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 24 

Abstract 25 

Microbes affect each other’s growth in multiple, often elusive ways. The ensuing 26 

interdependencies form complex networks, believed to influence taxonomic composition, 27 

as well as community-level functional properties and dynamics. Elucidation of these 28 

networks is often pursued by measuring pairwise interaction in co-culture experiments. 29 

However, combinatorial complexity precludes the exhaustive experimental analysis of 30 

pairwise interactions even for moderately sized microbial communities. Here, we use a 31 

machine-learning random forest approach to address this challenge. In particular, we show 32 

how partial knowledge of a microbial interaction network, combined with trait-level 33 

representations of individual microbial species, can provide accurate inference of missing 34 

edges in the network and putative mechanisms underlying interactions. We applied our 35 

algorithm to two case studies: an experimentally mapped network of interactions between 36 

auxotrophic E. coli strains, and a large in silico network of metabolic interdependencies 37 

between 100 human gut-associated bacteria.  For this last case, 5% of the network is 38 

enough to predict the remaining 95% with 80% accuracy, and mechanistic hypotheses 39 

produced by the algorithm accurately reflect known metabolic exchanges.  Our approach, 40 

broadly applicable to any microbial or other ecological network, can drive the discovery 41 

of new interactions and new molecular mechanisms, both for therapeutic interventions 42 

involving natural communities and for the rational design of synthetic consortia. 43 

 44 

 45 

 46 
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 47 

Importance 48 

Different organisms in a microbial community may drastically affect each other’s growth 49 

phenotype, significantly affecting the community dynamics, with important implications 50 

for human and environmental health. Novel culturing methods and decreasing costs of 51 

sequencing will gradually enable high-throughput measurements of pairwise interactions 52 

in systematic co-culturing studies. However, a thorough characterization of all interactions 53 

that occur within a microbial community is greatly limited both by the combinatorial 54 

complexity of possible assortments, and by the limited biological insight that interaction 55 

measurements typically provide without laborious specific follow-ups. Here we show how 56 

a simple and flexible formal representation of microbial pairs can be used for 57 

classification of interactions with machine learning. The approach we propose predicts 58 

with high accuracy the outcome of yet to be performed experiments, and generates 59 

testable hypotheses about the mechanisms of specific interactions. 60 

 61 

Introduction 62 

The collective behavior of microbial ecosystems across biomes is an outcome of the many 63 

interactions between members of the community (1). These interactions include exchange 64 

of metabolites, signaling and quorum sensing processes, as well as growth inhibition and 65 

killing. Understanding the interspecific interactions within microbial communities is 66 

essential for understanding the function of natural communities (2) and for the design of 67 

synthetic communities (3).  68 

 69 
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A powerful, and increasingly employed method for assessing intermicrobial interactions is 70 

the direct measurement of phenotypes of microbial species grown in co-culture (4). A 71 

fundamental challenge in this endeavor is the huge diversity of many natural communities, 72 

which could count up to several hundred strains or species of microbes. Performing 73 

experiments for all possible pairwise interactions constitutes a herculean, and likely 74 

insurmountable task for even a moderately sized community. It is however, conceivable 75 

that new computational approaches could systematically complement existing tools such 76 

as high-throughput sequencing and genome annotation (5–9) to help extract as much 77 

information as possible from interaction datasets, providing both insight on yet-to-be-78 

measured interactions, and on possible biological mechanisms mediating specific 79 

partnerships. 80 

 81 

Here we present a conceptual framework for the mathematical representation of microbial 82 

interactions and subsequent use of supervised learning to build a classifier with high 83 

predictive accuracy. While any algorithm may be used, we obtained our best results with 84 

random forest (10). Random forests are ensembles of many decision trees that individually 85 

are poor classifiers but can be democratically pooled to create a very good classifier. 86 

Random forests have two attributes that we found particularly attractive for our purposes 87 

here. First, they are non-parametric and thus require no a priori definition about 88 

underlying relationships between predictive variables. Second, recent methodological 89 

developments in the interpretation of random forests have been made that allow users to 90 

query why a specific example was classified the way that it was through the calculation of 91 

feature contributions (11). Feature contributions can be exploited to develop new 92 
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hypotheses about the mechanisms that mediate specific interactions. In order to 93 

demonstrate a proof of principle for the classification of microbial interactions using 94 

organism traits and the utility of feature contributions for developing insight into the 95 

underlying mechanisms, we applied this approach to two communities where all pairwise 96 

experiments had been performed and the mechanisms of interaction identified. The first is 97 

an in silico community of 100 metabolic models of human gut associated bacteria and the 98 

second are the experimental results of a study involving 14 amino acid auxotrophic strains 99 

of Escherichia coli (E. coli). Our results show that the application of random forests and 100 

feature contributions to the study of microbial communities can significantly increase the 101 

capacity to estimate a large number of interactions based on a limited number of 102 

experiments, and has the potential to enable the discovery of new interaction mechanisms. 103 

