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Abstract

It has been argued that the brain is a prediction machine that contin-
uously learns how to make better predictions about the stimuli received
from the external environment. It builds a model of the world around
us and uses this model to infer the external stimulus. Predictive coding
has been proposed as a mechanism through which the brain might be
able to build such a model of the external environment. However, it is
not clear how predictive coding can be used to build deep neural network
models of the brain while complying with the architectural constraints
imposed by the brain. In this paper, we describe an algorithm to build a
deep generative model using predictive coding that can be used to infer la-
tent representations about the stimuli received from external environment.
Specifically, we used predictive coding to train a deep neural network on
real-world images in a unsupervised learning paradigm. To understand
the capacity of the network with regards to modeling the external envi-
ronment, we studied the latent representations generated by the model on
images of objects that are never presented to the model during training.
Despite the novel features of these objects the model is able to infer the
latent representations for them. Furthermore, the reconstructions of the
original images obtained from these latent representations preserve the
important details of these objects.

1 Introduction

The general idea of predictive coding [Mumford, 1991, 1992, Pennartz, 2015]
postulates that the brain is continuously trying to predict the information it
receives from external environment. An implementation of predictive coding
was first proposed as a model of visual information processing in the brain [Rao
and Ballard, 1999]. Recently, it was described as an implementation of the free-
energy principle in the brain [Friston, 2008]. Predictive coding models the visual
information processing pathways as a recurrently connected hierarchical neural
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network. Feedback connections from higher to lower level areas convey predic-
tions about the activities of the lower level neurons and feedforward connections
convey the residual errors in these predictions to higher level areas.

Several studies have focused on the biological plausibility of predictive coding
and its relation to other learning approaches. In Spratling [2008], the author
showed that a model of biased competition [Desimone and Duncan, 1995] that
uses lateral inhibition to suppress the input of other nodes is equivalent to the
linear model of predictive coding. An extension to predictive coding has been
proposed in Spratling [2012] that relaxes the requirement of symmetric weights
between two adjacent layers in the network. In a similar study, it was shown
that the error-backpropagation and predictive coding use similar forms of weight
changes during learning [Whittington and Bogacz, 2017].

From the perspective of training deep neural networks, predictive coding is
an approach that is widely supported by neurophysiological data [Jehee and
Ballard, 2009] and adheres to the architectural and locality (in terms of learn-
ing) constraints imposed by the brain. Existing studies on predictive coding has
focused on small neural network models to study the development of orienta-
tion selective receptive fields in primary visual cortex [Rao and Ballard, 1999,
Spratling, 2012]. It is unclear how predictive coding can be used to build deep
neural network models of the brain to study more complicated brain processes
like attention, memory, etc. Another important question that arises while build-
ing models of the brain is how can we comply with the architectural constraints
applicable in the brain like the retinotopic arrangement of receptive fields that
is found in the sensory cortical areas. At present, mostly neural networks with
fully connected layers are used, which implies that the receptive fields of neu-
rons are as big as the field of view. To overcome this, neural network models
are trained on patches from real world images. This approach works well when
training small neural network models but it is difficult to extend it for training
deep neural networks.

In this paper, we present a systematic approach for training deep neural
networks using predictive coding in a biologically plausible manner. The net-
work is used to learn hierarchical latent representations for a given input stim-
ulus. The architecture of these neural networks is inspired by convolutional
neural networks [LeCun et al., 1998]. However, to comply with the retinotopic
arrangement of receptive fields observed in sensory cortical areas, we employ
neural networks in which filters are not applied across the entire layer, similar
to locally connected layers used in Taigman et al. [2014]. Instead, filters are
applied only to a small receptive field which allows us to train the filters associ-
ated with different receptive fields independently. This approach can be easily
scaled to train deep neural networks for modeling information processing along
the sensory processing pathways.

