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Abstract 23	  

 24	  

Introns are removed by the spliceosome, a large macromolecular complex composed 25	  

of five ribonucleoprotein subcomplexes (U snRNP). The U1 snRNP, which binds to 5’ 26	  

splice sites, plays an essential role in early steps of the splicing reaction. Here, we 27	  

show that Arabidopsis LUC7 proteins, which are encoded by a three-member gene 28	  

family in Arabidopsis, are important for plant development and stress resistance. We 29	  

show that LUC7 are U1 snRNP accessory proteins by RNA immunoprecipitation 30	  

experiments and LUC7 protein complex purifications. Transcriptome analyses 31	  

revealed that LUC7 proteins are not only important for constitutive splicing, but also 32	  

affects hundreds of alternative splicing events. Interestingly, LUC7 proteins 33	  

specifically promote splicing of a subset of terminal introns. Splicing of LUC7-34	  

dependent introns is a prerequisite for nuclear export and some splicing events are 35	  

modulated by stress in a LUC7-dependent manner. Taken together our results 36	  

highlight the importance of the U1 snRNP component LUC7 in splicing regulation and 37	  

suggest a previously unrecognized role of a U1 snRNP accessory factor in terminal 38	  

intron splicing. 39	  

40	  
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Introduction 41	  

Eukaryotic genes are often interrupted by non-coding sequences called introns that 42	  

are removed from pre-mRNAs while the remaining sequence, the exons, are joined 43	  

together. This process, called splicing, is an essential step before the translation of 44	  

the mature mRNAs and it offers a wide range of advantages for eukaryotic 45	  

organisms. For instance, alternative splicing allows the production of more than one 46	  

isoform from a single gene expanding the genome coding capacity (Kornblihtt et al., 47	  

2013; Reddy et al., 2013). Alternative splicing can also regulate gene expression by 48	  

generating transcripts with premature termination codons (PTC) or/and a long 3’UTR, 49	  

which may lead to RNA degradation via the nonsense-mediated decay (NMD) 50	  

pathway (Kalyna et al., 2012; Drechsel et al., 2013; Shaul, 2015). Furthermore, 51	  

splicing is usually coupled with other RNA processing events, such as 3’end 52	  

formation and RNA transport to the cytosol (Kaida, 2016; Muller-McNicoll et al., 53	  

2016). In plants, alternative splicing contributes to essentially all aspects of 54	  

development and stress responses (Carvalho et al., 2013; Staiger and Brown, 2013). 55	  

Intron removal is catalyzed by a large macromolecular complex, the 56	  

spliceosome, which is formed by five small ribonucleoprotein particles (U snRNP): 57	  

the U1, U2, U4, U5 and U6 snRNP. Each U snRNP contains a heteroheptameric ring 58	  

of Sm or Lsm proteins, snRNP-specific proteins and an uridine-rich snRNA. 59	  

Additional non-core spliceosomal proteins participate during the splicing reaction 60	  

affecting exon-intron recognition and thus splicing efficiency. The canonical splicing 61	  

cycle starts with binding of the U1 snRNP to the 5’ splice site (5’ss), followed by 62	  

association of auxiliary proteins such as U2AF to the pre-mRNA, which facilitate the 63	  

recognition of the 3’ splice site (3’ss). The thereby formed complex E recruits the U2 64	  

snRNP to generate complex A. In the next step, a trimeric complex consisting of 65	  

U4/U5/U6 snRNPs joins to form complex B. Several rearrangements and ejection of 66	  
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the U1 and U4 snRNP are necessary to generate a catalytically active splicing 67	  

complex (Wahl et al., 2009; Will and Luhrmann, 2011).   68	  

The fact that U1 snRNP is recruited to the 5’ss in the initial step of splicing 69	  

suggests that this complex is necessary for the correct 5’ splicing site selection. 70	  

Indeed, it has been shown that U1-deficient zebrafish mutants accumulate alternative 71	  

spliced transcripts, suggesting that the U1 snRNP indeed fulfills regulatory roles in 72	  

splice site selection (Rosel et al., 2011). Although the spliceosome consists of 73	  

stoichiometrically equal amounts of each subunit, the U1 snRNP is more abundant 74	  

than all the other spliceosomal subcomplexes (Kaida et al., 2010; Kaida, 2016). One 75	  

reason for this is that the U1 snRNP executes splicing independent functions. The 76	  

metazoan U1 snRNP, for instance, binds not only to the 5’ss, but also throughout the 77	  

nascent transcript blocking a premature cleavage and polyadenylation (Kaida et al., 78	  

2010; Berg et al., 2012). Furthermore, the U1 snRNP is important to regulate 79	  

promoter directionality and transcription in animals (Almada et al., 2013; Guiro and 80	  

O'Reilly, 2015).  81	  

U1 snRNP complexes were purified and characterized in yeast and human. 82	  

The U1 snRNP contains the U1 snRNA, Sm proteins, three U1 core proteins (U1-83	  

70K, U1-A and U1-C) and U1-specific accessory proteins, such as LUC7, PRP39 84	  

and PRP40. All these proteins are conserved in plants suggesting a U1 snRNP 85	  

composition very similar to the one in yeast and metazoans (Wang and Brendel, 86	  

2004; Koncz et al., 2012; Reddy et al., 2013). Interaction studies revealed that U1 87	  

snRNP associates with serine-arginine (SR) proteins, indicating a complex 88	  

mechanism for splicing site selection that involves also non-snRNP proteins 89	  

(Golovkin and Reddy, 1998; Cho et al., 2011). 90	  

 The function of the plant U1 snRNP is not well characterized. This might be 91	  

due to the fact that in Arabidopsis thaliana the core U1 snRNP components U1-70K 92	  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 23, 2018. ; https://doi.org/10.1101/150805doi: bioRxiv preprint 

https://doi.org/10.1101/150805


Amorim et al.  The function of a plant U1 component, LUC7  

	   5 

or U1C are single copy genes and a complete knockout most likely causes severe 93	  

mutant phenotypes or lethality. On the other hand, proteins such as PRP39, PRP40 94	  

and LUC7 are encoded by small gene families, which require the generation of 95	  

multiple mutants for functional studies. Some U1 specific Arabidopsis mutants have 96	  

been characterized: Mutations in the accessory factor PRP39A cause delayed 97	  

flowering due to increased expression of the flowering time regulator FLOWERING 98	  

LOCUS C (FLC), but the mutants do not exhibit severe developmental defects (Wang 99	  

et al., 2007; Kanno et al., 2017). In a reverse genetic approach, U1-70K expression 100	  

was specifically reduced in flowers by an antisense RNA and the resulting transgenic 101	  

plants exhibit strong floral defects (Golovkin and Reddy, 2003). Moreover, a mutation 102	  

in U1A causes an altered salt stress response (Gu et al., 2017). Thus, despite 103	  

evidences that U1 snRNP is essential for plant development and stress response, 104	  

the functions of the U1 snRNP in regulating the transcriptome of plants are largely 105	  

unknown. Other characterized factors, such as GEMIN2 or SRD2 are required for the 106	  

functionality of all snRNPs, but not specifically for U1 function (Ohtani and Sugiyama, 107	  