 104 

Results  105 

Representing Pairwise Interactions 106 

Our objective in this study was twofold; first, we sought to predict the qualitative outcome 107 

of unobserved pairwise interactions in a microbial community; second, we wanted to 108 

identify predictive variables that suggest potential mechanisms of interaction. In order to 109 

achieve both of these goals it was important to establish a representation that enables an 110 

algorithm to make good predictions and also be easily parsed for interpretation. Our 111 

approach relies of the availability of a trait-level description available for each organism in 112 

the community under consideration. Trait descriptions are used to construct trait vectors 113 

for each organism. Specific interactions are represented as the concatenation of the 114 

relevant trait vectors (Fig 1).  Trait vectors may be constructed from any set of 115 
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biologically relevant features such as body size or metabolic requirements; here we used 116 

genome-scale metabolic data for every organism in the in silico community case study, 117 

and vectors of biosynthetic capabilities for each E. coli strain in the auxotroph community 118 

case study.  119 

 120 

Figure 1. A schematic representation of our machine learning approach for inferring  121 
interactions among microbes. A trait vector captures the characteristics of each organism 122 
in the community of interest. The presence or absence of a trait in a given organism is 123 
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encoded (as a binary number) in the corresponding element of the trait vector. For every 124 
possible pairwise interaction among community members we construct a composite 125 
vector that is the concatenation of the corresponding trait vectors. The vector of the 126 
organism whose response is being predicted is concatenated to the front of the trait vector 127 
of its interaction partner. For the set of observed interactions each composite vector is 128 
then mapped to the measured response of the interacting species. All observed 129 
interactions are then used to train a model that predicts the outcome of unobserved 130 
interactions. If random forest is used then feature contributions can be calculated on a 131 
case-by-case basis in order to identify which elements of the composite genome 132 
contribute most strongly to the prediction. 133 
 134 

These trait vectors, together with the known outcome of specific interactions, can be fed 135 

into a machine learning algorithm capable of absorbing existing patterns and extending 136 

predictions to unknown interactions. The approach we use here, a random forests 137 

classifier, is an ensemble of many decision trees that individually ask a series of yes or no 138 

questions about randomly selected subsets of predictive features in order to classify 139 

samples. Single trees tend to be poor classifiers; however, when their decisions are pooled, 140 

the collective predictive power is often impressive. In order to find potential mechanisms 141 

of interaction we took advantage of the binary nature of individual trees in order to 142 

identify which variables are the most influential for the classification of specific samples.  143 

 144 

Application to computationally predicted interactions between human gut microbes  145 

We first applied our approach to a large in silico data set that we generated by simulating 146 

with dynamic flux balance analysis (12) (using COMETS (13), see Methods) all pairwise 147 

co-culture interactions between 100 metabolic models of human-gut associated bacteria 148 

(14) under rich medium, in a well-mixed batch culture. Each metabolic model is a network 149 

of over a thousand interconnected metabolic reactions that fall into two categories: 150 

intracellular and exchange reactions (15). Intracellular reactions correspond to the various 151 
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pathways found within the cell, while exchange reactions represent the ability of an 152 

organism to transport a metabolite across the cell membrane. Among the 100 organisms, 153 

there were a total of 2083 unique metabolic reactions that could serve as potential 154 

predictors. Out of these, 194 were exchange reactions. Since interactions between 155 

organisms emerge through the exchange of or competition for one or more extracellular 156 

metabolites in the environment, we used only the exchange reactions as predictive features 157 

(Fig 2A).  158 

 159 

Figure 2. Classification of interactions in an in silico model of a community of human gut 160 
microbes. A. Organisms are represented in silico as large networks of metabolic reactions 161 
that take up metabolites (blue circles) from the environment (arrows leading to model) and 162 
release by-products (arrows leading to metabolite). Organisms may interact with one 163 
another during simulation when both organisms compete for the uptake of a metabolite or 164 
through cross feeding where one model consumes a by-product of the other. B. The 165 
distribution of relative yields is sorted and plotted. Interactions resulted in a model 166 
producing a negative relative yield 5563 times. Neutral interactions, a relative yield of 167 
zero, occurred 3917 times, and positive relative yield happened 420 times. Samples were 168 
classified as negative or non-negative. C. Histogram of the fraction of interactions that 169 
were the negative class for each organism. The distribution is consistent with a truncated 170 
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normal distribution centered on .562  (t test, p ≈ .67) D. ROC curve of a random forest 171 
classifier using 388 exchange reactions as predictors for 9900 in silico observations 172 
compared to the ROC curve obtained from using Jaccard Distance as a threshold to predict 173 
negative versus non-negative relative yield. E. Learning curves for sub-communities of 174 
the full in silico community. These learning curves are the median learning curve for 5 175 
sub-communities selected at random for each value of Norganisms. F. 20 most influential 176 
predictors as determined by mean decrease in accuracy. The ‘.p’ suffix indicates that the 177 
predictor belongs to the interaction partner. Some metabolite names are shortened: DAP = 178 
meso-2,6-Diaminopimelate, dhptd = 4-5-dihydroxy-2-3-pentanedione, XAN = xanthine, 179 
GlcNac = N-Acetylglucosamine. 180 
 181 

