , image ): 
  for  row in range (5): 
    for col in range (WIDTH ): 
      alpha = 0.4 
      ref_base = ref [col] 
      red = get_base_color (ref_base) 
      green = get_quality_color (60)   # The reference is high quality 
      blue = get_strand_color (True )   # The reference is on the positive strand 
      image[row , col ] = make_pixel (red , green , blue , alpha) 
  return  5 
 

def add_read(image , read , row_i ): 
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  # Don't incorporate reads with a low quality base at the call position. This 
  # function still returns true because the image isn't yet full. 
  # base_quality_at_call_position() returns the quality of the base aligned to 
  # our call.start, or 255 if no bases are aligned there. 
  if base_quality_at_call_position (read ) < MINIMUM_BASE_QUALITY: 
    return 
 

  for  ref_pos, read_pos , cigar_elt in per_base_alignment (ref , read ): 
    read_base = None 
    if cigar_elt in {'D' , 'I' }: 
      col = ref_pos - 1 
      read_base = INDEL_ANCHORING_BASE 
    elif cigar_elt == 'M': 
      col = ref_pos 
      read_base = read .bases [read_pos] 
 

    if read_base: 
      quality = min (read .quals [read_pos ], read .mapping_quality) 
      alpha = get_base_alpha (read_base , ref [col ], read , call) 
      red = get_base_color (read_base) 
      green = get_quality_color (quality) 
      blue = get_strand_color (read .is_on_positive_strand) 
      image[row_i , col ] = make_pixel (red , green , blue , alpha) 
 

def make_pixel(red , green , blue , alpha ): 
  return  RGB(int (alpha * red ), int (alpha * green ), int (alpha * blue )) 
 

def get_base_alpha(read_base , ref_base , read , call ): 
  # read_supports_alt_allele() returns True if the read supports the alt_allele. 
  # This is implemented by associating each alternative allele in our candidate 
  # variants with a list of the names of the reads that contained that allele. 
  alpha1 = 1.0  if read_supports_alt_allele (read , call .alt_allele ) else  0.6 
  alpha2 = 0.2  if read_base == ref_base else 1.0 
  return  alpha1 * alpha2 
 

def get_base_color(base ): 
  base_to_color = {'A' : 250 , 'G' : 180 , 'T' : 100 , 'C' : 30} 
  return  base_to_color.get (base , 0) 
 

def get_quality_color(quality ): 
  return  int (254.0  * (min (40, quality ) / 40.0 )) 
 

def get_strand_color(on_positive_strand ): 
  return  70 if on_positive_strand else 240 
 

def is_usable_read(read ): 
  return  (read .has_alignment and 
          not (read .is_duplicate or read .failed_vendor_quality_checks or 
               read.is_secondary or read .is_supplementary ) and 
          (not  read.is_paired or read .is_properly_placed ) and 
          read.mapping_quality >= 10) 
 
The actual implementation of this code uses a reservoir sampler to randomly remove reads at 
locations where there's excessive coverage. This downsampling occurs conceptually within the 
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reads.get_overlapping() function but occurs in our implementation anywhere where there's more 
than 10,000 reads in a tiling of 300 bp intervals on the chromosome. 

Deep learning 
DistBelief34 was used to represent models, train models on labeled images, export trained 
models, and evaluate trained models on unlabeled images. We adapted the inception v2 
architecture to our input images and our three-state (hom-ref, het, hom-alt) genotype 
classification problem. Specifically, we created an input image layer that rescales our input 
images to 299 x 299 pixels without shifting or scaling of our pixel values. This input layer is 
attached to the ConvNetJuly2015v2 5 CNN with 9 partitions and weight decay of 0.00004. The 
final output layer of the CNN is a three-class Softmax layer with fully-connected inputs to the 
preceding layer initialized with Gaussian random weights and stddev of 0.001 and a weight 
decay of 0.00004. 
 
The CNN was trained using stochastic gradient descent in batches of 32 images with 8 
replicated models and RMS decay of 0.9. For the the Platinum Genomes, precisionFDA, 
NA12878 replicates, mouse and genome build experiments multiple models were trained (using 
the product of learning rates of [0.00095, 0.001, 0.0015] and momenta [0.8, 0.85, 0.9]) for 80 
hrs or until training accuracy converged, and the model with the highest accuracy on the training 
set selected as the final model. For the multiple sequencing technologies experiment, a single 
model was trained with learning rate 0.0015 and momentum 0.8 for 250,000 update steps. In all 
experiments unless otherwise noted the CNN was initialized with weights from the imagenet 
model ConvNetJuly2015v2 5. 