2005; Schlaen et al., 2015). 108	  

 Here, we report on the functional characterization of Arabidopsis mutants 109	  

impaired in U1 snRNP function. For this, we focused in this study on the U1 snRNP 110	  

components LUC7, which we show to be essential for normal plant development and 111	  

plant stress resistance. Our whole transcriptome analyses on luc7 triple mutant show 112	  

that impairments of LUC7 proteins affect constitutive and alternative splicing. 113	  

Surprisingly, our results reveal the existence of transcripts, in which terminal introns 114	  

are preferentially retained in a LUC7-dependent manner. Unspliced LUC7-dependent 115	  

introns cause a nuclear retention of the pre-mRNAs and the splicing efficiency of 116	  

LUC7-dependent introns can be modulated by stress. Our results suggests that the 117	  

plant U1 snRNP components LUC7 regulate alternative splicing of pre-mRNAs and 118	  
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thereby impact their nuclear export, which could be a mechanism to fine-tune gene 119	  

expression under stress conditions.  120	  
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Results 121	  

LUC7 proteins, a family of conserved nuclear zinc-finger / arginine-serine (RS) 122	  

proteins, redundantly control plant development  123	  

LETHAL UNLESS CBC 7 (LUC7) was first identified in a screen for synthetic lethality 124	  

in a yeast strain lacking the nuclear cap-binding complex (CBC), which is involved in 125	  

several RNA processing events (Fortes et al., 1999a; Gonatopoulos-Pournatzis and 126	  

Cowling, 2014; Sullivan and Howard, 2016). LUC7 proteins carry a C3H and a C2H2-127	  

type zinc-fingers, which are located in the conserved LUC7 domain. LUC7 proteins 128	  

from higher eukaryotes usually contain also an additional C-terminal Arginine/Serine-129	  

rich (RS) domain, which is known to mediate protein-protein interactions (Puig et al., 130	  

2007; Webby et al., 2009; Heim et al., 2014). Arabidopsis thaliana encodes three 131	  

LUC7 genes (AthLUC7A, AthLUC7B and AthLUC7RL), which are separated in two 132	  

clades: LUC7A/B and LUC7RL (Figure 1A and S1). AthLUC7RL is more similar to its 133	  

yeast homolog and lacks a conserved stretch of 80 amino acids of unknown function 134	  

present in AthLUC7A and AthLUC7B (Figure S1). A phylogenetic analysis revealed 135	  

that algae contain a single LUC7 gene belonging to the LUC7RL clade reinforcing the 136	  

idea that LUC7RL proteins are closer to the ancestral LUC7 than LUC7A/B. In the 137	  

moss Physcomitrella and in the fern Selaginella one can find proteins belonging to 138	  

both clades, suggesting that the split into LUC7RL and LUC7A/B occurred early 139	  

during the evolution of land plants.  140	  

In order to understand the function of the Arabidopsis U1 snRNP, we analyzed 141	  

T-DNA insertion lines affecting LUC7 genes (Figure 1B). Single and double luc7 142	  

mutants were indistinguishable from wild-type plants (WT) (Figure S2). However, 143	  

luc7 triple mutant exhibit a wide range of developmental defects, including dwarfism 144	  

and reduced apical dominance (Figure 1C-E). To test whether the impairment of 145	  

LUC7 functions was indeed responsible for the observed phenotypes, we 146	  
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 147	  

reintroduced a wild-type copy of LUC7A, LUC7B or LUC7RL in the luc7 triple mutant. 148	  

Each of the LUC7 genes was sufficient to restore the growth phenotype of the luc7 149	  
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triple mutant (Figure 1E). These results reveal that the phenotype observed in this 150	  

mutant is attributable to the impairment of LUC7 function and it suggests that LUC7 151	  

genes act redundantly to control Arabidopsis growth and development.  152	  

 153	  

LUC7 functions in the ABA pathway and is important for cold and salt stress 154	  

responses 155	  

Splicing is essential for plant stress resistance and mutants impaired in splicing often 156	  

react differently to stress and the stress hormone abscisic acid (ABA) (Filichkin et al., 157	  

2015; Zhan et al., 2015). In addition, global impairment of the splicing machinery 158	  

elicits ABA signaling (AlShareef et al., 2017; Ling et al., 2017). To test whether LUC7 159	  

is important for plant stress resistance and ABA-mediated stress signaling, we 160	  

analyzed growth parameters of WT, the luc7 triple mutant and a luc7 rescue line in 161	  

presence of exogenous ABA or salt. A cotyledon greening assay showed that luc7 162	  

triple mutants reacted hypersensitively to exogenous ABA (Figure 2A, B), suggesting 163	  

that LUC7 plays an important role in the ABA pathway. Furthermore, salt in the 164	  

growth medium impaired root growth much more strongly in luc7 triple mutant than in 165	  

WT or in a luc7 rescue line (Figure 2C, D). Similarly, cold temperatures strongly 166	  

compromised the growth of luc7 triple mutants when compared to WT (Figure 2E). 167	  

These results imply that functional LUC7 proteins are required for plant stress 168	  

resistance and ABA responses. 169	  
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 170	  

 171	  

LUC7 is a U1 snRNP component in plants 172	  

The composition of the U1 snRNP subcomplex is known in yeast and metazoans but 173	  

not in plants (Will and Luhrmann, 2001; Koncz et al., 2012). Therefore, we asked 174	  

whether LUC7 is also an U1 component in Arabidopsis. Due to the fact that our 175	  

genetic analyses of luc7 mutants suggested that LUC7 proteins act largely 176	  

redundant, we focused our further analyses mainly on a single LUC7 protein, LUC7A. 177	  
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A protein that is part of the U1 complex is tightly associated with U1 specific 178	  

components such as the U1 snRNA. To test whether LUC7 is found in a complex 179	  

with the U1 snRNA, we performed RNA immunoprecipitation (RIP) experiments using 180	  

a luc7 triple mutant carrying pLUC7A:LUC7A-YFP rescue construct (Figure S3). 181	  

Immunoprecipitation of LUC7A-YFP enriched the U1 snRNA more than 40-fold, but 182	  

did not enrich two unrelated, but abundant RNAs, U3 snoRNA and ACTIN mRNA 183	  

(Figure 3A). Small amounts of U2 snRNA was also found associated with LUC7A, 184	  

which is in agreement with the fact that U1 and U2 snRNP directly interact to form 185	  

spliceosomal complex A (Figure 3A). However, the amount of recovered U2 snRNA 186	  

is more than four-fold lower than that of the U1 snRNA (Figure 3A). These results 187	  

strongly suggest that Arabidopsis LUC7 proteins are bona fide U1 snRNP 188	  

components.  189	  

Next we analyzed the subcellular localization of LUC7A and its co-localization 190	  

with a core U1 snRNP subunit. LUC7A localized to the nucleus, but not to the 191	  

nucleolus in Arabidopsis plants containing the pLUC7A:LUC7A-YFP rescue construct 192	  

(Figure 3B). In addition, LUC7A partially co-localized with U1-70K in the nucleoplasm 193	  

when transiently expressed in Nicotiana benthamiana (Figure 3C). Similar results 194	  

were obtained for LUC7RL, the Arabidopsis LUC7 most distant in sequence to 195	  

LUC7A (Figure 3C). In plants, co-localizations studies in protoplasts have shown that 196	  

also the core U1 components only partially colocalize (Lorkovic and Barta, 2008). 197	  