 182 

Interactions in the network were computed by determining the influence of each organism 183 

on each other organism in co-culture simulations. We compared the accumulated biomass 184 

of each model in co-culture experiment to its accumulated biomass in monoculture and 185 

expressed the phenotypic response as relative yield (Methods). A negative relative yield 186 

indicates that a model produces less biomass in co-culture than it does when growing 187 

alone, a relative yield of 0 indicates that its growth is unaffected by interaction with 188 

another model, and a positive relative yield means that the model benefits from the 189 

presence of another. For the purpose of binary classification, we divided observations into 190 

two classes based on their relative yields. Samples with a negative relative yield were 191 

classified as ‘negative’ responders (5563/9900). Samples with a positive relative yield 192 

(420/9900) or a relative yield of zero (3917/9900) were classified as ‘non-negative’ 193 

responders (Fig 2B). We refer to the model whose response is being predicted as the 194 

‘responder’ and its interaction partner is the ‘partner’. In order to develop an intuition for 195 

how difficult this classification task might be we calculated what fraction of the 99 196 

interactions each responder took part resulted in a negative relative yield. Classification 197 

could become a trivial task if the distribution of these fractions were bimodal with peaks 198 
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far from each other, the most extreme scenario being one where responders experience 199 

either only negative or non-negative relative yields in co-culture.  On the other hand, a 200 

normal or uniform distribution would indicate a more complicated reality where 201 

classification would benefit from machine learning. This last option was indeed confirmed 202 

to hold for our data, as the histogram of the negative fractions follows a truncated normal 203 

distribution (Fig 2C).  204 

 205 

In order to establish a baseline for comparing the effectiveness of the random forest as a 206 

classifier, we calculated the Jaccard distance of each interaction pair and then used the 207 

Jaccard distance as a decision threshold for predicting whether a model would have a 208 

negative or non-negative relative yield in co-culture. Jaccard distance was chosen as a 209 

baseline predictor because it is easy to calculate and is commonly used in statistical 210 

analyses of microbial communities to infer interactions (16, 17). The resulting receiver 211 

operator characteristic (ROC) curve was then compared to the ROC curve obtained from a 212 

random forest classifier trained using the 194 exchange reactions as features to predict the 213 

outcome the full set of 9900 observations. As a classifier, the Jaccard distance does not 214 

perform much better than randomly guessing, while the random forest was surprisingly 215 

good (Fig 2D). To evaluate the accuracy of the random forest classifier on the full data set 216 

we examined the out of bag (OOB) error estimates. OOB estimates in random forests have 217 

been shown to be roughly equivalent to five-fold cross-validation (18). We therefore took 218 

the OOB error rate as an estimate for the overall test error rate. The random forest resulted 219 

in a balanced accuracy of 90.4%.  220 

  221 
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High predictive accuracies are encouraging but will be of little use if they can only be 222 

achieved when the vast majority of the experiment outcomes are already known. Learning 223 

curves visualize how the performance of a classifier behaves as the data available for 224 

trainings increases. We constructed a series of learning curves to measure how the 225 

balanced accuracy of the random forest classifier is affected by the size of the community 226 

being studied and as the fraction of interaction outcomes known increases (Fig 2E). As is 227 

typically seen with learning curves, classifier performance improves when more of the 228 

data is made available. Interestingly we observe that for the smallest communities 229 

(Norganisms = 10) balanced accuracy was better than random when as little as 10% of the 230 

data was available (2 experiments), but the trajectory with additional data improves at a 231 

much slower rate than it does for larger communities. When Norganisms is increased to 20, 232 

significant improvements to balanced accuracy manifest immediately and have a stronger 233 

benefit with the outcome of additional experiments. Encouragingly, these benefits appear 234 

moderate when compared to the trajectory of much larger communities (Norganisms ≥ 30). 235 

The general trend indicates that the larger a community is, the smaller the relative fraction 236 

of experiments needed to get a high accuracy. In fact, similar learning curves could be 237 

used as guidelines to determine how many experiments should be performed to reach a 238 

desired balanced accuracy. 239 

 240 

Variable importance plots are commonly used with random forests to evaluate which 241 

variables are the most important to the model by comparing their mean decrease in 242 

accuracy scores. Mean decrease in accuracy for each variable is the change in the mean 243 

accuracy of the forest predictions when the variable in question is randomly permuted 244 
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(19). Variable importance is then determined by computing the ratio between their mean 245 

change in accuracy and the corresponding standard deviation of accuracy. The 246 

randomForest package for R (10) performs this calculation, which we then used to rank 247 

exchange reactions as predictors. Variable importance should be interpreted as a ranked 248 

list of which variables are generally the most informative rather than a quantification of 249 

their effects. These variable rankings are indicators of global predictive importance and 250 

can be used to develop insights into why certain features are influential in a general sense. 251 

