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Abstract

As autonomous service robots become more affordable and thus available for the general public, there is a growing need
for user-friendly interfaces to control these systems. Control interfaces typically get more complicated with increasing
complexity of the robotic tasks and the environment. Traditional control modalities as touch, speech or gesture commands
are not necessarily suited for all users. While non-expert users can make the effort to familiarize themselves with a robotic
system, paralyzed users may not be capable of controlling such systems even though they need robotic assistance most.
In this paper, we present a novel framework, that allows these users to interact with a robotic service assistant in
a closed-loop fashion, using only thoughts. The system is composed of several interacting components: non-invasive
neuronal signal recording and co-adaptive deep learning which form the brain-computer interface (BCI), high-level task
planning based on referring expressions, navigation and manipulation planning as well as environmental perception. We
extensively evaluate the BCI in various tasks, determine the performance of the goal formulation user interface and
investigate its intuitiveness in a user study. Furthermore, we demonstrate the applicability and robustness of the system
in real world scenarios, considering fetch-and-carry tasks and tasks involving human-robot interaction. As our results
show, the system is capable of adapting to frequent changes in the environment and reliably accomplishes given tasks
within a reasonable amount of time. Combined with high-level planning using referring expressions and autonomous
robotic systems, interesting new perspectives open up for non-invasive BCI-based human-robot interactions.

Keywords: EEG, Co-Adaptive Brain-Computer-Interface, Realtime Deep Learning, Autonomous Robotics, Referring
Expression Generation, High-level Task Planning, Computer Vision

1. Highlights1
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learning4
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� Experimental evaluation using a real robot8
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2. Introduction9

Persons with impaired communication capabilities, such10

as severely paralyzed patients, rely on constant help of hu-11

man care-takers. Robotic service assistants can re-establish12

some degree of autonomy for these patients, if they offer13

adequate interfaces and possess a sufficient level of intelli-14

gence. Generally, such systems require adaptive task- and15

motion-planning modules to determine appropriate task16

plans and motion trajectories for the robot to execute a17

task in the real world. Moreover, it requires a percep-18

tion component to detect objects of interest or to avoid19

accidental collisions with obstacles. With increasing capa-20

bilities of autonomous systems intelligent control oppor-21

tunities also become more important. Typical interfaces,22

such as haptic (buttons), audio (speech) or visual (gesture)23

interfaces, are well suited for healthy users. However, for24

persons with impaired communication skills these control25

opportunities are unreliable or impossible to use.26

In this paper, we present and evaluate a novel frame-27

work, schematically depicted in Fig. 1, that allows closed-28

loop interaction between users with minimal communica-29
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Figure 1: Our framework that unifies decoding of neuronal signals,
high-level task planning based on referring expressions, low-level
motion- and manipulation-planning, and scene perception with a
centralized knowledge base at its core. Intuitive goal selection is
provided through an adaptive graphical user interface.

tion capabilities and a robotic service assistant. To do so,30

we record neuronal activity elicited in the human brain,31

the common origin of all types of communication, with an32

electroencephalography (EEG) system. Furthermore, we33

employ a deep convolutional neural network (ConvNet)34

approach for online co-adaptive decoding of neuronal ac-35

tivity, in order to allow users to navigate through a graph-36

ical user interface (GUI) which is connected to a high-level37

task planner. It allows the intuitive selection of goals based38

on the generation of referring expressions that identify the39

objects to be manipulated. The set of feasible actions dis-40

played in the GUI, depends in turn on the current state of41

the world, which is stored in a central knowledge base and42

continuously updated with information provided by the43

robot and a camera perception system. Once a task has44

been selected, it is decomposed into a sequence of atomic45

actions by the high-level planner. Subsequently, each ac-46

tion is resolved to a motion for the mobile manipulator us-47

ing low-level motion-planning techniques. This approach48

minimizes the cognitive load required of the user, which49

is a crucial aspect in the design of a BCI. Furthermore,50

the intelligence and autonomy of the system make it pos-51

sible to interface non-invasive BCIs, which currently have52

low throughput, with our robotic assistant composed of 1153

degrees-of-freedom (DOF). In the following, we present the54

related work, describe the individual components shown in55

Fig. 1 and present a quantitative evaluation of the system56

regarding its performance and user-friendliness.57

3. Related Work58

The multi-disciplinary work presented in this paper re-59

lies on robotics, brain-computer interfaces and natural-60

language generation (NLG). This section outlines related61

work in these fields.62

Robotic Assistants. Multiple previous studies have focused63

on robotic systems assisting people with disabilities. For64

example, Park et al. [1] implemented a system for au-65

tonomously feeding yogurt to a person. Chung et al. [2]66

focus on autonomous drinking which involves locating the67

drink, picking it up and bringing it to the person’s mouth.68

Using a hybrid BCI and head movement control, Achic69

et al. [3] studies a setup with a moving wheelchair and an70

attached robotic arm. None of these systems use pure BCI71

control. In contrast, Wang et al. [4] employ a motor im-72

agery BCI with three classes to achieve low-level control73

of a robotic arm. More relevant, Schröer et al. [5] propose74

a robotic system which receives a BCI command from a75

user and autonomously assists the user in drinking from76

a cup. However, this approach only considers a single ob-77

ject and a fixed-base manipulator. Grigorescu et al. [6]78

use steady-state visually evoked potentials to control the79

commercially available FRIEND III assistance robot. This80

work is perhaps closest to ours with respect to the number81

of possible commands (namely 5), the high-level control82

concept and the (semi-)autonomy of the assistance robot.83

In contrast to their work, we use active brain signals to84

control the graphical user interface and apply co-adaptive85

training and decoding. See the excellent review of Mladen-86

ović et al. [7] for details on co-adaptive BCIs. Additionally,87

we propose a specific design of the user interface to improve88

the human-robot interaction and show that our system is89

fully autonomous. Most recently, the work of Muelling90

et al. [8] presents a shared-control approach in the field of91

assistive robotics based on an invasive BCI. This is con-92

trary to our approach which relies on a non-invasive BCI.93

Nonetheless, their approach could be combined with the94

goal formulation interface presented in this work.95

Brain-Computer Interfaces. To ensure user acceptance, ro-96

bust decoding of brain signals is required. Inspired by97

the successes of deep ConvNets in computer vision [9, 10]98

and speech recognition [11, 12], deep ConvNets have re-99

cently been applied more frequently to EEG brain-signal100

decoding and - related to this paper - to decode tasks in101

brain-computer interfaces. Lawhern et al. [13] use a deep102

ConvNet to decode P300 oddball signals, feedback error-103

related negativity and two movement-related tasks. In104

cross-participant evaluation (i. e., trained on some partici-105

pants and evaluated on others), their ConvNet yields com-106

petitive accuracies compared to widely-used traditional107

brain-signal decoding algorithms. Tabar and Halici [14]108

combine a ConvNet and a convolutional stacked auto-encoder109

to decode motor imagery within-participant and improve110

accuracies compared to several non-ConvNet decoding al-111

gorithms. Schirrmeister et al. [15] use a shallow and a deep112
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ConvNet to decode both motor imagery and motor execu-113