These partial colocalizations suggest that plant U1 snRNP proteins may fulfill 198	  

additional functions as it has been observed in other eukaryotes (Workman et al., 199	  

2014). 200	  
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 201	  

To further test whether LUC7A associates in planta with known U1 snRNP 202	  

components, we purified LUC7A-containing complexes. For this, we used 203	  

pLUC7A:LUC7A-YFP complemented lines and as controls wild-type plants and 204	  

transgenic lines expressing free GFP (p35S:GFP).  Immunopurifications (IPs) were 205	  

carried out three to four time independently. We observed that WT often produced 206	  

more background in mass spectrometry (MS) analyses than the 35S:GFP line and 207	  

we therefore decided to use WT as a more stringent control (Table S1). Among all 208	  

identified proteins we considered those putative LUC7 interactors that were found in 209	  

at least two independent experiment and were at least three time more abundant in 210	  

pLUC7A:LUC7A-YFP IPs than in WT IPs. The mass spectrometry (MS) analysis 211	  
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revealed that LUC7 is indeed found in a complex with core U1 snRNP proteins U1A 212	  

and U1-70K (Table 1, Table S1). Moreover, we detected peptides corresponding to 213	  

the spliceosomal complex E components U2AF35 and U2AF65, further suggesting 214	  

that LUC7 proteins are involved in very early steps of the splicing cycle (Table 1, 215	  

Table S1). Additional proteins known to be involved in splicing and general RNA 216	  

metabolism including several serine-arginine (SR) proteins (SR30, SCL30A, SCL33), 217	  

SR45, SERRATE (SE) and the CBC component ABH1/CBP80 were found in LUC7A-218	  

containing complexes (Table 1, Table S1). To test the validity of the LUC7 complex 219	  

purification experiment, we confirmed the interaction between LUC7 with SE and 220	  

ABH1/CBP80 by in planta co-immunoprecipitation experiment (Figure S4).  221	  

Interestingly, we also identified regulatory proteins in LUC7A-containing complexes, 222	  

among them several kinases and proteins involved in 3’end processing (Table 1, 223	  

Table S1). 224	  

                  225	  

 226	  

 227	  
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LUC7 effects on the Arabidopsis coding and non-coding transcriptome 228	  

In order to identify misregulated and misspliced genes in luc7 mutants, we performed 229	  

an RNA-sequencing (RNA-seq) analysis with three biological replicates. We decided 230	  

to use seven days old WT and luc7 triple mutant seedlings. At this age, luc7 triple 231	  

mutant and WT seedlings are morphologically similar and therefore, changes in 232	  

transcript levels and splicing patterns most likely reflect changes caused by 233	  

impairments of LUC7 proteins and are not due to different contribution of tissues 234	  

caused by, for instance, a delay in development or/and different morphology (Figure 235	  

S5). We sequenced between 22.1 and 27.6 million reads per library. 236	  

An analysis of differentially expressed genes revealed that 840 genes are up- 237	  

and 703 are downregulated in luc7 triple mutant when compared to WT (Table S2, 238	  

Table S3). The majority of genes that change expression were protein-coding genes 239	  

(Figure 4A).  Nevertheless, non-coding RNAs (ncRNAs) were significantly enriched 240	  

among the LUC7 affected genes (p < 0.05, hypergeometric test), although the overall 241	  

number of ncRNA affected in luc7 triple mutant is relatively small (Figure 4A, B). 242	  

Previous studies implied that the U1 snRNP regulates microRNA (miRNA) 243	  

biogenesis (Bielewicz et al., 2013; Schwab et al., 2013; Knop et al., 2016; Stepien et 244	  

al., 2017). However, the expression of MIRNA genes was not affected in luc7 triple 245	  

mutants (Figure 4A). In addition, quantification of mature miRNA levels revealed that 246	  

all tested miRNAs did not change abundance in luc7 triple mutants (Figure 4C). 247	  

These results show that LUC7 proteins affect the expression of protein-coding genes 248	  

and a subset of ncRNAs, but are not involved in the miRNA pathway.  249	  
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 250	  

Arabidopsis LUC7 functions are important for constitutive and alternative 251	  

splicing  252	  

Because LUC7 proteins are U1 snRNP components, we ask whether misspliced 253	  

transcripts accumulate in the luc7 triple mutant. In total, we identified 640 differential 254	  

splicing events in luc7 triple mutants compared to WT (Table S4). Only 17 of these 255	  

alternative splicing events occurred in mRNAs whose expression also differed 256	  

between luc7 mutants and WT (Table S5, Table S6). Hence, the splicing differences 257	  

found were mainly not due to changes in transcript abundance. We detected a large 258	  

number of intron retention events in the luc7 triple mutant (Figure 5A). RT-PCR 259	  

experiments with oligonucleotides flanking selected intron retentions events 260	  

confirmed the RNA-seq data (Figure 5B). These results suggest that lack and/or 261	  

impairment of the U1 snRNP component LUC7 disturbs intron recognition and thus 262	  

splicing. We also identified a large number of exons skipping events in the luc7 triple 263	  

mutant. Exon skipping is also a major outcome of impairing U1 snRNP function or 264	  

binding in metazoans (Lorkovic and Barta, 2008; Rosel et al., 2011). These defects 265	  
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are most likely caused by interactions of the U2 snRNP with U1 snRNPs associated 266	  

to alternative 5’splice sites (Morcos, 2007). Furthermore, we detected several cases 267	  

of alternative 5’ and 3’ splice site selection in luc7 triple mutants (Figure 5A-F).  268	  

Some splicing defects observed in luc7 triple mutants generated transcript 269	  

variants that did not exist in WT (e.g. At2g32700, Figure 5C). In these cases, LUC7 270	  

proteins affect the splicing of an intron which is constitutively removed in WT plants. 271	  

On the contrary, in other cases the luc7 triple mutant lacked specific mRNA isoforms, 272	  

which exist in wild-type plants (e.g. At1g10980, At4g32060), or the ratio of two 273	  

different isoforms was altered in luc7 triple mutant when compared to WT (e.g. 274	  

At3g17310, At5g16715, At5g48150, At2g11000) (Figure 5D-F). In these cases, LUC7 275	  

proteins affect a splicing event which is subjected to alternative splicing in WT plants. 276	  

These results show that LUC7 proteins are involved in both constitutive and 277	  

alternative splicing in Arabidopsis.  278	  

Next, we checked whether splicing changes observed in luc7 triple mutant are 279	  

actually due to the loss of only a specific LUC7 gene or whether LUC7 genes act 280	  

redundantly. To test this, we analyzed the splicing pattern of some mRNAs in luc7 281	  

single, double and triple mutants. Some splicing defects were detectable even in luc7 282	  

single mutants (Figure S6), but the degree of missplicing increased in luc7 double 283	  

and triple mutants suggesting that LUC7 proteins act additively on these introns (e.g. 284	  

At5g16715). Some splicing defects occurred only in luc7 triple mutants, implying that 285	  

LUC7 proteins act redundantly to ensure splicing of these introns (e.g. At1g60995). 286	  

Other splicing defects might more likely be due to the lack of LUC7A/B or LUC7RL. 287	  