Visualization of the top 20 predictors revealed that the most important predictors tend to 252 

belong to the interaction partner (Fig 2F). Interestingly, features from both halves of the 253 

interaction vector for the amino acids L-Lysine and L-Glutamate are highly ranked, as are 254 

the features for the monosaccharides D-Ribose and Thyminose.  255 

 256 

The tree-based approach of random forest to classification can be exploited to determine 257 

why specific samples were classified the way they were by examining the feature 258 

contributions of each predictor. A feature contribution (Methods) is the quantification of 259 

how much a given variable influences the decision of the random forest when a single 260 

sample is evaluated. Feature contributions were originally developed for analysis of 261 

regression models (20) but have since been adapted for binary classification models (11). 262 

In the context of binary classification, feature contributions can be interpreted as how 263 

much a feature changes the probability that a given sample is classified as class 1 by the 264 

random forest. In the case of our in silico data class 1 refers to the non-negative responder 265 

type. For our purposes this convention means that a negative feature contribution increases 266 

the probability of a sample being classified as a negative responder and a positive feature 267 
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contribution increases the probability of classified as a non-negative responder. We used 268 

the forestFloor package in R (21) to efficiently calculate feature contributions for all 9900 269 

samples.  270 

 271 

If the choice of representation faithfully reflects the underlying nature of the system of 272 

interest, then feature contributions may be used to gain insight into the underlying 273 

mechanisms of an interaction. Were we investigating our in silico data as a novel 274 

microbial community via pairwise interactions, we would wish to perform additional 275 

experiments to identify a metabolite that mediates competition in each negative interaction 276 

and then design further detailed experiments to describe molecular details. Absent any 277 

particular insight into the nature of the community, metabolites mediating any particular 278 

interaction would have to be identified by querying them randomly. In situations where 279 

there are few metabolites mediating competition such a process would be a costly 280 

endeavor. We wondered if the experimental load could be reduced if for each sample we 281 

ranked the 194 metabolites by their net feature contributions and then used the rankings as 282 

a guide for the order in which metabolites should be examined (Fig 3A).  283 

 284 

Because the role of every extracellular metabolite in an interaction is known with 285 

COMETS, we were able to evaluate the effectiveness of feature contributions as an 286 

experimental guide. For each negative interaction, we identified which metabolites were 287 

subject to competition and calculated how many metabolites we would expect to examine 288 

at random before encountering any one of the contended metabolites. We then determined 289 

the guided rate of discovery by proceeding along the ranked list as determined by net 290 
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feature contributions and recorded the position at which we first find one of the contended 291 

metabolites. Using feature contributions to guide discovery compares favorably to a 292 

random selection process. For this community, one would expect on average to perform 293 

19.55 experiments before discovering a relevant metabolite through random selection. 294 

Using feature contributions as a guide instead shifted the probability distribution to the 295 

left, reducing the expected number of inquiries to 5.54 (Fig 3B). Early discovery of 296 

metabolites is particularly valuable when there are very few metabolites mediating an 297 

interaction. In particular we wanted to determine how effective feature contributions were 298 

in the most challenging cases, those in which a single contended metabolite caused the 299 

negative response. We found that for those 99 samples the contended metabolite was 300 

found at median rank 4 and in 95 cases was encountered within the top 20 positions (Fig 301 

3C).  302 

 303 

Since random forest classifies based on patterns it finds in the data, we can expect that 304 

metabolites that tend to be high-ranking predictors are also more likely to be broadly 305 

significant to the community than metabolites encountered through random sampling.  306 

Across all negative samples there were 109 metabolites that were subjected to competition 307 

in at least one interaction. 82 of those metabolites were the first ones encountered using 308 

feature contributions, but the majority of encounters were concentrated among eight of 309 

them (Supplemental Table 1). D-Fructose was the most commonly found metabolite, 310 

accounting for ~18.7% of all discovered metabolites. Interestingly, fructose has been 311 

shown to be implicated in altering the gut microbiome in connection to a number of 312 

diseases, including antibiotic treatable (22) metabolic syndrome (23, 24), liver disease 313 
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(25), and obesity (26). 314 

 315 

 316 
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Figure 3. Using feature contributions to find a metabolite for which two organisms 317 
compete (also referred to as a contended metabolite) A. The first half of the composite 318 
trait vector corresponds to metabolite transporters belonging to the organism of interest 319 
while the second half corresponds to metabolite transporters belonging to its interaction 320 
partner. We were interested in identifying a metabolite that is associated with the negative 321 
relative yield for the organism of interest. To establish a ranking of metabolites we took 322 
the summation of feature contributions from both halves of the composite trait vector and 323 
then sorted the new vector according to the net contribution. Proceeding from the negative 324 
end, the rank and identity of the first contended metabolite encountered relative to the 325 
negative end of the new vector was recorded. B. The probability distribution of the 326 
average rank at which the first contended metabolite would be encountered by sampling 327 
metabolites randomly one at a time was calculated for each sample and compared to the 328 
observed probability distribution. By chance the first metabolite would be encountered 329 
after 13 queries. Feature contributions reduce the median number of queries to 4. C. 99 330 
samples produced a negative relative through competition for exactly one metabolite. 331 
Randomly investigating the 194 candidate metabolites one at a time results in an average 332 
of 97.5 experiments before discovering the contended metabolite. Using feature 333 
contributions to prioritize the order in which to investigate metabolites instead would 334 
typically reveal the contended metabolite on or before the fourth experiment (median = 4).  335 
 336 