tion within-participant. Their approach results in com-114

parable or slightly better accuracies than the widely used115

EEG motor-decoding algorithm filter bank common spa-116

tial patterns [16]. Bashivan et al. [17] estimate the mental117

workload with a ConvNet trained on fourier-transformed118

inputs. In addition to the above work on evaluating ConvNet119

decoding accuracies, ConvNet visualization methods allow120

us to get a sense of what brain-signal features the net-121

work is using [15, 17, 18, 19, 20, 21]. Taken together,122

these advances make deep ConvNets a viable alternative123

for brain-signal decoding in brain-computer interfaces. A124

first attempt at using shallow ConvNets for online BCI125

has recently been reported [22]. To the best of our knowl-126

edge, apart from our previous paper [23], there is no other127

work, which uses a deep ConvNet-based online control to128

implement an EEG-based brain-computer interface.129

Referring Expressions. When humans communicate goals130

to other humans, they identify objects in the world by re-131

ferring expressions (e. g., a red cup on the shelf ). The gen-132

eration of referring expressions has been subject to compu-133

tational linguistics research for years as one part of natural134

language generation (NLG) [24]. With recent advances in135

natural language processing, computer vision and the rise136

of neuronal networks, it is nowadays possible to identify137

objects in images by building referring expressions gen-138

erated from features [25]. Spatial references can be used139

to discriminate similar objects [26]. The NLG problem140

has been approached with planning techniques [27]. How-141

ever, such systems usually lack knowledge about the ac-142

tions that can be executed and the objects that can be ma-143

nipulated. To overcome this problem and to improve the144

human-robot interaction we propose a user interface that145

allows specifying actions in a domain-independent way and146

automatically adapts to changes in the environment.147

Task- and Manipulation-Planning. In contrast to classical148

task planning, Task- and Manipulation-Planning (TAMP)149

algorithms also consider the motion capabilities of the robot150

to determine feasible task plans. There are various ap-151

proaches to solve the this problem. Common to most152

TAMP approaches is a hierarchical decomposition of the153

problem into task- and motion-planning layers. Due to154

the high dimensionality of the TAMP problem the decom-155

position can be understood as a way to guide the low-156

level planners based on the high-level plan solution and157

vice versa. For example, Kaelbling et al. [28, 29] propose158

an aggressively hierarchical planning method. Such a hi-159

erarchical decomposition allows handling problems with160

long horizons efficiently. De Silva et al. [30] show an ap-161

proach based on Hierarchical Task Networks (HTNs) to162

reason on abstract tasks and combine them with a geo-163

metric task planner which works in a discrete space of pre-164

computed grasp, drop and object positions. Recently, the165

work of Dantam et al. [31] introduce the probabilistically-166

complete Iteratively Deepened Task- and Motion-Planning167

(IDTMP) algorithm, which uses a constrained-based task168

planner to create tentative task plans and sampling-based169

motion planners for feasibility tests. Srivastava et al. [32]170

focus on a planner-independent interface layer between171

task- and motion-planners. Lozano-Pérez et al. [33] post-172

pone the decision on motion plans to avoid expensive back-173

tracking due to restrictions which might happen, if the low-174

level planner is queried too early. Instead, they generate a175

”skeleton” high-level plan and a set of constraints, which176

need to be satisfied to achieve the goals of the high-level177

planner. Dornhege et al. [34] integrate task- and motion-178

planning by extending the TFD task planner [35] with179

semantic attachments, i. e., modules which check the fea-180

sibility of motion plans on demand to ensure that task181

plans can be refined to motion plans. In this work, the182

goal formulation interface outputs a task plan composed183

of high-level actions. We assume that these actions can184

be refined to motions of the robot, if the task plan is con-185

sistent with the current world model. Thus, task- and186

manipulation-planning is also considered in a hierarchical187

way but we postpone the decision on the actual feasibil-188

ity of motion plans to reduce the computational effort.189

Nonetheless, due to the modular structure or our system190

most of the principles applied in this field could be inte-191

grated into our framework as well.192

4. Autonomous BCI-controlled Service Assistant193

In this paper, we present an autonomous robotic ser-194

vice assistant which uses a BCI and an intuitive goal for-195

mulation framework to aid users in fetch-and-carry tasks.196

Our system relies on multiple components which are de-197

picted in Fig. 2. The communication between user and198

robotic service assistant is established using an EEG-based199

BCI. It decodes the brain signals using deep ConvNets and200

is explained in Sec. 4.1. Sec. 4.2 describes the goal formu-201

lation assistant that employs referring expressions and a202

menu-driven user interface to allow an intuitive specifica-203

tion of tasks. These are then processed by a high-level204

task planner to break them into a set of executable sub-205

tasks that are sent to the navigation- and manipulation-206

planning algorithms. Furthermore, we apply a Monte-207

Carlo localization approach to estimate the pose of the208

robot in the environment. Based on these poses and the209

map of the environment, the navigation module deter-210

mines a collision-free trajectory, that allows the robot to211

move between different locations. Additionally, roadmap-212

based planning allows to execute manipulation tasks as213

grasping and dropping objects. More details on motion214

generation are available in Sec. 4.3. The goal formulation215

interface and the TAMP algorithms depend on a percep-216

tion module that dynamically detects relevant objects in217

the environment. Autonomous drinking capabilities also218

require that the framework is able to determine the user’s219

mouth location and the robust estimation of liquid level220

heights to avoid spilling while serving a drink (Sec. 4.4).221
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Figure 2: Detailed overview of our framework. It uses a brain-computer interface to decode the thoughts of the user. Thus, the user has
control over a goal formulation assistant which is connected to a high-level planner. The commands send by the high-level planner are then
processed by the low-level motion planners and executed on the robot. A perception system determines information on object poses, the
user’s mouth position and liquid levels. Finally, a central knowledge base stores and provides data to establish a connection between all
components.

Finally, to conduct the data communication a knowledge222

base connects all components (Sec. 4.5).223

4.1. Online Decoding of Neuronal Signals224

This section introduces the deep ConvNet and the strate-225

gies to train the network. Furthermore, we explain the226

online decoding pipeline to extract meaningful commands227

from EEG data, which are required to control the robotic228

assistant.229

4.1.1. Deep Hybrid ConvNet Training230

As reliable classification of brain signals related to di-231

rectional commands cannot yet be achieved directly with232

non-invasive BCIs, we decode multiple surrogate mental233

tasks from EEG using a deep ConvNet approach [15]. This234

approach introduces a hybrid network, combining a deep235

ConvNet with a shallower ConvNet architecture. The deep236

part consists of four convolution-pooling blocks using ex-237

ponential linear units (ELU) [36] and max-pooling, whereas238

the shallow part uses a single convolution-pooling block239

with squaring non-linearities and mean-pooling. Both parts240

use a final convolution with ELUs to produce the output241

features. These features are then concatenated and fed to242

a final classification layer. All details of the architecture243

are visualized in Fig. 3.244

We train the subject-specific ConvNets on 40 Hz lowpass-245

filtered EEG data to decode five mental tasks: sequential246

right-hand finger tapping, synchronous movement of all247

toes, object rotation, word generation and rest. These248

mental tasks evoke discernible brain patterns and are used249

as surrogate signals to control the GUI. The mental tasks250

map to the select, go down, go back, go up, and rest GUI251

actions, respectively. Offline training is conducted based252

on a cropped training strategy using shifted time windows,253

which we call crops, within the trials as input data [15].254

The crop size of ∼2 s (522 samples @ 250 Hz) is given by the255

size of the ConvNet’s receptive field. Crops start ∼1.5 s be-256

fore trial onset and end with trial offset. This corresponds257

to the first output being predicted 500 ms after trial on-258

set and the last output being predicted on trial offset. To259

speed up training, one super-crop consisting of 239 consec-260

utive crops (760 samples) is processed in a single forward261

pass of the model. This results in 239 outputs for each for-262

ward pass. One training batch consists of 60 super-crops.263

We perform stochastic gradient descent using Adam [37]264

and a learning rate of 10−3. To optimize the model we265

minimize the categorical cross entropy loss. For offline266

evaluation, we retain the last two runs as our test set,267

which corresponds to 20 min of data. The remaining data268

is split into training (80 %) and validation (20 %) sets. We269

train for 100 epochs in the first phase of the training and270

select the epoch’s model with the highest validation ac-271

curacy. Using the combined training and validation sets,272

retraining is performed until the validation loss reaches the273

training loss from the epoch selected in the previous phase.274

Throughout this paper, we report decoding accuracies on275

the test set. The initial model used for online co-adaptive276

training is trained on all available offline data by following277

the above mentioned scheme.278

We perform online co-adaptive training with tenfold279

reduced learning rate, a super-crop size of 600 samples and280

a batch size of 45 super-crops. We keep all other param-281

eters identical and train for five batches in all 2 s-breaks.282

During this time incoming EEG data is accumulated and283

processed once the newly trained ConvNet is available.284

Training initiates once ten trials have been accumulated285

in an experimental session. Only session specific data is286

used during the training. A session is defined as the time287
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Figure 3: Hybrid deep convolutional neural network: Black numbers depict the dimensions of the input data to each layer. Orange numbers
depict the dimensions of the kernels of each layer.