DeepVariant inference client and allele merging 
At inference time each biallelic candidate variant site represented as a pileup image is 
presented as input to the trained CNN. After a forward pass through the network a three-state 
probability distribution is returned. These probabilities correspond to the biallelic genotype 
likelihood states of {P(homozygous reference), P(heterozygous), P(homozygous variant)} and 
are encoded directly in the output VCF record as the phred scaled GL field. Variant calls are 
emitted for all sites where the most likely genotype is either het or hom-alt with at least a Q4 
genotype confidence. Finally all biallelic records at the same starting position are merged into 
multiallelic records to facilitate comparisons with other datasets. 

Genome in a Bottle human reference datasets 
We used version 3.2.1 of the Genome in a Bottle reference data 35. We downloaded calls in VCF 
format and confident called intervals in BED format from: 
 

● NA12878: 
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/NISTv3.2.1/ 

● NA24385:  
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/NISTv
3.2.1/ 
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The VCF files were converted to Global Alliance for Global Health (GA4GH) protocol buffer 
format but otherwise were used without further modification. 

Evaluating variant calls 
Truth variants and confident reference intervals were parsed from the Genome in a Bottle or 
other ground standard datasets from the VCF and BED files for their respective samples. Truth 
variants outside the confident intervals were removed. The evaluation variants were loaded and 
variants marked as filtered or assigned homozygous reference genotypes were removed. 
Metrics such as the number of SNPs, number of Indels, insertion / deletion ratio, heterozygous / 
homozygous non-reference ratio, and transition / transversion ratio (Ti/Tv) were calculated from 
all remaining evaluation variants.  
 

Evaluation variants were matched to truth variants if they start at the same position on 
the same chromosome. To compute genotype concordance, we added to the list of matched 
pairs of evaluation / truth variants all of the unmatched evaluation variants that overlap the 
confidence intervals with a "virtual" homozygous reference genotype sample. The number of 
matching genotype is defined as the number of pairs where the genotype alleles of the 
evaluation variant and truth variant are equal, independent of order. From this we compute the 
genotyping concordance as: 

 
Genotype concordance = # matching genotypes / # of paired evaluation and truth 

variants 
 

The number of matched pairs is counted as the number of truth positives. Any truth 
variants without a matched evaluation variant are counted as false negatives. Any unmatched 
evaluation variants that occur within the confident intervals are counted as false positives. From 
the number of true positives (TP), false negatives (FN), and false positives (TP) we compute the 
sensitivity, PPV, and F1 as:  
 

Sensitivity = TP / (TP + FN)  
PPV = TP / (TP + FP) 
F1 = 2 TP / (2TP + FN + FP) 

 
Our evaluation metrics fall between the tolerant hapdip metric3 and the strict vcfeval 36 metrics. In 
particular, our sensitivity and PPV metrics emphasize discriminating between variant and 
reference sites, allowing errors in the determination of the exact variant alleles and genotypes. 
These errors are tallied separately as an allelic error rate and a genotyping error rate. Though 
we believe this separation is informative and valuable for understanding the types of errors that 
occur in a variant callset, we appreciate the approaches pursued by other evaluation methods. 

GATK pipeline 
For all GATK6 analyses (except the Platinum Genomes analysis, see below) we used the Verily 
production GATK pipeline: 
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Versions 
Reference: hg38.genome.fa 

dbSNP: v146 on b38 downloaded from NCBI 

1000 Genomes Phase 3 callset: 

1000G_ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.hg38.vcf 

downloaded from 1000G FTP 

BWA version: 0.7.12 

Samtools version: 1.1 

Picard version: 2.1.0 

GATK version: 3.5 

BWA 

bwa mem -t 32 fastq1.gz fastq2.gz  
  | samtools view -u -  
  | samtools sort -@ 12 -O bam -T sorted.bam.sort_tmp -o sorted.bam - 

 

Mark Duplicates 

java -Xmx12G -jar picard.jar MarkDuplicates INPUT=sorted.bam 
OUTPUT=sorted.deduped.bam ASSUME_SORTED=true CREATE_INDEX=true 
MAX_RECORDS_IN_RAM=2000000 METRICS_FILE=MarkDuplicates_metrics.txt 
REMOVE_DUPLICATES=false 

 
After MarkDuplicates, all lanes for the sample are merged into a single BAM file with 
MergeSamFiles in picard. 

Indel realignment 

java -jar CommandLineGATK_deploy.jar -Xmx4G -R hg38.genome.fa -ip 50 -T 
RealignerTargetCreator -I sorted.deduped.merged.bam -known 
1000G_ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.hg38.vcf -o 
realignment_targets.interval_list -nt 8 -mismatch 0.0 
 
java -jar CommandLineGATK_deploy.jar -Xmx4G -R hg38.genome.fa -ip 50 -T 
IndelRealigner -I sorted.deduped.merged.bam -targetIntervals 
realignment_targets.chr1.interval_list -known 
1000G_ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.hg38.vcf 
--consensusDeterminationModel KNOWNS_ONLY -o sorted.deduped.merged.realigned.bam 