In general, the approach proposed in this paper can be used for stimuli in
any modality. To illustrate the effectiveness of the approach, we trained a deep
neural network using predictive coding on 1000 real-world images of horses and
ships from the CIFAR-10 data set. The model is trained in an unsupervised
learning paradigm to build a generative model for real-world images and is
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used to infer latent representations for real-world. To estimate the capacity of
the network in modeling real-world images, we used the model to infer latent
representations for new images of horses and ships as well as objects that are
never presented to the network during training. The model is able to reconstruct
the original real-world images from the inferred latent representations while
retaining the important features of the objects in these images. This shows that
the model can capture the causal regularities in real-world images.

The paper is organized as follows: Section 2 describes the architecture and
the predictive coding based learning algorithm used for training deep neural
network models. Section 3 describes the results of studies conducted using
the trained models. Section 4 discusses the computational implications of deep
predictive coding and its relationship with other approaches in machine learning.
Section 5 summarizes the conclusions from the experiments reported in this
paper.

2 Model

Suppose, we have a set of training images (x1, · · · ,xi, · · · ) where xi ∈ RW×H×C .
The aim of the learning algorithm is to learn a generative model that can be
used to infer the latent representations for the training images and other images
that have not been used in training.

2.1 Architecture

Consider a neural network with (N + 1) layers where 0 represents the input
layer and N represents the topmost layer in the network. The input layer is
used to present the training images to the network. Figure 1 shows a section
of this network that depicts the connections between the layer l and the layers
above (l+ 1) and below (l− 1) it. The neurons in a given layer (l) are arranged
in a 3-dimensional block of shape Yl×Xl×Kl. Here, Yl, Xl and Kl denote the
height, width and the number of channels in layer l, respectively. The neurons
in the layers l and (l + 1) are connected through Kl+1 filters of size Dl and a
stride of sl. Based on this, the height and width of the layer (l+ 1) are given as

Yl+1 =
(Yl −Dl)

sl
+ 1 (1)

Xl+1 =
(Xl −Dl)

sl
+ 1 (2)

The number of channels in layer (l+1) is equal to the number of filters between
the layers l and (l + 1).

The architecture of the network in Figure 1 bears some resemblance to to
the architecture of a Convolutional Neural Networks (CNNs). However, there
are two important differences between CNNs and the neural network used in
this paper:
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Figure 1: Architecture of the deep predictive coding neural network

• The neurons in a given layer in the network, shown in Figure 1 project to
neurons only in their receptive field. This implies that the neurons in a
particular channel in layer l are connected to the neurons in layer (l + 1)
through filters that are learned independently.

• The most important difference is in the direction of information prop-
agation with respect to CNNs. In a conventional CNN, the information
propagates from layer 0 to layer N and during learning the error gradients
propagate from layer N to layer 0. In contrast, in our predictive coding
network the information propagates from layer N to layer 0 in the net-
work shown in Figure 1 and the error gradients propagate in the opposite
direction.

To better understand the structure of connections between layer l and the
layer (l−1), let us denote the output of the neurons in the mth row and the nth

column (here, referred to as (m,n)) of layer l as y
(l)
m,n which is a vector with Kl

elements. Based on this, the output of the neurons in layer (l − 1) is given as

ŷ
(l−1)
(sl−1m+i),(sl−1n+j) = φ(w

(l)
m,n,i,jy

(l)
m,n),

i, j ∈ {1, · · · , D(l−1)},
m ∈ {1, · · · , Yl}, n ∈ {1, · · · , Xl}

(3)

where w
(l)
m,n,i,j denotes the filters through which the neurons at position (m,n)

in layer l project to the position (sl−1m+ i, sl−1n+ j) in layer (l−1). The filter

w
(l)
m,n,i,j will be a matrix with dimensions Kl−1 ×Kl. φ represents a non-linear

vector-valued activation function with K(l−1) elements.
It may be notes that when the stride is less than the filter size, it results in

an architecture with overlapping receptive fields. As a result, neurons in layer
l project to the overlapping positions in layer (l − 1). Therefor, to determine
the output of neurons in layer (l−1) we compute the average of the projections
made by the layer l. This procedure is analogous to unpooling in a deconvolution
network [Zeiler et al., 2010] in order to retain the dimensions of a layer.
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2.2 Learning Algorithm

In this paper, the classical methodology of predictive coding Rao and Ballard
[1999] is employed to train a generative neural network model that can be used to
infer the latent representations of a given input image. For a given input image
(xi), the latent representations at layer (l) in the network are learned such that
they can accurately predict (using Equation 3) the latent representations at the
layer below (l − 1). The learned representations at layer l serve as target for
learning the latent representations at layer (l + 1) in the network.