interval during which the participants continuously wear288

the EEG cap. As soon as the EEG cap is removed and289

reapplied a new session starts.290

4.1.2. Participant Training291

Based on our experience it is important to train the292

BCI decoder and participants in an environment that is293

as close as possible to the real application environment to294

avoid pronounced performance drops when transiting from295

training to application. Therefore, we designed a gradual296

training paradigm within the goal-formulation user inter-297

face (see Sec. 4.2) in which the displayed environment,298

timing and actions are identical to those of the real con-299

trol task. The training paradigm proceeds as follows.300

Offline Training. We first train each participant offline301

using simulated feedback. Participants are aware of not302

being in control of the GUI. The mental tasks are cued us-303

ing modified versions of the BCI2000 [38] grayscale images304

that are presented for 0.5 s in the center of the display. To305

minimize eye movements the participants were instructed306

to look at a fixation circle, permanently displayed in the307

center of the GUI. After a random time interval of 1-7 s the308

fixation circle is switched to a disk for 0.2 s, which indicates309

the end of the mental task. At the same time the GUI ac-310

tion (go up, go down, select, go back, rest) corresponding311

to the cued mental task (cf. Sec. 4.1.1) is performed to312

update the GUI. The rest mental task is implicitly taking313

place for 2 s after every other task2. To allow the partici-314

pant to blink and swallow, every 4th rest lasts 7 s. Fig. 4315

gives a graphical overview of the offline training paradigm.316

To keep training realistic we include a 20 % error rate, i. e.,317

on average every fifth action is purposefully erroneous. We318

instruct the participants to count the error occurrences to319

assert their vigilance. This offline data is used to train the320

individual deep ConvNets as described in Sec. 4.1.1.321

2We initially used 1 s intervals to maximize speed, but they were
too short for proper mental task transition.

Online Co-Adaptive Training. After offline training, the322

participants transit to co-adaptive online training where323

the cued mental tasks are decoded by the ConvNets and324

performed in the GUI. The ConvNets were retrained after325

each trial during the 2 s break, as described in Sec. 4.1.1.326

The participants are conscious of being in control of the327

GUI and are instructed to count the errors they make. In328

doing so, the participants are aware of their performance,329

which potentially triggers learning processes and asserts330

their vigilance.331

Online Training. To evaluate the uncued, online perfor-332

mance of the BCI control, we stop cueing the mental tasks333

and let the participants select instructed goals in the GUI.334

The corresponding task plans are then executed by a sim-335

ulated robot or – when available – the real mobile manip-336

ulator. To provide more control over the mobile manipu-337

lator and enhance the feeling of agency, participants have338

to confirm the execution of every planned action and can339

interrupt the chain of actions at any moment during their340

execution using the go back GUI action. BCI decoding341

accuracies for the label-less instructed tasks are assessed342

by manually rating each decoding based on the instructed343

task steps. Statistical significance of the decoding accura-344

cies are tested using a conventional permutation test with345

100 k random permutations of the labels (i. e., the p-value346

is the fraction of label permutations that would have led to347

better or equal accuracies than the accuracy of the original348

labels).349

4.1.3. Online Decoding Pipeline350

During online control of the GUI, the EEG data is low-351

pass filtered at 40 Hz, downsampled to 250 Hz and sent to352

a GPU server in blocks of 200 ms for decoding. During co-353

adaptive online training (cf. Sec. 4.1.2) the data is addi-354

tionally labeled (to identify mental tasks) before being sent355

to the GPU server for decoding, storing and subsequent356

training. On the GPU server 600 samples (one super-crop,357
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Figure 4: Offline training paradigm. Cue icons, modified from
BCI2000 [38], indicate which mental task should be performed by
the participant. The cue icons shown here have been modified for
better visibility. In our experimental environment we use grayscale
versions of the icons. The mental tasks are illustrated by lines in the
smaller ’thought bubbles’. Each mental task maps to a GUI action:
word generation → go up, synchronous movement of all toes → go
down, sequential right-hand finger tapping → select, object rotation
→ go back, rest → rest

2.4 s @ 250 Hz) are accumulated until the decoding process358

is initiated. Subsequently, a decoding step (forward pass359

of the ConvNet) is performed whenever 125 new samples360

(0.5 s @ 250 Hz) have accumulated. All predictions are361

sent back to the EEG-computer on which a growing ring362

buffer stores up to 14 predictions corresponding to 7 s of363

EEG data. Once the ring buffer contains two predictions364

(i. e., 1 s) our algorithm extracts the mental task with the365

largest mean prediction. A two-sample t-test is then used366

to determine if the predictions significantly deviate from367

0.05. We define significance as p < 0.23. These two steps368

are repeated for all predictions until significance is reached.369

The ring buffer’s size increases (max. 14 predictions) as370

long as the predictions are not significant. Once signifi-371

cance is reached the GUI action linked to the mental task372

is executed and the ring buffer is cleared.373

4.2. Goal Formulation Planning374

Our approach adopts domain-independent planning for375

high-level control of the robotic system. Whereas many376

automated planning approaches seek to find a sequence of377

actions to accomplish a predefined task, the intended goal378

in this paper is determined by the user. Specifying goals379

in the former case requires insight into the internal repre-380

sentation of objects in the planning domain. By using a381

dynamic knowledge base that contains the current world382

state and referring expressions that describe objects based383

on their type and attributes, we obstruct direct user access384

to the internal object representation. Furthermore, we are385

able to adapt the set of possible goals to changes in the386

environment. For this purpose, our automatic goal formu-387

lation assistant incrementally builds references to feasible388

goals in a menu-driven graphical user interface.389

3Initially we defined significance as p < 0.1. Initial experiments
however showed that the time required for accumulating evidence
to push p from 0.2 to 0.1 was disproportionally large. We therefore
define significance as p < 0.2 to speed-up the decoding at the cost of
accuracy.

( : ob j e c t s cup01 cup02 − cup
sh e l f 0 1 s h e l f 0 2 − s h e l f
omnirob − robot )

( : i n i t (arm−empty omnirob )
( at omnirob s h e l f 0 2 )
( p o s i t i o n cup01 s h e l f 0 2 )
( conta in s cup01 water ) )

Figure 5: Left : The red cup in the real world, referred to by cup01.
Right : Exemplary PDDL problem description with objects and their
initial state.