Base recalibration 

java -jar CommandLineGATK_deploy.jar -Xmx4G -R hg38.genome.fa -T BaseRecalibrator 
-I sorted.deduped.merged.realigned.bam -knownSites dbsnp_146.hg38.vcf -o 
base_recalibration.table -nct 32 --useOriginalQualities --disable_indel_quals -cov 
ReadGroupCovariate -cov QualityScoreCovariate -cov CycleCovariate -cov 
ContextCovariate 
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java -jar CommandLineGATK_deploy.jar -Xmx4G -R hg38.genome.fa -T PrintReads -nct 8 
-I sorted.deduped.merged.realigned.bam -BQSR base_recalibration.table 
--disable_indel_quals --emit_original_quals -o 
sorted.deduped.merged.realigned.recalibrated.bam 

HaplotypeCaller 

java -jar CommandLineGATK_deploy.jar -Xmx4G -R hg38.genome.fa -ip 50 -T 
HaplotypeCaller -I sorted.deduped.merged.realigned.recalibrated.bam -ERC GVCF -o 
g.vcf --annotation QualByDepth 
 
java -jar CommandLineGATK_deploy.jar -Xmx4G -R hg38.genome.fa -T GenotypeGVCFs -o 
raw_calls.vcf -nt 8 -D dbsnp_146.hg38.vcf --variant g.vcf 

 

VQSR 

java -jar CommandLineGATK_deploy.jar -Xmx20G -R hg38.genome.fa -T 
VariantRecalibrator --max_attempts 4 -input raw_calls.vcf 
-resource:ALL_1000G_phase3,known=false,training=true,truth=true,prior=12.0 
1000G_ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.hg38.vcf 
-resource:dbsnp,known=true,training=false,truth=false,prior=2.0 dbsnp_146.hg38.vcf 
-an DP -an QD -an FS -an SOR -an MQ -an MQRankSum -an ReadPosRankSum -mode SNP -nt 
4 -tranche 99.5 -recalFile snps.recal -tranchesFile snps.tranches -allPoly 
 
java -jar CommandLineGATK_deploy.jar -Xmx20G -R hg38.genome.fa -T 
ApplyRecalibration -input raw_calls.vcf -mode SNP --ts_filter_level 99.5 -recalFile 
snps.recal -tranchesFile snps.tranches -o recal.snps.raw.indels.vcf 
 
java -jar CommandLineGATK_deploy.jar -Xmx20G -R hg38.genome.fa -T 
VariantRecalibrator --max_attempts 4 -input recal.snps.raw.indels.vcf 
-resource:ALL_1000G_phase3,known=false,training=true,truth=true,prior=12.0 
1000G_ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.hg38.vcf 
-resource:dbsnp,known=true,training=false,truth=false,prior=2.0 dbsnp_146.hg38.vcf 
-an QD -an DP -an FS -an SOR -an MQRankSum -an ReadPosRankSum -mode INDEL -nt 4 
-tranche 99.0 -recalFile indels.recal -tranchesFile indels.tranches -allPoly 
 
java -jar CommandLineGATK_deploy.jar -Xmx20G -R hg38.genome.fa -T 
ApplyRecalibration -input recal.snps.raw.indels.vcf -mode INDEL -ts_filter_level 
99.0 -recalFile indels.recal -tranchesFile indels.tranches -o final.vcf 

 

DeepVariant and GATK on Platinum Genomes NA12878 
We trained a deep learning model as described above using only the reads aligned to 
chromosomes 1 through 18 and evaluated variant calling accuracy on chromosomes 20 to 22 
using both our algorithm and the community gold standard GATK best practices pipeline. We 
reserved chromosome 19 for hyperparameter optimization of the deep learning model. We 
created a non-overfitted GATK callset in which training does not see the data from chr20-22 by 
excluding that data during the GATK VQSR step.  
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For a comparison, we ran GATK v3.3 following Broad best practices as implemented by Google 
Cloud Genomics + Broad in the alpha version (see https://cloud.google.com/genomics/), run in 
January 2016 on the NA12878 Platinum Genomes BAM file from 
https://cloud.google.com/genomics/data/platinum-genomes. 

Supplementary materials 
 
Are available in a separate supplementary materials document. 
 

Data availability 
 
Most of the data that support the findings of this study are available from Genome in a Bottle or 
the Mouse Genome project. Some of the data, in particular the 35 NA12878 WGS replicates 
from the Verily sequencing lab, was licensed from Verily for the current study and so are not 
publicly available; data are however available from the authors upon reasonable request with 
permission of Verily. 

Code availability 
 
A production-grade version of DeepVariant was released to GitHub at 
https://github.com/google/deepvariant.  All of the key results and analyses presented here can 
be reproduced using the open-sourced version of DeepVariant. Custom code was specific to 
our computing infrastructure and mainly used for simple data analysis tasks. 
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