For instance, intron removal of At2g42010 more strongly relied on LUC7RL, while 288	  

removal of an intron in At5g41220 preferentially depends on LUC7A/LUC7B (Figure 289	  

S6). These findings suggest that Arabidopsis LUC7 genes function redundantly, 290	  

additively or specifically to ensure proper splicing. 291	  
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 292	  

 293	  

LUC7 proteins are preferentially involved in the removal of terminal introns 294	  

In yeast, LUC7 connects the CBC with the U1 snRNP and this interaction is 295	  

important for the correct 5’ splicing site selection (Fortes et al., 1999b). In plants, the 296	  
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CBC associates with SE to ensure splicing of cap-proximal first introns (Laubinger et 297	  

al., 2008; Raczynska et al., 2010; Raczynska et al., 2013). In addition, we show here 298	  

that LUC7A form complexes with SE and ABH1/CBP80, one of the CBC competent 299	  

(Table S1, Figure S4). To investigate the relationship between LUC7 and the 300	  

CBC/SE in plants, we analyzed the splicing patterns of LUC7 dependent introns in 301	  

cbc mutants (cbp20 and cbp80) and se-1 by RT-PCR. All tested introns retained in 302	  

luc7 triple mutant were correctly spliced in cbc and se mutants (Figure 6A). 303	  

Conversely, first introns that were partially retained in cbp20, cbp80 and se-1 304	  

mutants were completely removed in the luc7 triple mutant (Figure 6B). These 305	  

observations suggest that the functions of LUC7 and CBC/SE in splicing of the 306	  

selected introns do not overlap. 307	  

Next, we asked whether LUC7 has a preference for promoting splicing of cap-308	  

proximal first introns as it has the CBC/SE complex. We classified retained introns in 309	  

luc7 triple mutant according to their position within the gene (first, middle or last 310	  

introns). Only genes with at least 3 introns were considered for this analysis. We 311	  

found a significant increase in retained last introns, but not first introns, in luc7 triple 312	  

mutants (Figure 6C). Although the total number of retained introns was higher among 313	  

middle introns, the relative amount of retained middle introns in luc7 triple mutant 314	  

was significantly reduced (Figure 6C). Retention of terminal introns in luc7 triple 315	  

mutants was confirmed by RT-PCR analysis (Figure 6D). In summary, our data 316	  

revealed that (i) CBC/SE acts independently of LUC7 in splicing of cap-proximal 317	  

introns and that (ii) LUC7 proteins play an important role for the removal of certain 318	  

terminal introns. 319	  
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 320	  

 321	  
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mRNAs harboring unspliced LUC7-dependent introns remain in the nucleus 322	  

and escape NMD  323	  

We were further interested in determining the characteristics and possible functions 324	  

of LUC7-dependent introns. When introns are retained, the resulting mRNA can 325	  

contain a premature stop codon and a long 3’UTR, which are hallmarks of NMD 326	  

targets (Kalyna et al., 2012; Drechsel et al., 2013; Shaul, 2015).  To check whether 327	  

mRNAs containing a retained LUC7-dependent introns are NMD substrates, we 328	  

analyzed their splicing patterns in two mutants impaired in NMD, lba-1 and upf3-1. If 329	  

unspliced isoforms were indeed NMD targets, we would expect their abundance to 330	  

be increased in NMD mutants. Interestingly, we did not observe any change between 331	  

WT and upf mutants (Figure 7A). Thus, we conclude that the tested LUC7-dependent 332	  

introns do not trigger degradation via the NMD pathway. 333	  

NMD occurs in the cytoplasm and RNAs can escape NMD by not being 334	  

transported from the nucleus to the cytosol (Gohring et al., 2014). We therefore 335	  

checked in which cellular compartment mRNAs with spliced and unspliced LUC7-336	  

dependent introns accumulate. To do this, we isolated total, nuclear and cytosolic 337	  

fractions from wild-type and luc7 triple mutant plants and performed RT-PCR 338	  

analyses (Figure 7B). Purity of cytosolic and nuclear fractions was controlled by 339	  

immunoblot analysis using antibodies against histone H3 (specific for nuclear 340	  

fractions) and a 60S ribosomal protein (L13-1, specific for cytosolic fractions) (Figure 341	  

7C). Spliced mRNA isoforms accumulated in the cytosol, whereas mRNAs containing 342	  

the unspliced LUC7-dependent introns were found in nuclear fractions (Figure 7B). 343	  

These results indicate that retention of LUC7-dependent introns correlates with 344	  

trapping mRNAs in the nucleus and suggest that splicing of LUC7-dependent introns 345	  

is essential for mRNA transport to the cytosol. 346	  
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 347	  

 348	  

Splicing of LUC7-dependent introns can be modulated by stress 349	  

Our results revealed that a subset of alternatively spliced introns requires LUC7 350	  

proteins for efficient splicing and that splicing of these introns is a prerequisite for 351	  

nuclear export. This mechanism could serve as a nuclear quality control step to 352	  

prevent that unspliced mRNAs are exported prematurely. Interestingly, a GO analysis 353	  

of genes containing LUC7-dependent introns indicated an enrichment for stress 354	  

related genes (Figure S7). This prompted us to speculate that nuclear retention of 355	  
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mRNAs could be exploited as a regulatory mechanism to fine-tune gene expression 356	  

under stress conditions.  357	  

To test this hypothesis, we decided to check the splicing of some LUC7-358	  

dependent introns in WT under stress condition. We chose cold stress because luc7 359	  

mutants are cold-sensitive (Figure 2) and in addition, it was suggested that U1 360	  

snRNP functionality is impaired under cold condition (Schlaen et al., 2015). To 361	  

quantify the amount of unspliced isoforms in cold condition, we designed qPCR-362	  

primers specific to unspliced isoforms and the total mRNA pool and calculate the 363	  

relative amount of mRNA carrying unspliced LUC7-dependent introns compared to 364	  

the total mRNA pool. mRNAs of At1g70480, At2g41560 and At5g44290 significantly 365	  

accumulated unspliced isoforms in responses to cold treatment demonstrating that 366	  

cold stress modulates the splicing efficiency of these LUC7-dependent introns 367	  

(Figure 8A). Interestingly, the amount of unspliced mRNA in luc7 triple mutants does 368	  

not differ significantly between mock and stress conditions (Figure 8A). This 369	  

observation suggests that LUC7 is directly involved in the regulation of intron splicing 370	  

under stress conditions and that LUC7 might be a target for stress response 371	  

pathways. 372	  
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          373	  

  374	  
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Discussion 375	  

Functions of the Arabidopsis U1 snRNP component LUC7 376	  

For this study, we generated an Arabidopsis triple mutant deficient in the U1 snRNP 377	  

components LUC7 and dissected the genome-wide effects of LUC7s impairments on 378	  

the Arabidopsis transcriptome. Our results show that LUC7 proteins are bona-fide U1 379	  

components acting mainly redundantly. The reduction of U1 function in the luc7 triple 380	  

mutant affects constitutive splicing. A large number of introns are retained in luc7 381	  

triple mutant, suggesting that without a proper recognition of the 5’ss, splicing of the 382	  

affected introns is impaired. Our results also show that exon-skipping events are 383	  

impaired in luc7 triple mutant, revealing that a functional plant U1 snRNP is essential 384	  

for exon definition. In addition, we show that luc7 triple mutant affect alternative 385	  

splicing also by influencing events of alternative 5’ and 3’ splice site. This implies that 386	  

the U1 snRNP does not only affect 5’ splice site usage, it might also indirectly 387	  

regulate usage of 3’ splice sites via its interaction with U2AFs and the U2 snRNP 388	  