4.2.1. Domain-Independent Planning390

Automated planning is used to transfer a system into391

a desired goal state by sequentially executing high-level392

actions. A planning task consists of a planning domain393

D and a problem description Π. The former is a tuple394

D = 〈T , Cd,P,O〉, where395

� T = 〈T,≺〉 is the type system together with a par-396

tial ordering ≺ that specifies the sub-type relations397

between types in T ,398

� Cd contains a set of domain constant symbols,399

� P is the set of predicate symbols, and400

� O corresponds to the set of planning operators and401

specifies their effects and preconditions.402

The problem description Π = 〈D, Ct, I〉 is defined as fol-403

lows:404

� D is the domain description,405

� Ct are the additional task-dependent constant sym-406

bols, where Cd ∩ Ct = ∅, and407

� I is the initial state.408

We specify D and Π using the Planning Domain Def-409

inition Language (PDDL) [39]. For example, in the ser-410

vice assistance domains that we use in our experiments, T411

contains a type hierarchy, where furniture and robot are412

of super-type base, and bottle and cup are of super-type413

vessel . Furthermore, P specifies attributes or relations be-414

tween objects, e. g., arm–empty is an attribute indicating415

whether the robot’s gripper is empty and position is a re-416

lation between objects of type vessel and base. Finally, O417

defines actions as grasp and move. The problem descrip-418

tion specifies the initial state I including object instances,419

such as cup01 of type cup and shelf02 of type shelf as well420

as relations between them, e. g., the position of cup01 is421

shelf02 , as illustrated in Fig. 5.422

4.2.2. Human and Machine Understandable References423

A major challenge when trying to communicate goals
to the user is the limited shared vocabulary between the
user and the planning system, whose world is described by
a PDDL planning task. The planner’s most concise repre-
sentation of the cup in Fig. 5 might be cup01, which is not
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sufficiently clear for the user if there are multiple cups.
To solve this problem, the goal generation and selection
component uses a set of basic references shared between
planner and user. These shared references can be com-
bined to create referring expressions to objects or sets of
objects in the world [40, 41]. Generally, a referring expres-
sion φ is a logical formula with a single free variable. We
say that φ refers to an object o if I |= φ(o), i. e., φ is valid
in our PDDL domain theory. For example, we can refer to
cup01 by φ(x) ≡ cup(x)∧ contains(x,water). We restrict
ourselves to references that are conjunctions of relations
R0, ..., Rm and only allow existential quantifiers, i. e.,

φ(x) = ∃x1...xnR1(x11, ...) ∧ ... ∧Rm(xm1, ...), (1)

where each argument xij corresponds to one of the vari-424

ables x1, ..., xn. This is preferable for computational rea-425

sons and also allows us to incrementally refine references426

by adding constraints, e. g., adding contains(x,water) to427

cup(x) restricts the set of all cups to the set of cups con-428

taining water. A reference φ(o) to an object o is unique if429

it refers to exactly one object:430

I � φ(o) and I 2 φ(o′) for all o 6= o′. (2)

However, it is usually sufficient to create references to431

sets of objects, e. g., if the user wants a glass of water it432

might not be necessary to refer to a specific glass as long433

as it contains water.434

To reference objects in planning domains, we need to435

specify the components that are required to create shared436

references. We distinguish three fundamental reference437

types. Individual references describe objects that can438

be identified by their name, e. g., the content objects water439

or apple-juice, and the omniRob robot. Additionally, type-440

name references are used to specify objects by their441

type. They allow referring to unspecific objects as a shelf442

or a cup. With relational references we can refer an443

object using a predicate in which the object occurs as an444

argument. In our scenario, most relational references are445

binary attribute relations whose first parameter is the ob-446

ject that is referred to, and the second parameter is an447

object in the domain of attribute values. In the example448

above, a cup can be described using its content by the449

binary relation contains(x,water).450

The most natural way for the planner to represent a451

goal is a conjunction of predicates, e. g., cup(x)∧shelf (y)∧452

position(x, y) to put a cup on a shelf. This, however, is453

a rather unnatural way to refer to goals for humans. We454

found that it is more natural to use the action that achieves455

the goal than the goal itself, e. g., action(put , x, y)∧cup(x)∧456

shelf (y). Therefore, we include action references, a457

macro reference for all predicates in the action’s effect, as458

additional building blocks to create references to objects459

in the world and allow the users to specify their goals.460

4.2.3. Adaptive Graphical Goal Formulation Interface461

In our aim for a flexible yet user-friendly control method462

to set the robot’s goals, we use the references presented463

in Sec. 4.2.2 to create a dynamic, menu-driven goal for-464

mulation user interface. We allow the user to incremen-465

tally refine references to the objects which occur as pa-466

rameters of a desired goal. We distinguish three different467

levels of atomicity for the control signals of the GUI: a468

step is a directional command (i. e., go up, go down, select,469

go back) whereas a stride is the selection of one refine-470

ment option offered by the GUI. A stride is therefore a471

sequence of steps ending with either go back (to go back472

to the previous refinement level) or select (to further re-473

fine the reference to the object) which does not account474

for the go up and go down steps. Finally, a parameter re-475

finement is the creation of a reference to one parameter.476

The goal selection procedure is depicted in Fig. 6. After477

the initial selection of a goal type, e. g., drop (Fig. 6.a),478

we have to determine objects for all parameters of the se-479

lected goal. We start by populating the action with the480

most specific reference that still matches all possible ar-481

guments, e. g., omniRob, transportable(x) and base(y), as-482

suming that omniRob corresponds to an individual ref-483

erence and transportable and base are type-name refer-484

ences (Fig. 6.b). The current goal reference is displayed in485

the top row of the GUI. The user interface then provides486

choices to the user for further refinement of the argument.487

In our example, the first argument omniRob is the only ob-488

ject in the world that fits the parameter type robot which is489

why it does not have to be refined any further. Therefore,490

we start by offering choices for refining the second argu-491

ment transportable(x) which yields the selections bottle(x),492

glass(x), cup(x) and vase(x). This continues until the ar-493

gument is either unique, it is impossible to further con-494

strain the argument or any remaining option is acceptable495

for the user. In the example, we refine the first choice496

bottle(x) based on its content (Fig. 6.c) by adding a re-497

lation contains(x , o) to the referring expression, where o498

is an object of type content . This procedure is repeated499

for all parameters of the goal, which will finally result in a500

single goal or set of goals (if the references are not unique)501

that are sent to the high-level planner.502

Some features cannot be used to partition the remain-503

ing objects for one parameter (e. g., not all objects have504

the attribute color), in which case an entry for all other505

objects can be chosen. Additionally, we allow to skip the506

refinement of the current parameter and use an arbitrary507

object for it. Finally, we provide an entry to go back to508

the previous refinement stride.509

In each stride the shown refined references form a par-
tition, which corresponds to a set of references φi:

P =
{
φ1, ..., φn,

∧n

i=1
¬φi

}
. (3)

The last term ensures, that the partition covers all objects510

of the previous reference.511

The most important part of the refinement process is512

to compute possible successors that split the current par-513

tition. To make progress in selecting a goal, the successor514

reference needs to be strictly narrower than its parent. Ad-515
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(a) (b) (c) (d)

Figure 6: Graphical user interface of the goal formulation assistant. (a) Selection of the desired action. (b) Refinement of the first action
parameter of type transportable. (c) Refinement of the argument based on content . (d) Refinement of the last action parameter of type base.