 337 

Notably, our approach is also readily applicable for the discovery of metabolites that 338 

mediate positive interactions, which comprise a small minority of all interactions in this 339 

specific dataset (420/9900). Due to the scarcity of their occurrence and the dearth of 340 

metabolites that mediate positive interactions, discovery of these mechanisms is more 341 

challenging. Nevertheless, using ranked feature contributions to find facilitative 342 

metabolites was a powerful improvement over a naive approach; requiring a median of 27 343 

queries before discovery versus 65 when selecting metabolites randomly (Supplemental 344 

Figure 1). 345 

 346 

Application to a Community of Auxotrophic Escherichia coli strains 347 

We analyzed the results of a study in which all-pairwise co-culture experiments for 14 E. 348 

coli MG1655 auxotrophs were performed (27). In this study, auxotrophic E. coli strains 349 
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were generated by knocking out a single gene that was essential for the production of each 350 

of 14 amino acids. Interactions between any given pair of E. coli strains are presumably 351 

dependent on the direct exchange of the knocked out amino acids, or related precursors 352 

(Fig 4A). The total growth of each strain in the 91 experiments was measured after 84 353 

hours and reported as the net fold change relative to the initial inoculum, resulting in 182 354 

total observations. We classified growth phenotypes based on the fold change response a 355 

given E. coli auxotroph strain had in co-culture with another auxotrophic strain. We used a 356 

fold change of 2 as a threshold in order to separate response classes. Fold change 2 is an 357 

intuitive threshold since doubling is often used when discussing growth of bacterial 358 

populations (28) and classifying all samples with a fold change ≤ 2 as a separate class 359 

from those with a fold change greater than 2 results in a balanced data set (Fig 4B). We 360 

refer to the 90 growth responses with fold change ≤ 2 as ‘weak’ responses and the 92 361 

growth responses with fold change > 2 as ‘strong’ responses. When discussing a particular 362 

E. coli interaction, the strain whose response is being predicted is referred to as the 363 

‘receiver’ and its interaction partner is the ‘giver’. We calculated the fraction of 364 

interactions that resulted in a weak response for each of the 14 strains and visualized the 365 

distribution with a histogram (Fig 4C). Based on this histogram we expect that 366 

classification will not be a trivial task because by it appears that the distribution follows 367 

either a uniform (Kolmogorov-Smirnov test: p ≈ .93, t test: p ≈ .95) or truncated normal 368 

distribution (Kolmogorov-Smirnov test: p ≈ .33, t test: p ≈ .96). 369 

 370 

It has been previously observed that biosynthetically costly amino acids tend to promote 371 

stronger cooperative interactions than biosynthetically cheap amino acids (27). Given this 372 
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observation we tested if biosynthetic costs would be useful for predicting whether a strain 373 

will have a strong or a weak response in a given interaction. We used the biosynthetic cost 374 

of the amino acid provided by the giver strain, needed by the receiver strain, or the 375 

difference of these costs as decision thresholds to classify response classes and compared 376 

the performance of the random forest classifier to these benchmarks. Since the 377 

auxotrophic E. coli strains were all derived from the same ancestral strain, only the 378 

biosynthetic capabilities for each of the 14 amino acids were relevant predictors for 379 

machine learning. As a result, vectors with just 28 elements represented each pairwise E. 380 

coli interaction. Examination of the corresponding ROC curves shows that biosynthetic 381 

costs of amino acids are poor predictors for the qualitative outcome of these E. coli 382 

auxotroph experiments whereas random forest fares much better as indicated by its ROC 383 

curve and by area under the curve (Fig 4D inset). Random forest yielded a balanced 384 

accuracy of ~79.2%. Moreover, the trajectory of the learning curve most closely resembles 385 

the trajectory of the learning curve for in silico communities of 20 members (Fig 4E). 386 

Variable importance rankings show that in general, the identity of the receiver’s needed 387 

amino acid is often more impactful on classification accuracy than the amino acid that the 388 

giver needs, suggesting that specificity of interaction is dominated by auxotrophies, 389 

whereas most mutants can in principle provide the missing amino acid (Fig 4F).  390 

 391 

Since the pair of knocked-out amino acids determines the interaction for any two 392 

auxotrophs, we evaluated how often the corresponding features were the most influential 393 

for classification. For each sample, we ranked the feature contributions by the magnitude 394 

of their influence and then identified which amino acids were ranked first and second. The 395 
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feature space is relatively simple and the interaction outcomes are a direct consequence of 396 

the relevant auxotrophies. Therefore it is reasonable to expect that the random forest be 397 

more strongly influenced by the absence of a predictor than the presence. Of all 182 398 

observations, the knocked out amino acid from the receiver had the largest feature 399 

contribution 140 times and the amino acid from the giver was the largest contributor 40 400 

times (Supplemental Table 2). We further found that the top two ranked positions were 401 

occupied by the giver and receiver’s amino acids, in any order, 132 of 182 times. Thus the 402 

pair of most influential predictors tended to correspond to the underlying mechanism of 403 