(Hoffman and Grabowski, 1992; Shao et al., 2012). The functions of LUC7 proteins 389	  

on the Arabidopsis transcriptome are likely to be underestimated, because 390	  

misspliced mRNAs in luc7 mutants might contain hallmarks of NMD and are 391	  

therefore rapidly turned over and escape detection. Analysis of luc7 mutants 392	  

combined with mutations in NMD factors would help to uncover the full set of splicing 393	  

events affected by LUC7. Furthermore, we found that in our RNA-seq experiments 394	  

that while the chosen luc7rl allele is a RNA-null allele, the luc7a and luc7b alleles still 395	  

produced mRNAs that might be translated into truncated proteins. Hence, we can not 396	  

exclude that a true luc7 null mutant might exhibit even more severe mutant 397	  

phenotypes and splicing defects. One has also to consider that U1 snRNP 398	  

independent splicing has been described in animals, indicating that not all introns 399	  
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require the U1 complex for efficient intron removal (Fukumura et al., 2009). The 400	  

degree of U1-independent splicing in plants remains to be elucidated. 401	  

Duplications among genes encoding for U1 snRNP proteins, such as the 402	  

LUC7 genes, open up a possibility for sub- and neofunctionalization of U1 accessory 403	  

proteins. Furthermore, the Arabidopsis genome encodes 14 potential U1 snRNAs, 404	  

which slightly differ in sequence (Wang and Brendel, 2004). Therefore, the plant U1 405	  

snRNP presumably does not exist as a single complex, but might exist as different 406	  

sub-complexes exhibiting distinct specificities and functions. In metazoans, the 407	  

existence of at least four different U1 snRNP subcomplex has been suggested 408	  

(Hernandez et al., 2009; Guiro and O'Reilly, 2015). Specific combinations of plant U1 409	  

protein family members and U1 snRNAs could generate an even higher number of 410	  

such U1 subcomplexes, which could be responsible for specific splicing events. Our 411	  

results show that LUC7 can act redundantly, but can also fulfill specific functions, 412	  

suggesting that LUC7 complexes specifically act on certain pre-mRNAs. In this 413	  

regard, it is important to note that an additional short stretch of amino acids 414	  

separates the two zinc-finger domains in LUCA and LUC7B (Figure S1). Changing 415	  

the space in between RNA binding domains affects substrate specificities and could 416	  

explain different specificities among LUC7 proteins (Chen and Varani, 2013). 417	  

 418	  

LUC7 function in terminal intron splicing 419	  

Interestingly, luc7 triple mutant showed a significant higher retention rate of terminal 420	  

introns compared to first or middle introns. This was surprising because LUC7 was 421	  

initially found to act in concert with the CBC, a complex involved in the removal of 422	  

cap-proximal first introns, but not of last introns (Lewis et al., 1996). We found LUC7 423	  

in a complex with the CBC and the CBC-associated protein SE also in Arabidopsis. 424	  
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However, the functional significance of the of LUC7-CBC/SE interaction remains to 425	  

be established. 426	  

Often, the removal of terminal introns is coupled to polyadenylation (Cooke et 427	  

al., 1999; Cooke and Alwine, 2002; Rigo and Martinson, 2008). Interestingly, we 428	  

detected components involved in RNA 3’end processing or polyA-binding as part of 429	  

LUC7A complexes, suggesting that such interactions may contribute to the specific 430	  

functions of LUC7 in terminal intron splicing. We found LUC7 in complexes with 431	  

RBP47C, a polyA-binding protein of unknown function (Lorkovic et al., 2000), and 432	  

LARP6, which is targeted to 3’ends of mRNA through interaction with polyA-binding 433	  

protein 2 (PAB2) (Merret et al., 2013). Interestingly, we also found an SPT6-like 434	  

transcription factor associated with LUC7 complexes. SPT6 binds the pol II C-435	  

terminal domain (CTD) phosphorylated at serine 2 (Ser2P), which accumulates at 436	  

3’end of genes (Kaplan et al., 2000; Sun et al., 2010). None of these LUC7 complex 437	  

components has been studied functionally and it will be a major effort for future 438	  

studies to determine the function of these proteins in terminal intron splicing. 439	  

 440	  

Possible functions of regulated intron retention for plant stress responses 441	  

We found that splicing of LUC7-dependent introns is required for transport of mRNAs 442	  

from the nucleus to the cytosol. The fact that we cannot detect unspliced transcript in 443	  

the cytosol suggests a nuclear retention mechanism for such mRNAs. One possibility 444	  

is that LUC7-dependent introns might contain binding sites for specific trans-445	  

regulatory factors that upon binding inhibit export. Polypyrimidine tract-binding 446	  

protein 1 (PTB1) is a candidate for such a trans-regulatory protein, because binding 447	  

of PTB1 to introns represses nuclear export of certain RNAs (Yap et al., 2012; Roy et 448	  

al., 2013).  449	  
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Nuclear retention of unspliced mRNAs might be a much more general 450	  

mechanism to escape NMD and to regulate gene expression (Marquez et al., 2015; 451	  

Wong et al., 2016). In plants, some specific transcript isoforms have been detected 452	  

only in the nucleus, but not in the cytosol (Gohring et al., 2014). Also in metazoans, 453	  

intron retention might have a more general role in regulating gene expression (Yap et 454	  

al., 2012; Braunschweig et al., 2014; Pimentel et al., 2016; Naro et al., 2017). The 455	  

so-called detained introns are evolutionary conserved, NMD insensitive and retained 456	  

in the nucleus (Boutz et al., 2015). The functional importance of intron retention was 457	  

also suggested in the fern Marsilea vestita, in which many mRNAs contain introns 458	  

that are only spliced shortly before gametophyte development (Boothby et al., 2013).  459	  

We found that splicing of LUC7 dependent introns can be modulated by cold 460	  

stress. Because retention of these introns causes nuclear trapping, it is prompting to 461	  

speculate that environmental cues affect splicing and nuclear retention of mRNAs. 462	  

Such a mechanism would regulate the amount of translatable mRNAs in the cytosol 463	  

in a cost-efficient and rapid manner (Figure 8B). Since the stress-dependent 464	  

regulation of splicing of LUC7-dependent introns is lost in luc7 mutants, one can 465	  

expect that LUC7 function might be regulated under stress conditions. Interestingly, 466	  

the RS domains of LUC7 proteins are phosphorylated and we identified three kinases 467	  

as potential LUC7A interactors (Heazlewood et al., 2008; Durek et al., 2010).  In 468	  

addition, stress signaling triggered by the phytohormone ABA causes differential 469	  

phosphorylation of several splicing factors (Umezawa et al., 2013; Wang et al., 470	  

2013). Whether stress-induced changes in phosphorylation play a role in regulating 471	  