ditionally, forming a partition requires that the references516

in a candidate set are disjoint. The decision if a complete517

partition exists corresponds to the NP-complete Exact-518

Cover problem. However, by applying a greedy search al-519

gorithm we can approximate the possibly incomplete suc-520

cessor candidate sets in a sufficient way. To ensure com-521

plete partitions we add a reference that covers all objects522

which cannot be referred to by the successor references523

(the other entry in our menu) as depicted in Eq. (3). Fi-524

nally, the references can be reused in the selection process525

and therefore computed once.526

The decision on which successor reference to use for527

refining the current selection is based on maximizing the528

resulting partition’s information content, which is similarly529

computed as in decision tree learning [42]. This strategy530

prefers to split the remaining objects in a way that reduces531

the total number of refinement strides. Moreover, the532

method allows to split the referable objects more equally,533

thus offering the user a meaningful choice at every stride.534

During the refinement process, we only offer choices that535

can result in an achievable goal, where goal reachability536

is efficiently approximated by delete relaxation [43]. For537

example, if all cups were out of reach of the robot, the538

choice cup(x) would be removed from the selection above.539

This can result in a completely different selection being540

preferred, e. g., one that uses the transportable’s color or541

position for distinction. If several objects satisfy the spec-542

ified goal, the planner resolves this ambiguity by picking543

an arbitrary object among them.544

4.3. Robot Motion Generation545

For navigation planning of the mobile base, we apply546

the sampling-based planning framework BI2RRT* [44].547

Given a pair of terminal configurations, it performs a bidi-548

rectional search using uniform sampling in the configu-549

ration space until an initial sub-optimal solution path is550

found. This path is subsequently refined for the remain-551

ing planning time, adopting an informed sampling strat-552

egy, which yields a higher rate of convergence towards the553

optimal solution. Execution of paths is implemented via a554

closed-loop joint trajectory tracking algorithm using robot555

localization feedback.556

In this work, we additionally adopt a probabilistic road-557

map planner approach [45] to realize pick, place, pour558

and drink motions efficiently. Therefore, we sample poses559

in the task space which contains all possible end-effector560

poses. The poses are then connected by edges based on a561

user-defined radius. We apply an A∗-based graph search562

to find an optimal path between two nodes using the Eu-563

clidean distance as the cost and heuristic function. To per-564

form robotic motions we need to map the end-effector to565

joint paths, which can be executed by the robot. We thus566

use a task space motion controller which uses the robot’s567

Jacobian matrix to compute the joint velocities based on568

end-effector velocities. Additionally, collision checks en-569

sures that there are no undesired contacts between the en-570

vironment and the robot. Given a start- and end-pose of571

a manipulation task, the planner connects them to the ex-572

isting graph and runs the mentioned search algorithm. For573

grasping objects, we randomly sample grasp poses around574

a given object and run the planner to determine a motion575

plan. Furthermore, we extract horizontal planes from the576

camera’s point cloud and sample poses on these planes to577

find a suitable drop location for an object. Finally, special578

motions as drinking and pouring are defined by specifying579

a path in the cup’s rim frame (the point which needs to be580

connected to the mouth during drinking) and the bottle’s581

rim frame, respectively. Based on these paths the planner582

samples roadmaps that allow to find motion paths close583

to the given ones in order to react to small changes in the584

environment.585

4.4. Perception586

This section outlines the perception techniques applied587

in this work and explains how objects and mouth locations588

are determined and liquid levels are estimated.589

Object Detection. In order to detect objects we employ590

the method of Pauwels et al. [46] that relies on dense mo-591

tion and depth cues and applies sparse keypoint features592

to extract and track six-degrees-of-freedom object poses593

in the environment. The algorithm additionally requires594

models that describe the structure and texture of the de-595

tectable objects. It is able to track multiple objects in596
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realtime using a GPU-based solution. These poses and lo-597

cations (e. g., the shelf) are finally stored and continuously598

updated in the knowledge base.599

Pouring Liquids. An important aspect of pouring liquids,600

is to be able to determine when to stop pouring. This pre-601

vents overflowing and spilling the liquid as well as opening602

up possibilities such as mixing drinks, or preparing meals603

where exact amounts of liquid are required. Our approach604

to detect the liquid level employs an Asus Xtion Pro cam-605

era, which determines depth based on active structured606

light. Using this type of sensor, liquids can be categorized607

as either opaque or transparent. Opaque liquids, such as608

milk or orange juice, reflect the infrared light and the ex-609

tracted liquid level represents the real liquid level (with610

some noise). In the case of transparent liquids, such as611

water and apple juice, the infrared light is refracted and612

the depth value is incorrect.613

To detect the fill level of a transparent liquid, we base614

our approach on a feature further described by Hara et al. [47]615

and Do et al. [48]. This feature is given as follows:616

h =

( √
n2l − 1 + cos2(α)√

n2l − 1 + cos2(α)− cos(α)

)
hr. (4)

Here hr represents the raw depth measured liquid level and617

h the estimated liquid height. The index of refraction of618

the liquid is given by nl and angle α is the incidence angle619

of infrared light from the camera projector with respect to620

the normal of the liquid surface. A Kalman filter is then621

used to track the liquid level and compensate for noise.622

Before pouring, we first detect the cup in the point623

cloud and determine a region within the cup boundaries624

where the liquid could be. During the pour, we extract625

the depth values for the liquid and estimate the real liquid626

height by either applying Eq. 4, in the case of transparent627

liquids, or using the extracted value directly, in the case of628

opaque liquids. The type of liquid and hence the index of629

refraction is given beforehand through the user’s selection.630

The viewing angle α, can be determined from the depth631

data. Once it is detected that the liquid level has exceeded632

a user defined value, a stop signal is sent to terminate the633

pouring motion.634

Face Detection. We use a two-step approach to detect and635

localize the user’s mouth. In the first step, we segment the636

image based on the output of a face detection algorithm637

that uses Haar cascades [49, 50] in order to extract the638

image region containing the user’s mouth and eyes. Af-639

terwards, we detect the position of the mouth of the user,640

considering only the obtained image patch. Regarding the641

mouth orientation, we additionally consider the position642

of the eyes in order to obtain a robust estimation of the643

face orientation, hence compensating for slightly changing644

angles of the head.645

4.5. Dynamic Knowledge Base646

The knowledge base provides data storage and estab-647

lishes the communication between all components. In our648

work, it is initialized by a domain and problem descrip-649

tion based on PDDL files. Once the knowledge base is ini-650

tialized, it acts as a central database from which all par-651

ticipating network nodes can retrieve information about652

specific objects in the world as well as their attributes.653

Dynamic behavior is achieved by an additional layer that654

allows nodes to add, remove or update objects as well as655

their attributes. Moreover, the knowledge base actively656

spreads information about incoming changes as updates657

on object attributes across the network. Based on this in-658

formation each network node decides on its own whether659

that information is relevant and which actions need to be660

taken.661

5. Implementation Details662

In our system, we distribute the computation across663

a network of seven computers that communicate among664

each other via ROS. The decoding of neuronal signals has665

four components. EEG measurements are performed using666

Waveguard EEG caps with 64 electrodes and a NeurOne667

amplifier in AC mode. Additionally, vertical and horizon-668

tal electrooculograms (EOGs), electromyograms (EMGs)669

of the four extremities, electrocardiogram (ECG), electro-670

dermal activity (EDA) and respiration are recorded. The671

additional data is used to control for ocular and muscular672

artifacts, changes in heart beat frequency and skin conduc-673

tance, and respiratory frequency, respectively. It is rou-674

tinely recorded during EEG experiments in our lab. For675

recording and online-preprocessing, we use BCI2000 [38]676

and Matlab. We then transfer the data to a GPU server677

where our deep ConvNet, implemented using Lasagne [51]678

and Theano [52], classifies the data into five classes.679

Furthermore, to find symbolic plans for the selected680

goal we use the A∗-configuration of the Fast Downward681

planner [53]. The knowledge base is able to store ob-682

jects with arbitrary attribute information. All changes683

in the knowledge base automatically trigger updates in684

the goal formulation GUI. Unexpected changes interrupt685

the current motion trajectory execution. Finally, we use686

SimTrack [46] for object pose detection and tracking and687

OpenCV for face detection.688

6. Experiments689

We evaluated the proposed framework in multiple ex-690

periments. Sec. 6.2 focuses on the BCI control of the whole691

system. Afterwards, the results regarding the goal formu-692

lation interface are presented in Sec. 6.3. We provide a693

detailed performance analysis (Sec. 6.3.2) and a user sur-694

vey that studies the friendliness and intuitiveness of the695

goal formulation interface (Sec. 6.3.3) based on simulated696
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environments with up to 100 objects in scenarios as ex-697