Suppose yl and ŷl represent the actual and predicted latent representations
for the neurons in layer l of the network, then the total error (E) for all the
layers in the network is given as

E =
N∑
l=0

`p(y(l) − ŷ(l)) + `p(y(l)) +
∑

m,n,i,j

`p(w
(l)
m,n,i,j)

 (4)

where `p(.) denotes the loss computed in accordance with p-norm. The total
error in Equation 4 includes both the loss due to prediction and the regulariza-
tion loss. Note that the limits of the summation in Equation 4 are from 0 to N
(instead of 0 to (N + 1)). This is because there is no layer that learns to predict
the activities of the neurons in the topmost layer of the network.

The total error in Equation 4 is used to simultaneously learn the latent
representations and the synaptic weights in the model such that the prediction
error at each layer in the network is minimized. This implies that the latent rep-
resentations at a particular layer in the network try to capture the information
present in the latent representations at the layer below. This allows us to train
a deep generative model of the external stimulus presented to the network. To
explicitly include the aspect of the network architecture with non-shared weights
in the total error, the error in Equation 4 is expanded as:

E =
N∑
l=0

Yl,Xl∑
m,n

`p(y(l)m,n − ŷ(l)m,n) +

Yl,Xl∑
m,n

`p(y(l)m,n) +
∑

m,n,i,j

`p(w
(l)
m,n,i,j)

 (5)

The gradient of the error function in Equation 5 is used to adapt the latent

representations. The change in the latent representations (∆y
(l)
m,n) at a given

position (m,n) in layer l is given as

∆y(l)m,n = εbu

 D(l−1)∑
i=1,j=1

`
′

p(y
(l−1)
(m+i),(n+j) − ŷ

(l−1)
(m+i),(n+j))φ

′(w
(l)
m,n,i,jy

(l)
m,n)(w

(l)
m,n,i,j)

T


−εtd(y(l)m,n − ŷ(l)m,n)− εp`

′

p(y(l)m,n)

(6)

where `
′

p(.) denotes the partial differentiation of the p-norm. εbu is termed the
bottom-up learning rate, εtd is termed the top-down learning rate and εp is the
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Algorithm 1

1: while not converged do
2: for each input image do
3: for each layer (except the input layer) do
4: for step = 1 : κ do
5: Update latent representations yl

6: end for
7: Update filters w

(l)
m,n,i,j

8: end for
9: end for

10: end while

learning rate due to regularization. For a given layer l, the bottom-up learning
rate helps in learning representations that can make better predictions of the
representations in the layer below (l−1) and the top-down learning rate helps in
learning representations that can be easily predicted by the layer above (l+ 1).
Together, these update terms help in learning sparse latent representations and
provide numerical stability to the learning process.

The gradient of the error function in Equation 5 is also used to learn the

filter in the network. The change in the filters (∆w
(l)
m,n,i,j) is given as

∆w
(l)
m,n,i,j = εw`

′

p(y
(l−1)
(m+i),(n+j)−ŷ

(l−1)
(m+i),(n+j))φ

′(w
(l)
m,n,i,jy

(l)
m,n)(y(l)m,n)T−εp`

′

p(w
(l)
m,n,i,j)

(7)
where εw is the learning rate.

It may be observed from Equation 6 that the update for latent represen-
tations at a given position (m,n) in a particular layer l depends only on the
predictions made by the neurons at this position and the filters for this position.
Similarly, the update for the filters (Equation 7) associated with location (m,n)
depends only on the corresponding latent representations. This allows us to
learn the latent representations for the neurons in position (m,n) in layer l and
the associated filters in parallel with all the other positions in that layer.