LUC7 proteins and whether the LUC7-interacting kinases here identified are involved 472	  

in this process remains to be elucidated.  473	  
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Material and Methods 474	  

 475	  

Plant material and growth conditions 476	  

All mutants were in the Columbia-0 (Col-0) background. luc7a-1 (SAIL_596_H02) 477	  

and luc7a-2 (SAIL_776_F02), luc7b-1 (SALK_144681), luc7rl-1 (SALK_077718) and 478	  

luc7rl-2 (SALK_130892C) were isolated by PCR-based genotyping (Table S7). luc7 479	  

double and triple mutants were generate by crossing individual mutants. All other 480	  

mutants used in this study (abh1-285, cbp20-1, se-1, lba-1 and upf3-1) were 481	  

described elsewhere (Prigge and Wagner, 2001; Papp et al., 2004; Hori and 482	  

Watanabe, 2005; Yoine et al., 2006; Laubinger et al., 2008). The line expressing 483	  

GFP was generated using the vector pBinarGFP and was kindly provided by Dr. 484	  

Andreas Wachter (Wachter et al., 2007). For complementation analyses, 485	  

pLUC7A:LUC7A-FLAG, pLUC7B:LUC7B-FLAG, pLUC7RL:LUC7RL-FLAG and  486	  

pLUC7A:LUC7A-YFP constructs were introduced in luc7 triple mutant by 487	  

Agrobacterium-mediated transformation (Clough and Bent, 1998). All plants were 488	  

grown on soil in long days conditions (16-h light/8-h dark) at 20°C/18°C day/night. 489	  

The size of luc7 mutants was assessed by measuring the longest rosette leaf after 21 490	  

days. For all molecular studies, seeds were surface-sterilized, plated on 1/2 MS 491	  

medium with 0.8% phytoagar and grown for 7 days in continuous light at 22°C. For 492	  

the cold treatment, plates with Arabidopsis seedlings were transferred to ice-water for 493	  

60 min. For the root growth assay, 4 days old seedlings growing on vertical plates 494	  

were transferred to mock plates or plates containing indicated amount of NaCl and 495	  

grown for more 11 days vertically. Root growth rate per day was assessed by 496	  

measuring in ImageJ the root length in the days 2 and 9 after transfer. For ABA 497	  

sensitivity assays, seedlings were grown for 10 days on 1/2 MS plates supplemented 498	  

with 0.8 % phytoagar, 1 % sucrose and indicated amounts of ABA (+) (Sigma - 499	  
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A4906). For cold stress experiments, seeds were grown at 20°C for 5 days and then 500	  

transferred to 8°C for two weeks. 501	  

 502	  

Plasmid constructions and transient expression analyses 503	  

For the expression of C-terminal FLAG- and YFP-tagged LUC7 proteins expressed 504	  

from their endogenous regulatory elements, 2100 bp, 4120 bp and 2106 bp upstream 505	  

of the ATG start codon of LUC7A, LUC7B and LUC7RL, respectively, to the last 506	  

coding nucleotide were PCR-amplified and subcloned in pCR8/GW/TOPO® 507	  

(Invitrogen). Oligonucleotides are listed in Table S7.  Entry clones were recombined 508	  

with pGWB10 and pGWB540 using Gateway LR clonase II (Invitrogen) to generate 509	  

binary plasmids containing pLUC7A:LUC7A-FLAG, pLUC7B:LUC7B-FLAG, 510	  

pLUC7RL:LUC7RL-FLAG and pLUC7A:LUC7A-YFP. For the co-localization studies, 511	  

entry vector containing the coding sequence of U1-70k was recombined with 512	  

pGWB654 for the expression of p35S:U1-70k-mRFP (Nakagawa et al., 2007). 513	  

Agrobacterium-mediated transient transformation of Nicotiana benthamiana plants 514	  

was conducted as following. Overnight Agrobacterium culture were diluted in 1:6 and 515	  

grown for 4 hours at 28°C. After centrifugation, pellets were resuspended in 516	  

infiltration medium (10 mM MgCl2, 10 mM MES-KOH pH 5.6, 100 µM 517	  

Acetosyringone). The OD 600nm was adjusted to 0.6-0.8 and samples were mixed 518	  

when required. N. benthamiana were infiltrated and subcellular localization was 519	  

checked after 3 days. Subcellular localization of fluorescent proteins was analyzed by 520	  

confocal microscopy using a Leica TCS SP8. 521	  

 522	  

Phylogenetic analysis 523	  

AthLUC7A (AT3G03340) protein sequence was analyzed in Interpro 524	  

(https://www.ebi.ac.uk/interpro/) to retrieve the Interpro ID for the conserved Luc7-525	  
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related domain (IPR004882). The sequence for Saccharomyces cerevisiae (strain 526	  

ATCC 204508_S288c) was obtained in Interpro. Plants sequences were extracted 527	  

using BioMart selecting for the protein domain IPR004882 on Ensembl Plants 528	  

(http://plants.ensembl.org/). The following genomes were included in our analyses: 529	  

Amborella trichopoda (AMTR1.0 (2014-01-AGD)); Arabidopsis thaliana (TAIR10 530	  

(2010-09-TAIR10)); Brachypodium distachyon (v1.0); Chlamydomonas reinhardtii 531	  

(v3.1 (2007-11-ENA)); Physcomitrella patens (ASM242v1 (2011-03-Phypa1.6)); 532	  

Selaginella moellendorffii (v1.0 (2011-05-ENA)); Oryza sativa Japonica (IRGSP-1.0); 533	  

and Ostreococcus lucimarinus genes (ASM9206v1). The phylogenetic analysis was 534	  

performed in Seaview (Version 4.6.1) using Muscle for sequence alignment. 535	  

Maximum likehood (PhYML) was employed with 1000 bootstraps (Gouy et al., 2010).  536	  

 537	  

RNA extractions, RT-PCR and qRT-PCR 538	  

RNAs extractions were performed with Direct-zol™ RNA MiniPrep Kit (Zymo 539	  

Research). Total RNAs were treated with DNAse I and cDNA synthesis carried out 540	  

with RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific) using usually 541	  

oligo dT primers or a mixture of hexamer and miRNA-specific stem-loop primers 542	  

(Table S7). Standard PCRs for the splicing analysis were performed with DreamTaq 543	  

DNA Polymerase (Thermo Scientific). Quantitative RT-PCR (qRT-PCR) was 544	  

performed using the Maxima SYBR Green (Thermo Scientific) in a Bio-Rad CFX 384. 545	  

For all qPCR-primers, primer efficiencies were determined by a serial dilution of 546	  

cDNA template. The relative expressions were calculated using the 2ˆ(-ΔΔCT) 547	  

method with PP2A or ACTIN as control. For the qRT-PCR to detect splicing ratio 548	  

changes under cold condition, the ratio 2ˆ(-ΔCTunspliced)/2ˆ(-ΔCTtotal RNA) was 549	  

calculated separately for each replicate and t-test was performed before calculating 550	  

the relative to WT mock.  Oligonucleotides are listed in Table S7. For RNA-551	  
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sequencing analysis, polyA RNAs were enriched from 4 µg of total RNAs using 552	  