emplarily depicted in Fig. 9. Furthermore, we conducted698

two experiments in the real-world environment which are699

explained in Sec. 6.1. The results in Sec. 6.4.1 show that700

the framework is capable of handling fetch-and-carry tasks701

even if there are undesired changes in the environment. Fi-702

nally, in Sec. 6.4.2 we discuss the results of combining all703

presented components into an autonomous robotic assis-704

tant that provides a drink to the user.705

6.1. Real World Experimental Environment706

We performed multiple experiments in the real world707

scenario depicted in Fig. 7. It contains two shelves and a708

table as potential locations for manipulation actions. The709

user sits in a wheelchair in front of a screen that displays710

the goal formulation GUI. The autonomous service assis-711

tant we use is an omniRob omni-directional mobile manip-712

ulator platform by KUKA Robotics. The robot is com-713

posed of 10 DOF, i. e., three DOF for the mobile base and714

seven DOF for the manipulator. Additionally, a Schunk715

Dexterous Hand 2.0 with three fingers is attached to the716

manipulator’s flange and used to perform grasping and717

manipulation actions, thus adding another DOF for open-718

ing and closing the hand. The tasks we consider in our719

experiments require the robotic system to autonomously720

perform the following actions: drive from one location to721

another, pick up an object, drop an object on a shelf or ta-722

ble, pour liquids from bottles into cups and supply a user723

with a drink. Moreover, our experimental setup uses a per-724

ception system composed of five RGBD cameras. Three of725

them are statically mounted at the shelves and the table,726

in order to observe the scene and to report captured infor-727

mation as object locations and liquid levels to the knowl-728

edge base. The other two cameras are carried by the robot729

on-board. The first one is located at the mobile base and730

used to perform collision checks in manipulation planning,731

whereas the second camera is mounted at the robot’s end-732

effector and used for tasks involving physical human-robot733

interaction as serving a drink to a user. Demonstrations of734

our work can be found online: http://www.informatik.uni-735

freiburg.de/~kuhnerd/neurobots/.736

6.2. Online Decoding of Neuronal Signals737

We evaluated the BCI control setup with four healthy738

participants (P1-4, all right-handed, three females, aged739

26.75±5.9). In total, 133 runs have been recorded (90740

with the real robot) where the participants selected vari-741

ous instructed goals and executed the corresponding task742

plans in the goal formulation GUI. For 43 runs, we used743

simulated feedback from the GUI in order to generate a744

larger amount of data for the evaluation. In this case, we745

simulated action executions by simply applying the corre-746

sponding effects to the knowledge base. Finally, 38 runs747

were discarded because of technical issues with the online748

decoding setup.749

The performance of the BCI decoding during the re-750

maining 95 runs was assessed using video recordings of751

User
Table

Robot

ShelfShelf

GUI EEG

Camera Object Location

Figure 7: Physical experimental environment: Two shelves and a
table could be considered by the robot for performing manipulation
actions. Five RGBD sensors observed the environment. A human
operator selected a goal using EEG control and the high-level planner
GUI.

interactions with the GUI. We rated GUI actions as cor-752

rect if they correspond to the instructed path and incor-753

rect otherwise. Actions which were necessary to remediate754

a previous error were interpreted as correct if the correc-755

tion was intentionally clear. Finally, we rated rest actions756

as correct during the (simulated) robot executions and ig-757

nored them otherwise. For evaluation, five metrics have758

been extracted from the video recordings: (i) the accu-759

racy of the control, (ii) the time it took the participants760

to define a high-level plan, (iii) the number of steps used761

to define a high-level plan, (iv) the path optimality, i. e.,762

the ratio of the minimally possible number of steps to the763

number of steps used (e. g. 1 is a perfect path, while 2764

indicates that the actual path was twice longer than the765

optimal path), and (v) the average time per step. We766

summarized the results in Table 1. In total, a 76.95 % cor-767

rect BCI control was achieved, which required 9 s per step.768

Defining a plan using the GUI took on average 123 s and769

required the user to perform on average 13.53 steps in the770

GUI of the high-level planner. The path formed by these771

steps was on average 1.64 times longer than the optimal772

path, mainly because of decoding errors which had to be773

corrected by the participants, requiring additional steps.774

The decoding accuracy of every participant is significantly775

above chance (p < 10−6).776

The participant-averaged EEG data used to train the
hybrid ConvNets and the decoding results of the train/test
transfer are visualized in Fig. 8. In Fig. 8(a) we show
the signal-to-noise ratio (SNR) of all five classes C of the
labeled datasets. We define the SNR for a given frequency
f , time t and channel c as

SNRf,t,c =
IQR ({median (Mi)})
median ({IQR (Mi)})

i ∈ C, (5)
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Figure 8: Offline EEG data, offline decoding results and learned features. (a) Participant-averaged SNR of the first 4 s of data used to train
the hybrid ConvNet. The dashed line indicates the time at which the participants were instructed to start a mental task. Highest SNR can be
observed in the alpha (7-14 Hz) and lower beta (16-26 Hz) bands. These frequency bands are robust markers of task related mental activity.
Note that the non-EEG channels (top row) were withheld from the ConvNets at any time and are displayed as negative control. The position
of most channels was adjusted to achieve a compact layout. (b) Confusion matrix of decoding accuracies for the offline train/test transfer
pooled over all subjects. Numbers indicate the amount of trials in each cell. Percentages indicate the amount of trials in each cell relative
to the total number of trials. (F) indicates F1 score. Dark/light colors indicate that a large/small portion of the targets were predicted
for a given class, respectively. (c) Topographically plausible input-perturbation network-prediction correlation maps in the delta (0-4 Hz),
theta (4-8 Hz), alpha (7-13 Hz), low beta (13-20 Hz) and high beta (20-31 Hz) frequency bands averaged over all participants. The colormap
is scaled individually for every frequency band. For details on the visualization technique we refer the reader to [15].
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Table 1: Aggregated mean±std results for 95 BCI control runs (Exp. 6.2), * p-value < 10−6

Runs # Accuracy [%]* Time [s] Steps # Path Optimality Time/Step [s]

P1 18 84.1±6.1 125±84 12.9±7.7 1.6±0.6 9±2
P2 14 76.8±14.1 90±32 10.1±2.8 1.1±0.2 9±3
P3 28 78.8±9.5 173±144 16.9±11.5 2.1±1.3 10±4
P4 35 68.1±16.3 103±69 14±7.6 1.7±0.74 7±2