the interaction, even in instances where the predicted class was incorrect. 404 

 405 

Fig 4. Data representation and results for the case study of a network of auxotrophic E. 406 
coli strains. A. In the original experiment, single gene knockout E. coli auxotrophs were 407 
co-cultured in a minimal medium. In order for ∆A to grow it must receive amino acid A 408 
from ∆B, which in turn must receive another amino acid, B, in order to grow itself. 409 
Auxotroph strains were constructed for the following amino acids: cysteine, 410 
phenylalanine, glycine, histidine, isoleucine, leucine, methionine, proline, arginine, serine, 411 
threonine, tryptophan, and tyrosine. B. Sorted fold change for each auxotroph strain across 412 
all experiments. E. coli strains had a weak response (fold change ≤ 2) 90 times and failed 413 
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to grow at all 9 times (green circles). In 92 instances the E. coli auxotroph population 414 
more than doubled over the course of 84 hours. C. Histogram of weak responses as a 415 
fraction of each strains’ total number of interactions. D. ROC curve for random forest 416 
classifier using 28 amino acids as predictors for 182 observations. Single value thresholds 417 
based on the biosynthetic costs of knocked out amino acids resulted in poorer performance 418 
than random forest. E. The trajectory of a learning curve built for the E. coli interactions 419 
closely resembles that of the learning curve for in silico communities with 20 organisms. 420 
F. The 28 amino acids ranked according to their affects on prediction accuracy when 421 
randomly permuted. Amino acids corresponding to the receiver strain are enriched near 422 
the top of the list. Amino acids are represented by their single letter codes. The suffix ‘.p’ 423 
indicates that the predictive feature belongs to the giver strain. 424 
 425 

Scenarios where the presumed mechanisms are the strongest contributors yet result in 426 

misclassification present opportunities to direct research toward interesting outliers in 427 

order to understand why they diverge from our expectations. The response of the 428 

methionine auxotroph (ΔMet) to co-culture with the cysteine auxotroph (ΔCys) was one 429 

such case, which is described in detail in Fig. S2.  430 

 431 

Discussion 432 

Exhaustive pairwise co-culture studies of microbial communities are becoming 433 

increasingly common. While such pairwise interactions do not necessarily capture all  434 

possible interdependencies in a community (29, 30), they have been shown to be a 435 

dominant factor (31), making the reliable prediction and interpretation of predictive 436 

models matters of great importance. In this study, we have described a conceptual 437 

framework for the representation of microbes and their pairwise interactions in order to 438 

address both of these challenges. Our results indicate that representing genome-derived 439 

traits of microbes as binary vectors is sufficient for building reliable classifiers for 440 

microbial interactions. We also demonstrated two methods for utilizing feature 441 
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contributions from random forest models to aid in the development of testable hypotheses 442 

regarding interaction mechanisms. 443 

 444 

Qualitatively predicting the outcome of unobserved interactions is most valuable if those 445 

predictions allow precious resources and time to be conserved. To this end the 446 

construction of learning curves is an important step in identifying how much data is 447 

required in order to achieve desired prediction accuracy from machine learning. Our 448 

results indicate that prediction of interactions in communities of all sizes may benefit from 449 

machine learning. In situations where the prediction of interaction outcomes is not 450 

necessary the properties of random forest makes it a good choice for deciding which traits 451 

to study first. Because predictions will always benefit from more data we suggest that if 452 

the experimental space is not prohibitively large that all pairwise experiments be 453 

performed and feature contributions then be used to derive testable hypotheses. 454 

Conversely, when the experimental space is large then one should perform a subset of 455 

experiments and incorporate the results of any additional experiments into the training set 456 

in order to build new classifiers recursively. The larger the community being studied is the 457 

smaller the relative fraction of possible experiments that must be initially performed, these 458 

results are promising both for future studies of natural communities, which can contain 459 

upward of a thousand unique community members (32) and the assembly of synthetic 460 

communities from large libraries of microbes. 461 

 462 

Feature contributions provide a clear window into the decision-making process of a 463 

random forest when the underlying mechanisms are straightforward, as was the case for 464 
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the E. coli auxotrophs. In cases such as this, interpretation of the model is clear and novel 465 

detailed hypotheses can be readily developed. Even incorrect predictions are useful since 466 

instances that go against the expectations of the classifier are likely to be worth closer 467 

scrutiny. In situations where many factors contribute in a complex manner to an 468 

interaction we demonstrated the utility of feature contributions for guiding exploratory 469 

experiments by enriching underlying competitive mechanisms near the top of ranked lists. 470 