NEBNext Oligo d(T)25 Magnetic Beads (New England Biolabs). The libraries were 553	  

prepared using ScriptSeq™ Plant Leaf kit (Epicentre) following the manufacturer's 554	  

instruction. Single end sequencing was performed on an Illumina HiSeq2000. 555	  

Sequencing data were deposited at Gene Expression Omnibus under accession 556	  

number GSE98779. 557	  

 558	  

 559	  

RNA-seq libraries: Mapping, differential expression analysis and splicing 560	  

analysis  561	  

RNA-seq reads for each replicate were aligned against the Arabidopsis thaliana 562	  

reference sequence (TAIR10) using tophat (v2.0.10, -p2, -a 10, -g 10, -N 10, --read-563	  

edit-dist 10, --library-type fr-secondstrand, --segment-length 31, -G TAIR10.gff). Next, 564	  

cufflinks (version 2.2.1) was used to extract FPKM counts for each expressed 565	  

transcript generating a new annotation file (transcripts.gtf), where the coordinates of 566	  

each expressed transcript can be found. Cuffcompare (version 2.2.1) was then used 567	  

to generate a non-redundant annotation file containing all reference transcripts in 568	  

addition to new transcripts expressed in at least one of the nine samples 569	  

(cuffcmp.combined.gtf). The differential expression analysis was performed with 570	  

cuffdiff (version 2.2.1) between wt/luc7 triple using the annotation file generated by 571	  

cuffcompare (false discovery rate (FDR) < 0.05 and fold change (FC) > 2). For the 572	  

splicing analysis, the same alignment files generated by tophat and annotation files 573	  

generated by cuffcompare (cuffcmp.combined.gtf) were used as input for MATS 574	  

(version 3.0.8) in order to test for differentially spliced transcripts (Shen et al., 2014). 575	  

 576	  

Subcellular fractionation  577	  
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Two grams of seedlings were ground in N2 liquid and resuspended in 4 ml of Honda 578	  

buffer (0.44 M sucrose, 1.25% Ficoll 400, 2.5% Dextran T40, 20 mM HEPES KOH  579	  

pH 7.4, 10 mM MgCl2, 0.5% Triton X-100, 5 mM DTT, 1 mM PMSF, protease 580	  

inhibitor cocktail (Roche) supplemented with 40U/ml of Ribolock®). The homogenate 581	  

was filtered through 2 layer of Miracloth, which was washed with 1ml of Honda 582	  

Buffer. From the filtrate, 300 µl was removed as “total” fraction and kept on ice. 583	  

Filtrates were centrifuged at 1,500 g for 10 min, 4°C for pelleting nuclei and 584	  

supernatants were transferred to a new tube. Supernatants were centrifuged at 13 585	  

000 x g, 4 °C, 15 min and 300 µl were kept on ice as cytoplasmic fraction. Nuclei 586	  

pellets were washed five times in 1 ml of Honda buffer (supplemented with 8U/ml of 587	  

Ribolock®, centrifugation at 1,800 g for 5 min. The final pellet was resuspended in 588	  

300 µl of Honda buffer. To all the fractions (total, cytoplasmic and nuclei), 900 µl of 589	  

TRI Reagent (Sigma) was added. After homogenization, 180 µl of chloroform was 590	  

added and samples were incubated at room temperature for 10 min. After 591	  

centrifugation at 10 0000 rpm for 20 min, 4°C, the aqueous phase were transferred to 592	  

a new tube and RNA extracted with Direct-zol™ RNA MiniPrep Kit (Zymo Research). 593	  

The organic phase was collected and proteins were isolated according to 594	  

manufacturer’s instructions. cDNA synthesis with random primes was performed as 595	  

above. Proteins extracted were analyzed by standard western blot techniques using 596	  

the following antibodies: H3 (~ 17 KDa / ab 1791, Abcam) and 60S ribosomal (~ 23,7-597	  

29 KDa / L13, Agrisera).  598	  

 599	  

RNA immunoprecipitation 600	  

RNA immunoprecipitation (RIP) using WT and a pLUC7A:LUC7A-eYFP rescue line 601	  

was performed as described elsewhere with minor modifications (Rowley et al., 2013; 602	  

Xing et al., 2015). Isolated nuclei were sonicated in nuclear lysis buffer in a Covaris 603	  
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E220 (Duty Cycle: 20%; Peak intensity: 140; Cycles per Burst: 200; Cycle time: 3’). 604	  

RNAs were extracted using RNeasy Plant Mini Kit (QIAGEN) following the 605	  

manufacturer’s instructions. The RNA were treated with DNAseI (Thermo Scientific) 606	  

and samples were split in half for the (-)RT reaction. cDNA synthesis were perform 607	  

with SuperScript™ III Reverse Transcriptase (Invitrogen). qRT-PCRs were performed 608	  

with QuantiNova™ SYBRR Green PCR (QIAGEN). 609	  

 610	  

GO Analysis  611	  

GO analysis was performed in Bar Utoronto (http://bar.utoronto.ca/ntools/cgi-612	  

bin/ntools_classification_superviewer.cgi). 613	  

 614	  

Protein complex purification and mass spectrometry (MS) Analysis 615	  

LUC7A immunoprecipitation was performed using a complemented line 616	  

pLUC7A:LUC7A-eYFP (line 20.3.1) and a transgenic p35S:GFP and WT as controls. 617	  

Four independent biological replicates were performed. Seedlings (4 g) were ground 618	  

in N2 liquid and respuspended in 1 volumes of extraction buffer (50 mM Tris-Cl pH 619	  

7.5, 100 mM NaCl, 0.5 % Triton X-100, 5 % Glycerol, 1 mM PMSF, 100 µM MG132, 620	  

Complete Protease Inhibitor Cocktail EDTA-free [Roche] and Plant specific protease 621	  

Inhibitor, Sigma P9599). After thawing, samples were incubated on ice for 30 min, 622	  

centrifuged at 3220 rcf for 30 min at 4°C and filtrated with two layers of Miracloth. For 623	  

each immunoprecipitation, 20 µl of GFP-trap (Chromotek) was washed twice with 1 624	  

ml of washing buffer (50 mM Tris-Cl pH 7.5, 100 mM NaCl, 0.2 % Triton X-100) and 625	  

once with 0.5 ml of IP buffer. For each replicate, the same amount of plant extracts 626	  

(~5 ml) were incubated with GFP-trap and incubated on a rotating wheel at 4°C for 3 627	  

hours. Samples were centrifuged at 800-2000 rcf for 1-2 min and the supernatant 628	  

discarded. GFP-beads were resuspended in 1 ml of washing buffer, transferred into a 629	  
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new tube and washed 4 to 5 times. Then, beads were ressuspended in ~40 µl of 2x 630	  

Laemmli Buffer and incubated at 80°C for 10 min. Short gel purifications (SDS-631	  

PAGE) were performed and gels slices were digested with Trypsin. LC-MS/MS 632	  

analyses were performed in two mass spectrometer. Samples from R10 to R14 were 633	  

analyzed on a Proxeon Easy-nLC coupled to Orbitrap Elite (method:  90min, Top10, 634	  

HCD). Samples from R15 to R17 were analysed on a Proxeon Easy-nLC coupled to 635	  

OrbitrapXL (method:  90min, Top10, CID). Samples from R18 to R20 analysis on a 636	  