Next, we will describe the update process for the latent representations and
the filters using the Equations 6 and 7, respectively. At first the filters are
held constant and the latent representations are learned using Equation 6. For
a given image and a particular layer, we apply κ update steps on the latent
representations. This implies that we alternate between computing the error
in Equation 5 and updating latent representations (using Equation 6) κ times
before updating the filters. This approach greatly improves convergence rate
of the learning algorithm, reducing the overall number of epochs required for
convergence. After these κ update steps, the learned latent representations
are held constant and a single update step is used to update the filters (using
Equation 7). A summary of the learning process is provided in Algorithm 1.
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3 Experiments

In this section, we study the capabilities of the network in inferring the latent
representations for a given input image. Firstly, we will study the capabilities
of the generative model in reconstructing the original images from the inferred
latent representations. Secondly, we study the capability of the model to infer
the latent representations for an image that is a translated version of the orig-
inal image. Finally, we analyze the model’s abilities in estimating the latent
representations for a new image that was not used in training. For this purpose,
we trained a 5-layered neural network on 1000 images of horses and ships from
the CIFAR-10 data set. The details of the training procedure are provided in
Appendix.

3.1 Generative model

The learning algorithm estimates the latent representations for the input images
presented to the network at each layer in the model. For a given layer l, these
latent representations are presented as the output of the neurons in that layer.
Based on this, the information is propagated in the network from layer l to the
input layer in the network. The output of the input layer neurons produces
a reconstruction of the original image. This procedure was repeated for the
latent representations estimated at each layer in the model and a reconstruction
of the original image was obtained. Figure 2 presents some examples of the

Figure 2: Example images reconstructed by the generative model when the
estimated latent representations are presented at corresponding layers in the
network. The images are arranged in a table with 2 columns, separated by
the vertical bar. Each cell in the table contains a set of five images. The first
image in each cell represents the original image from the CIFAR data set and
the following 4 images represent the images reconstructed by the model using
latent representations generated at layers 1, 2, 3, 4 in the network.
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Figure 3: Images reconstructed by the generative model using the latent repre-
sentations for the translated images. Again, the images are arranged in a table
with 2 columns and each cell in the table contains a set of five images. The
first image in each cell shows a translated version of the original image from the
CIFAR data set and the following 4 images represent the images reconstructed
by the model using latent representations generated at different layers in the
network.

images reconstructed using the latent representations at each layer in the trained
generative model.

It may be seen from Figure 2 that it is possible to reconstruct the original
images using the latent representations generated by the model. However, the
images reconstructed by the model are blurry in comparison to the original
images. This is a known problem with the mean square error Ledig et al.
[2016]. It may be possible to obtain visually better images using l1-norm, as
suggested in Mathieu et al. [2015].

3.2 Translation Invariance

To study translation invariance in the model, the pixels in the images are shifted
to the right and down by 4 pixels. The boundary pixels on the left and top of the
original images are used in place of the pixels introduced as a result of shifting
the image. For this study, we used images of horses and ships that are used
for training as well as images of other objects that are never used in training.
These translated images are then presented to the trained generative model
and the latent representations for these images are inferred using the Equation
6. Note that in this case the filters in the model are not re-learned. The
latent representations for the translated images at each layer in the network are
then used to reconstruct the translated images using the procedure described in
Section 3.1. Figure 3 shows some examples of the reconstructed images obtained
using the latent representations for the translated images.
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It can be observed from Figure 3 that the network can generate latent rep-
resentations for translated images that capture the information present in the
input stimulus.

3.3 Generalization

To study generalization, we used the network to infer latent representations of
images from the CIFAR-10 data set outside the 1000 images that were used
in training. These images are presented to the trained model and the latent
representations for these images are inferred using Equation 6. Similar to the
previous section, the estimated latent representations at each layer in the net-
work are used to reconstruct the original images using the mechanism described
in Section 3.1. Figure 4 presents examples of the images reconstructed from the
latent representations that are determined using predictive coding.

It can be seen from Figure 4 that the model can also infer latent represen-
tations for images that were never used in training. Furthermore, the general-
ization ability of the model is not limited to only those objects that are used in
training the model. The model can also infer latent representations for objects
that are not used training like frog, cars, truck, sparrow, etc (Figure 4). This
is due to the retinotopic arrangement of the receptive fields in the network.
Such an architecture allows the model to capture granular regularities in real-
world images in the lower layers in the network. These granular regularities are
common across all real-world images and help the model in generating latent
representations for unforeseen objects. Successive layers in the network build
upon these regularities to generate more abstract representations of the input
images. Note that these generalization properties of the model are achieved
while training only on 1000 images whereas most machine learning algorithms
rely on large amount of data to improve generalization properties in the model.