In our particular application of feature contributions to an in silico community we used 471 

their net effects to identify metabolites that are competed for in negative cases or are used 472 

in cross feeding in positive interactions. The particular method of evaluating feature 473 

contributions, summing the net effects or sorting them by magnitude is a decision that 474 

must be made on a case-by-case basis. 475 

 476 

Although we concatenated the binary trait vectors of two organisms in order to form a new 477 

composite trait representation, alternative representations of microbes and their 478 

interactions should also be explored. Predictions may also benefit from incorporating 479 

more information into the base representation of a microbe such as gene copy number or 480 

mean transcriptional levels. We also encourage future researchers to acquire information 481 

on the same interactions in multiple environmental conditions. Varying the environmental 482 

conditions will allow abiotic factors to be incorporated into the representation and should 483 

yield additional insight into situations where certain combinations of traits are most 484 

relevant.   485 

 486 
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Going forward we expect that the importance of machine learning in microbial ecology 487 

will continue to grow. The need to identify microbial strains that interact in a desired way 488 

in any given environment will be one of the most pressing issues for synthetic ecology in 489 

the future. Likewise, it would not be surprising if many novel methods for interpreting 490 

machine learning algorithms emerge in response to the challenges of understanding the 491 

properties of microbial communities. 492 

 493 

Data Availability. Pointers to Datasets obtained from previous work, and used in our 494 

analysis are reported in the Materials and Methods Section.  495 

The code necessary to reproduce all our figures and analyses is hosted at: 496 

https://github.com/ddimucci/MicrobialCommunities 497 

 498 

Materials and Methods 499 

Auxotrophic E. coli interaction network data. We obtained the measured growth 500 

response of individual E.coli strains and biosynthetic costs of amino acids from the 501 

supplemental files provided by (27).  502 

 503 

Simulation of in silico pairwise interactions among gut microbes with dFBA in 504 

COMETS. Metabolic reconstructions of human gut associated microbes were obtained 505 

from Bauer et al (14). At the time of this writing these models can be downloaded directly 506 

from the following URL: 507 

https://wwwen.uni.lu/content/download/86230/1056013/file/Bauer_et_al_301_microbe_m508 

odels.rar  509 
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Each metabolic reconstruction encompasses the stoichiometry of virtually all metabolic 510 

reactions present in an organism, including uptake/secretion. Flux balance analysis (FBA) 511 

is a constraint-based steady state approach that uses this stoichiometry to predict fluxes 512 

and growth capacity under a given boundary condition of nutrient availability, and has 513 

been described in detail before (15, 33–35). Dynamic flux balance analysis (DFBA) (12) 514 

extends classical FBA to perform dynamic simulations in which intracellular metabolites 515 

are still assumed to be at steady states, but total biomass and environmental metabolites 516 

are treated as time-dependent variables in a discretized approximation. We performed 517 

DFBA simulations using our platform for Computation of Microbial Ecosystems in Time 518 

and Space (COMETS), which has been previously used to model microbial communities 519 

(13) . COMETS allows users to implement DFBA in a two-dimensional simulated world 520 

populated with multiple metabolic models. We selected 100 metabolic models (14) and 521 

identified a common medium that would permit the growth of nearly all models in a 522 

monoculture scenario. We then performed all pairwise co-culture simulations of the 100 523 

models using the common media set in a well-mixed batch culture scenario (approximated 524 

by using COMETS without spatial structure). For each scenario we saved the record of 525 

biomass accumulation and fluxes in order to calculate relative yield and identify 526 

mechanisms of interaction, respectively. 527 

 528 

Relative Yield. Relative yield quantifies the change in net growth of an organism in a new 529 

environment relative to a reference scenario. For our purpose we compared the growth of 530 

models in co-culture to their accumulated growth in monoculture. Relative yield was 531 

calculated according to the equation: 532 
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 533 

RY = (Biomasscoculture – Biomassmonoculture)/Biomassmonoculture 534 

 535 

 An RY < 0 indicates that the responder is detrimentally affected by its partner. 536 

Correspondingly, an RY of 0 indicates no effect and an RY > 0 indicates a positive affect 537 

from co-culture with the partner. 538 

 539 

Jaccard Distance. A profile (modeli) encoding the presence (1)/absence (0) of different 540 

metabolic reactions in each model i was identified based on its stoichiometric matrix. The 541 

Jaccard distance (JD) between two metabolic models i and j was determined with the 542 

equation: 543 

 544 

JD(modeli, modelj) = 1 - | modeli ∩ modelj | / | modeli ∪ modelj | 545 

 546 

Representation of interactions with trait-derived features. For a given community C 547 

the observed co-culture response of each species i in the presence of j is encoded into the 548 

element Xij of an interaction matrix X. To define a set of trait vectors for each organism in 549 

C, we start by obtaining a list of λ features that can be assigned systematically across all 550 

organisms. These features could be the presence/absence of specific genes, functions, or 551 

any other trait. In the two case studies reported here, the feature vectors correspond to the 552 

presence/absence of specific metabolite transporters in stoichiometric models, and to 553 

amino acid auxotrophies, respectively. Thus, each organism i is associated with an λ-long 554 

vector Vi, whose element k is 0 or 1 depending on whether or not trait k is absent or 555 
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present in organism i. Traits (i.e. elements of the feature vector) that are identical across 556 

all organisms are removed from the feature set. Each pair of organisms (i,j) is then 557 

associated with a co-culture feature vector, defined as the concatenation of vectors Vi and 558 