Proxeon Easy-nLC coupled to OrbitrapXL (method:  130min, Top10, CID). All the 637	  

replicates were processed together on MaxQuant software (Version 1.5.2.8. with 638	  

integrated Andromeda Peptide search engine) with a setting of 1% FDR and the 639	  

spectra were searched against an Arabidopsis thaliana Uniprot database 640	  

(UP000006548_3702_complete_20151023.fasta). All peptides identified are listed in 641	  

Supplementary Table S1 and raw data were deposited publically (accession 642	  

PXD006127). For co-immunoprecipitation experiments shown in Figure S4, 643	  

experiments were conducted as described above and IPed protein fractions were 644	  

analyzed using SDS-PAGE followed by detection with GFP- (Roche), SE- (Agrisera)  645	  

and CBP80- (Agrisera) specific antibodies. 646	  

 647	  
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 671	  

Figure legends 672	  

Figure 1: Arabidopsis LUC7 proteins redundantly control plant development 673	  

A: Phylogenetic analysis of LUC7 proteins in the plant kingdom using 674	  

Saccharomyces cerevisiae as an external group.  675	  

B: Exon/intron structure of Arabidopsis thaliana LUC7A, LUC7B and LUC7RL. 676	  

Dotted lines indicate the positions of T-DNA insertions. 677	  

C: WT and luc7 triple mutant plants 21 days (left) and 45 days (right) after 678	  

germination. 679	  
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D: Length of the longest rosette leaf of 21 days-old WT, luc7 single, double and triple 680	  

mutant plants growing under long day conditions. Leaves of 10-15 individual plants 681	  

were measured. Dots indicate individual data points.  682	  

E: Complementation of luc7a,b,rl mutants by LUC7A, LUC7B and LUC7RL genomic 683	  

rescue constructs. Transformation of an “empty” binary vector served as a control. 684	  

Two independent transgenic lines for each construct are shown.  685	  

 686	  

Figure 2: Arabidopsis LUC7 is involved in ABA signaling and salt stress 687	  

responses 688	  

A,B: WT, luc7 triple mutant and a luc7 rescue line (luc7a,b,rl; pLUC7A:LUC7A-YFP) 689	  

were grown on half-strength MS plates containing 1% sucrose and indicated amount 690	  

of ABA. Seedling phenotypes (A) and quantification of seedlings with green 691	  

cotyledons (B) are shown. Green cotyledons were scored ten days after germination. 692	  

One of two biological replicates is shown. 693	  

C,D: WT, luc7 triple mutant and a luc7 rescue line (luc7a,b,rl; pLUC7A:LUC7A-YFP) 694	  

were germinated on half-strength MS vertical plates and seedling were transferred on 695	  

half-strength MS plates containing the indicated amount of NaCl. Plates were always 696	  

placed vertically and the root growth was scored over 7 days. Phenotypes (C) and 697	  

root length quantification (D) are shown.  698	  

E: Gross phenotype of WT, luc7 triple mutant and a luc7 rescue line grown at 22oC 699	  

and 8oC. 700	  

 701	  

Figure 3: Arabidopsis LUC7 is an U1 snRNP component 702	  

A: RNA immunoprecipitation using a pLUC7A:LUC7A-YFP, luc7a,b,rl complemented 703	  

line. Proteins were immunoprecipitated using GFP-specific affinity matrix and RNAs 704	  

were extracted from the input and the immunoprecipitated fraction. U1, U2, U3 705	  
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snRNAs and ACTIN RNA were quantified using qRT-PCR. Enrichment of the 706	  

respective RNA in LUC7A:LUC7A-YFP luc7a,b,rl transgenic line was calculated over 707	  

WT (negative control). Error bars denote the range of two biological replicates. 708	  

B: Subcellular localization of LUC7A in pLUC7A:LUC7A-YFP luc7a,b,rl in 709	  

Arabidopsis transgenic plants. Roots of 9 day-old seedlings were analyzed using 710	  

confocal microscopy. Scale bar indicates 25 µm.  711	  

C: U1-70K-mRFP and LUC7A-YFP or LUC7RL-YFP proteins were transiently 712	  

expressed in N. benthamiana. The subcellular localization of mRFP and YFP fusion 713	  

proteins was analyzed using confocal microscopy. Scale bars indicate 10 µm and 25 714	  

µm for upper and lower panel, respectively. 715	  

 716	  

Figure 4: Mutations in LUC7 result in misexpression of protein-coding and non-717	  

coding genes, but not in MIRNA genes 718	  

A: Differentially expressed genes in luc7a,b,rl mutant compared to WT. 719	  

B,C: qRT-PCR analysis of selected ncRNA (B) and miRNAs (C) in WT and 720	  

luc7a,b,rl. Error bars denote the SEM (n=3). 721	  

 722	  

Figure 5: Global analysis of splicing defects in luc7 triple mutant. 723	  

A: Classification of splicing events changes in luc7 triple mutant compared to WT.  724	  

B-F: Coverage plots and RT-PCR validation experiments for selected splicing events 725	  

in WT and luc7 triple mutant. Genomic DNA (gDNA) or water (-) served as a control. 726	  

Primer positions are indicated with gray arrows. IR, intron retention; ES, exon 727	  

skipping; Alt.3’SS, alternative 3’splicing site; Alt.5’SS, alternative 5’splicing site. 728	  

 729	  

Figure 6: LUC7 proteins have a pronounced effect on terminal intron splicing 730	  
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A: RT-PCR analysis of LUC7-dependent introns in WT, luc7 triple mutant, cbp80, 731	  

cbp20 and se-1 mutants. 732	  

B: RT-PCR analysis of CBC/SE-dependent introns in WT, luc7 triple mutant, cbp80, 733	  

cbp20 and se-1 mutants. 734	  

C: Classification of intron retention according to the intron position (first, middle, or 735	  

last). Only genes with 3 or more introns were considered for this analysis.  736	  

D: RT-PCR analysis of genes carrying retained terminal introns in WT and luc7 triple 737	  

mutants. 738	  

 739	  

Figure 7: mRNAs containing retained LUC7-dependent introns are NMD-740	  

insensitive and remain nuclear.  741	  

A: RT-PCR analysis of LUC7-dependent introns in WT and NMD mutants (lba1 and 742	  

upf3-1). 743	  

B: Splicing patterns of mRNAs isolated from total (T), cytosolic (C) and nuclear (N) 744	  

fractions. 745	  

C: Immunoblot analysis of proteins isolated from total, cytosolic and nuclear 746	  

fractions. Blots were probed with antibodies against histone H3 and a ribosomal 747	  

protein, L13-1. 748	  

 749	  

Figure 8: Splicing of LUC7 dependent introns can be modulated by stress.  750	  

A: Seven days old WT and luc7 triple mutant seedlings were exposed to cold for 60 751	  

min. Splicing ratios (unspliced/total RNA) of four genes featuring a LUC7-dependent 752	  

intron was analyzed by qPCR. A T-test was performed for statistical analysis. 753	  

B: Model for the proposed function of LUC7 in Arabidopsis. 754	  

 755	  
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Table 1: List of selected potential LUC7A interacting proteins identified in 756	  

immunoprecipitation experiments followed by MS analysis.  757	  

 758	  

Supplementary Material 759	  

Figure S1-S8, Table S1-S7 760	  
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