95 76.9±9.1 123±36 13.5±2.8 1.6±0.4 9±1

where Mi corresponds to the set of values at position777

(f, t, c) of the i-th task, with |Mi| being the number of778

repetitions. median(·) and IQR(·) is the median and in-779

terquartile range (IQR), respectively. The upper part de-780

scribes the variance of the class medians, i. e., a large781

variance means more distinguishable class clusters and a782

higher SNR. The denominator corresponds to the variance783

of values in each class, i. e., a lower variance of values re-784

sults in a higher SNR.785

In all non-peripheral EEG electrodes a clear and sus-786

tained increase in SNR is visible in the alpha (∼8-14 Hz)787

and beta (∼14-30 Hz) frequency bands, starting around788

500 ms after the cue. These frequency bands are robust789

markers of brain activity. The partial absence of the in-790

creased beta band SNR in peripheral channels further sup-791

ports the neuronal origin of the signal [54]. An increased792

SNR is also visible in both EOG channels which could793

indicate a contamination of the EEG data by ocular arti-794

facts. The slight increase in SNR in the horizontal EOG795

channel in the delta (∼0-4 Hz) and theta (∼4-8 Hz) bands796

0.5-1 s after the cue is most probably due to residual neu-797

ronal activity recorded by the EOG. Support for this as-798

sumption is based on the fact that this increase is stronger799

in most EEG electrodes, suggesting a generator located800

some distance from the eyes, i. e., in the brain. The sus-801

tained increase in SNR in the delta band visible in the802

vertical EOG is likely due to unconscious eye movements.803

As this increase in the delta band SNR is only visible in804

the three front-most EEG electrodes and weaker than the805

increased SNR of unambiguous neuronal origin described806

above, we are confident that the hybrid ConvNets will not807

have learned to use this activity to differentiate between808

the mental tasks. The visualizations shown in Fig. 8(c)809

support this idea as no correlations are visible for frontal810

EEG electrodes in the delta band. The increased SNR in811

the lower frequencies of the respiration and EDA chan-812

nels is probably related to task engagement. A crosstalk813

between these signals and the EEG is unlikely and not sup-814

ported by the SNR analysis. The extremely low SNR in815

all EMG channels shows that the participants performed816

pure imagery, without activating their limb muscles. In817

summary, the SNR analysis revealed that the offline train-818

ing data contains informative neuronal activity which the819

hybrid ConvNets should have been able to learn from.820

Indeed, the decoding accuracies (mean 63.0 %, P1 70.7 %,821

P2 49.2 %, P3 73.1 %, P4 58.8 %) resulting from the test822

dataset after initial training of the ConvNets are well above823

the theoretical chance level of 20 %. These are visualized in824

Fig. 8(b) in the form of a pooled confusion matrix. Right825

hand and feet motor imagery were most often confused826

with each other, mental rotation was evenly confused with827

all other classes and word generation and rest were most828

often confused with feet motor imagery. The co-adaptive829

online training which took place between the initial train-830

ing of the ConvNets and the online evaluation increased831

the decoding accuracy from 63.0 % to 76.9 %, which is a832

clear indication for the efficacy of our approach. It should833

further be noted that the increase in accuracy occurred834

from an offline, cued evaluation to an online, uncued eval-835

uation, which is quite remarkable. It has to be mentioned836

however that the online accuracy is a subjective measure837

as the intentions of the participants had to be inferred from838

the instructions (cf. Sec. 4.1.2). The offline accuracy was839

fully objective because of the presented cues. Neverthe-840

less, the online evaluation decoding accuracy leaves room841

for improvements. Preliminary offline steps have been un-842

dertaken using the data collected during the offline and843

online co-adaptive training to detect decoding errors di-844

rectly from the neuronal signals [20]. This first attempt845

already yielded mean error detections of 69.33 %. The de-846

tection accuracy could potentially be increased by includ-847

ing error sensitive peripheral measures as EDA, respiration848

and ECG into the decoding. Access to the high-gamma849

(∼60-90 Hz) band frequency range could further increase850

the decoding accuracy of both mental tasks [15] and error851

signals [55]. Once transferred to an online experiment one852

could use this error detection to undo the error, generate853

a new decoding and retrain the decoder. Lastly, detection854

of robotic errors could also be achieved from the ongoing855

EEG [56, 57, 58, 21] and used as both emergency stop and856

teaching signals.857

To further support the neural origin of the BCI con-858

trol signals, Fig. 8(c) shows physiologically plausible input-859

perturbation network-prediction correlation results (see [15]860

for methods). Specifically, predictions for right hand and861

feet motor imagery classes were negatively correlated with862

input-perturbarions (see [15]) in the alpha and beta bands863

at EEG electrodes located directly above their motor and864

somatosensory cortex representations. This means that865

increasing the power in the given frequency bands at the866
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Figure 9: An exemplary scenario as used in our user experiments with
four rooms, a garden, two humans, a robot and multiple objects.

specific electrodes resulted in reduced predictions. By867

symmetry, reduced power resulted into increased predic-868

tions. These correlations fit well with the neuronal basis869

of the event related desynchronisation of the alpha and870

beta bands during motor imagery [59]. A positive correla-871

tion is also apparent above the foot motor and somatosen-872

sory cortex for feet motor imagery in the delta band. This873

positive correlation probably reflects the feet motor po-874

tential [60]. For mental rotation, word generation and rest875

the input-perturbation network-prediction correlation re-876

sults are less easily interpretable, mostly due to the lack877

of extensive electrophysiological reports. A positive corre-878

lation is visible for the mental rotation above the medial879

parietal cortex in the alpha band which could reflect the880

involvement of cortical representations of space. Similarly,881

positive correlations are visible bilaterally above the lat-882

eral central cortex and temporal cortex in the low beta883

band during word generation. They could reflect the in-884

volvement of speech and auditory brain areas. Further885

investigations will be needed to delineate these effects.886

6.3. Goal Formulation Interface887

In this section we present a performance experiment888

to evaluate the runtime required by the GUI and the re-889

sults of a preliminary user study, which examines the user-890

friendliness and intuitiveness of the system. Moreover, we891

discuss how humans use references to objects.892

6.3.1. Scenario Setup893

We created a virtual scenario with five rooms as de-894

picted in Fig. 9: a kitchen with a dining table, a living895

room with a couch table, a pantry with two shelves, a bath-896

room with one shelf and a garden containing a flowerbed.897

Bottles, cups, glasses and vases are distributed among the898

furniture. There are three types of flowers (e.g., rose),899

seven drinking contents (e.g., red -wine), five colors (e.g.,900

red) for cups and vases and three for flowers and finally,901

four glass shapes (e.g., balloon). Flowers can be put into902

vases but may also be placed directly on furniture. The903

omniRob robot has the ability to move between the rooms904

and serve the two persons (me and friend). Finally, the905

0s

50s

100s

150s

200s

 20  40  60  80  100

Number of Objects

Exploration
Root Menu

 20  40  60  80  100
0s

1s

2s

3s

4s

5s

Number of Objects

1st
2nd
3rd

Figure 10: Evaluation of the computation time for different num-
bers of objects in the environment averaged over random actions.
Left: The plot shows the mean and standard deviation of building
the menu structure at the beginning and includes initial exploration
and root menu creation. Right: Refinements of a goal can be done
efficiently. It shows the mean and positive standard deviation times
of the first three refinements.

available actions are: arrange a flower in a vase, pick a906

flower out of a vase, grasp and drop an object, give an ob-907

ject to a human, pour a liquid from one vessel to another,908

drink to assist a human with drinking a drink, move the909

robot between rooms and approach a furniture or human910

for further interaction.911

6.3.2. Performance912

In this experiment we evaluated the performance of the913

goal formulation interface. We used a scenario generator914

which randomly creates instances of the planning problem.915

To assess the performance, we measured the time required916

to start the user interface and select parameters of ran-917

dom actions. The experiment was repeated 100 times and918

averaged to retrieve reliable results. The performance of919

our Python implementation was determined using an In-920

tel i7-3770K (3.5 GHz) processor and 16 GB of memory.921

Fig. 10 illustrates the run times needed for several opera-922

tions as a function of the number of objects present in the923

world. The most time-consuming component is given by924

the reference exploration, where initial partitions are cho-925

sen (Fig. 10 left, red). Another computationally expensive926

operation is the root menu generation, which determines927

potentially reachable goals for all actions based on delete928

relaxation (Fig. 10 left, green). In contrast, the reference929

refinements for the current parameter of an action requires930

in average less than 2 s even for scenarios containing nu-931

merous objects (Fig. 10 right). However, this assertion932

only holds as long as the world and thus the references do933

not change. Considering dynamic environments, changes934

of the world are frequently triggered by, e. g., actions taken935

by the robotic service assistant. For example, when the936

robot has grasped a cup, the system should no longer re-937

fer to the cup as the cup on the table. Instead, the refer-938

ence must be rebuilt given the updated environment state939

yielding the cup at the robots gripper. For simplicity, our940

approach rebuilds all object references when an environ-941

ment change has been detected. In the future, only obso-942

lete references should be recomputed in order to scale well943
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on larger scenarios.944