4 Discussion

In this section, we discuss the computational implications of the algorithm pre-
sented in this paper and the similarities it shares with existing approaches in
machine learning.

Deep neural networks have improved the state-of-the-art performances in
many problems related to image processing like classification, semantic segmen-
tation, etc. These improvements have been achieved by exploiting the availabil-
ity of cheap computational power. However, with increases in the complexity
of neural network architectures, the problem of developing efficient learning al-
gorithms has become prominent. A large body of work in machine learning
literature has been dedicated to improving the speed of error-backpropagation
which is one of the most used learning algorithms for training deep neural net-
works. However, an inherent property of error-backpropagation is to systemat-
ically propagate information through the network in the forward direction and
during learning, propagate the error gradients in the backward direction. This
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Figure 4: Non-training images reconstructed by the generative model using the
latent representations estimated by predictive coding. These images are also
arranged in 2 columns and each cell shows the original image and the images
reconstructed from its latent representations.

imposes restrictions on the extent of parallelization that can be achieved with
error back-propagation.

In this respect, the proposed learning algorithm can be extensively paral-
lelized. It can be observed from Equations 6 and 7 that the latent representa-
tions for the neurons in a given layer depend only on the error in predicting the
latent representations at the layer below. This aspect of the learning algorithm
can be leveraged to update the latent representations and filters at each layer
in the network in parallel. Thus the feedforward and feedback processes can
be performed at each layer in parallel. Further, the use of a network architec-
ture with retinotopical arrangement of receptive fields allows us to update the
latent representations and filters associated with all positions in a given layer
in parallel. Thus, the learning algorithm proposed in this paper is amenable
to parallelization and can be useful for speeding up the training of deep neural
architectures.

Another interesting aspect of the predictive coding is its proximity to the idea
of deconvolutional neural networks [Zeiler et al., 2010]. Deconvolutional neural
networks have also been used to learn the latent representations for a given input
image and have been used for the problem of semantic segmentation [Noh et al.,
2015]. The problem of learning latent representations is inherently an ill-posed
problem as there is no unique solution for a given input stimulus. To overcome
this issue deconvolutional neural networks optimize on auxiliary variables and
the generated latent representations in alternation. A continuation parameter β
is continuously increased during the learning process until the latent represen-
tations are strongly clamped to the auxiliary variables. This requires carefully
controlling the learning process and increases the computational requirements of
the learning algorithm due to an extra optimization step on auxiliary variables.
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Predictive coding provides an alternate solution to this problem. In Equation
6, the update term associated with εtd constraint the learning algorithm to gen-
erate latent representations that can be easily predicted by the successive layers
in the network. The effect of this constraint on the learning algorithm is same
as that of the auxiliary variables in deconvolutional neural networks and impart
numerical stability to the learning process. This approach provides a more sim-
pler solution to the problem of learning latent representations without imposing
the additional computational effort of optimizing auxiliary variables.

5 Conclusion

In this paper, we describe a method to train deep neural networks using pre-
dictive coding for modeling information processing along cortical sensory hier-
archies. The approach uses a neural network in which neurons project only to
neurons in their respective receptive fields. This kind of architecture respects
the retinotopic arrangement of receptive fields observed in the visual cortical
areas.

The method can be used to build a deep generative model for data in any
modality. For illustration, we trained the model on a set of real-world images
and then used the trained model to infer hierarchical latent representations.
Even though the model is trained on a small data set of 1000 images of horses
and ships, it can infer effective latent representations for images of other ob-
jects like sparrow, cats, trucks, cars, etc. This shows that the trained model
is able to capture the statistical regularities present in the real-world images.
In this regards, the generalization ability of the model is better than most ex-
isting algorithms that usually rely on large amount of data to achieve better
generalization.
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