Vj, also indicated as Vi,j = [Vi , Vj] (see also Fig. 1). Note that in this concatenated vector, 559 

order matters. For the purpose of feeding the data into the random forest algorithm, the 560 

complete information about how organism i responds in a co-culture with organism j, is 561 

encoded in the composite feature vector Vi,j  and the observed phenotypic response for that 562 

specific pair, i.e. Xij.  563 

 564 

Machine learning. R was used to implement K-nearest neighbor (Knn), Random Forest 565 

(RF), and support vector machine (SVM). Knn was implemented with the rknn package, 566 

with K set to 3. Library e1071 was used for SVM and we used a linear kernel and 567 

cost=0.1. Random forest was implemented with the randomForest library. All three 568 

algorithms had similar performance on the E. coli data set but RF was significantly better 569 

on the in silico data set (data not shown).  570 

 Random forests are ensemble classifiers that aggregate the results of many individual 571 

decision trees. Each tree in a random forest is assigned a synthetic data set that is of the 572 

same size as the training set but generated through sampling with replacement. The result 573 

is that the average tree is trained on approximately 2/3 of the observations; these 574 

observations are referred to as in bag samples. The remaining 1/3 of observations not in 575 

the synthetic data sets are referred to as out of bag samples. The new synthetic data set is 576 

placed at the root node of a new tree; next a randomly selected subset of predictive 577 

features is queried for the best split of the data into two child nodes. This process is 578 
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repeated at each node until a stopping criterion is met. Classification accuracy of 579 

individual trees is assessed by running their out of bag samples down the tree and 580 

recording the results. See (19) for a full description of the algorithm. 581 

 582 

Evaluation of classifiers. We used balanced accuracy to evaluate performance of 583 

classifiers. This metric is based on the values from the confusion matrix: true positive 584 

(TP), true negative (TN), false positive (FP), and false negative (FN). Balanced accuracy 585 

is calculated as follows: 586 

 587 

Balanced Accuracy = (TP/(TP+FN) + TN/(TN+FP))/2 588 

 589 

Learning curves. To construct learning curves we defined a set of fractions, fr = [.05, .1, 590 

.2, .3, .4, .5, .6, .7, .8, .9, .95] where we would evaluate balanced accuracy of the model 591 

using cross validation. For all cross-validation experiments we ensured that observations 592 

Xij and Xji were either both in the training set or in the test set. For each fraction in fr we 593 

randomly selected max(1/fri , 1/(1-fri)) mutually exclusive subsets of the data to use as a 594 

training set or as a hold out test set if fri > .5. This process was repeated until at least 10 595 

subsets of the data were selected for each fraction. The median balanced accuracy of the 596 

classifier was then calculated at each point along fr. In order to investigate the effect of the 597 

community size on the learning curve we defined a set of community sizes S = [10, 20, 30, 598 

40, 50, 60, 70, 80, 90]. For each community size Si we randomly selected five community 599 

sub-matrices, Xk, from the full in silico community matrix (X). Then for each Xk a learning 600 
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curve was determined and the median learning curve for balanced accuracy of each 601 

community size was calculated 602 

 603 

Feature contributions for binary classifications.  Each tree in the random forest is 604 

presented with a bootstrapped subset of the provided data as a training set that is used to 605 

grow the tree. The training set is placed at the root node of the tree. The fraction of 606 

instances in the training set of class C1 is Yn
mean. Yn

mean is the probability that an instance 607 

selected at random from the root node is assigned to class C1.  608 

There are two steps in the calculation of feature contributions for a new sample: First 609 

calculate the sum of all local increments in each tree, second determine the average 610 

contribution over the forest. A local increment for a feature f is calculated if the split was 611 

performed on f and is defined as the change in probability of C1 in a parent node (p) and a 612 

child node (c): 613 

 614 

LIc
f  = Yc

mean – Yp
mean 615 

  616 

Local increments quantify the change in the probability of a sample being classified as C1 617 

between the child node and the parent node when f is the splitting criterion. The feature 618 

contribution, FCf
i,t of feature f in tree t for observation i is the sum of all LIf along the path 619 

from the root node to the terminal node. FCf
i is given by the equation: 620 

   621 

FCf
i = 1/T ∑(FCf

i,t) 622 

 623 
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Feature contributions were calculated with the forestFloor package and are calculated 624 

using only trees for which a sample was out of bag.  625 

 626 

Application to positive samples. Positive samples constituted a small minority of the 627 

total samples (420/9900) and result in a heavily imbalanced data set when we try to 628 

classify these samples as separate from either neutral or negative responses. Imbalanced 629 

datasets often result in very high classification accuracies because the classifier simply 630 

predicts every instance to be of the majority class. This is an issue because if we are to 631 

have confidence in feature contributions an adequately performing classifier is desired. In 632 

order to develop a reliable classifier we under sampled the non-positive instances by 633 

randomly selecting a subset of 420 of them to pair with the 420 positive observations and 634 

then trained a random forest on the new data set. To estimate the efficacy of the random 635 

forest we repeated this process 100 times and note that there was a median balanced 636 

accuracy of ≈ 85%. We then used a single random forest model to calculate feature 637 

contributions in the context of identifying positive responses.   638 
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