6.3.3. User Study945

Participants. A total of 20 participants (3 female, 17 male,946

25 – 45 years) took part in the user study and gave their947

consent for the anonymized processing of the collected948

data. The participants were students in computer science949

and administrative employees of the university. They used950

our system the first time and were not familiar with it.951

Data Collection and Measures. The participants had to952

use our system to accomplish tasks in five simulated sce-953

narios, which were generated beforehand to get compara-954

ble results. The five scenarios with increasing complexity955

were: (S1) Move the robot to the garden, (S2) Drink beer956

using a beer mug, (S3) Arrange a red flower in a red vase,957

(S4) Place a red rose on the couch table, and (S5) Give958

a red wine glass with red wine to your friend. After in-959

troducing the user interface by explaining the individual960

components of the system, the participants had to accom-961

plish the five tasks using the GUI. Since there were no962

time constraints and sub-optimal strategies were allowed,963

all users managed to reach the requested goal states. We964

counted the number of steps the participants required to965

finish the predefined tasks successfully, where a step is ei-966

ther a refinement of an attribute or the selection of the967

back entry in the menu.968

For each scenario the participants had to rate if the dis-969

played control opportunities offered by the user interface970

comply to their expectations in a questionnaire, where the971

compliance levels ranged from 1 (unreasonable) to 5 (fully972

comply). Moreover, we asked the participants to rate the973

overall intuitiveness of the GUI in the range of 1 (not in-974

tuitive) to 5 (excellent). We then asked whether the par-975

ticipants prefer to describe objects using references or via976

internal names (e.g., v2 ). Additionally, we evaluated the977

subjective quality of object references ranging from 1 (not978

prefer at all) to 5 (highly prefer). We proposed four refer-979

ences to objects depicted in Fig. 9 and let the users rate980

how well each of those references describes the correspond-981

ing object. Moreover, subjects were asked to generate ref-982

erences to these objects in natural language themselves983

in the way they would tell a friend to find an object. In984

particular, we considered the green vase with the red rose985

located in the pantry (v2 ) and the glass, filled with red986

wine (g6 ), located on the couch table in the living room.987

The proposed references ranged from under-determined to988

over-determined descriptions, e.g., the green vase vs. the989

green vase located in the right shelf in the pantry which990

contains a red rose.991

Result. Fig. 11 shows the quantitative result of the user992

study. We counted the number of steps performed by each993

of the participants to achieve the predefined tasks success-994

fully. The figure shows box plots for each scenario. Ad-995

ditionally, the plot contains the optimal number of steps996

which are required to successfully achieve the goal.997
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Figure 11: The box plots illustrate the number of steps required by
our participants to achieve a given goal in five different scenarios S1-
S5 (optimal number of steps indicated in red, numbers denote the
median)

Most of the participants were able to find a near-optimal998

strategy to solve the task. The outliers in the first four999

scenarios are mainly caused by the user exploring the pos-1000

sibilities of the user interface. The increased number of1001

steps in the last scenario can be traced back to the fol-1002

lowing reasons. First, the scenario required two actions1003

to be able to achieve the task: fill a balloon shaped glass1004

with red wine and give this glass to the friend. Only a few1005

users were able to determine this fact at the beginning.1006

Therefore, the participants had to correct their decisions1007

which results in a higher number of steps in the fifth sce-1008

nario. Second, the pour action as defined in our scenarios1009

required to specify three parameters: the vessel to pour1010

from, the vessel to pour to and the liquid that is poured.1011

Our system usually refers to the first vessel by its content,1012

so the redundant refinement of the liquid as last parameter1013

is not intuitive to the users. Finally, we split a partition1014

based on its information content to reduce the number of1015

refinements. This strategy can lead to unexpected refine-1016

ments of object attributes since the user might prefer these1017

in a different order.1018

Fig. 12 shows the results on how well the choices of-1019

fered by the high-level planning GUI actually comply with1020

the expectations of the users. A large percentage of them1021

comply with the refinements provided by the GUI in the1022

scenarios S1 to S4. Due to the previously mentioned prob-1023

lems however, S5 has been rated worse. A short training1024

period of the users to get familiar with the interface might1025

help to improve the compliance in S5. Overall, 80% of1026

the participants rated the GUI as intuitive, i.e., according1027

to the aforementioned metric they rated the intuitiveness1028

with at least 3 (acceptable). In particular, 85% of the1029

participants preferred referring to objects by incremental1030

referencing over internal names (e.g., green vase on the1031

couch table vs. v1 ).1032

In the last user experiment, we evaluated the subjec-1033

tive quality of object references. According to our results,1034

preferred references highly depend on whether the spatial1035

context of the agents in the world is considered or not.1036

One group of users only preferred references that uniquely1037

identify the objects independent from the location of the1038

agents. This group preferred references such as the vase1039
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Figure 12: Compliance of the offered choices with the users’ expec-
tation for five tasks in different scenarios. The participants had to
select compliance levels from 1 (unreasonable) to 5 (fully comply).

containing a rose or occasionally also the vase in the right1040

shelf for v2 and the red wine glass on the couch table for1041

v6 . Another group preferred under-determined references1042

as they considered the spatial context of the agents. This1043

group preferred references such as the green vase for v21044

and the red wine glass for v6 . Interestingly, the capability1045

of users to impersonate the acting agent has also a strong1046

influence on the references preferred by the second group.1047

For referring to v2 , some users of the second group ad-1048

ditionally specified the room or the content of the vase,1049

assuming that the assisting agent is also located in the1050

living room and therefore requires a more detailed object1051

description, while they preferred under-specified references1052

for objects on the couch table. Detailed over-specified ref-1053

erences were refused by all participants, but more firmly by1054

the second group. Summarizing, our evaluation revealed1055

that incrementally building object references is suitable1056

to describe objects precisely. Room for improvement was1057

identified in updating object references that change during1058

plan execution and in the consideration of temporal and1059

spatial context.1060

6.4. Robotic Service Assistant1061

We performed two experiments to evaluate the system1062

in the real world using a mobile robot. The first one ex-1063

plores how the system reacts to unexpected changes. In1064

the second experiment, we present the results of the whole1065

system involving all components.1066

6.4.1. Fetch and Carry Task with Disturbances1067

In a dynamic world, unexpected changes such as adding1068

or removing objects can occur at all times. With this ex-1069

periment, we examine how our system adapts to distur-1070

bances, i. e.unexpected changes in the environment.1071

We performed the experiments in a way that unex-1072

pected world changes may occur at any time through ac-1073

tions taken by another unknown agent. In practice, this1074

agent could refer to a human taking actions that directly1075

affect the execution of the current high-level plan. There-1076

fore, we initially placed a cup on one of the shelves and1077

queried the goal formulation assistant to generate a se-1078

quence of actions leading to the goal state cup on table,1079

i. e., approach(shelf with cup), grasp(cup), approach(table),1080

drop(cup). Once the robot arrived at the corresponding1081

shelf in the execution phase of the plan, a human agent1082

took the cup while the robot was about to grasp it and1083

transferred it to the other shelf. In order to obtain quan-1084

titative results on the performance of our framework in1085

such a scenario, we ran this experiment 10 times with dif-1086

ferent initial cup placements and evaluated its ability to1087

generate the goal state in the real world despite the ex-1088

ternal disturbance introduced by the human agent. For1089

all runs, our perception system correctly updated the in-1090

formation on the cup in the knowledge base, in turn trig-1091

gering a re-planning step. The updated action sequence1092

always contained two additional actions, namely moving1093

to the shelf where the human agent dropped the cup and1094

grasping it again. In total, 59 out of 60 (98.33%) sched-1095

uled actions were successfully executed and thus 90% of1096

the runs succeeded in generating the goal state. Only one1097

run failed in the action execution phase due to the inabil-1098

ity of the low-level motion planning algorithm to generate1099

a solution path for the mobile base within the prescribed1100

planning time. On average, our system required an overall1101

time of 258.7±28.21 s for achieving the goal state.1102

6.4.2. Drinking Task1103

The last experiment evaluates the direct interaction1104

between user and robot. Therefore, we implemented an1105

autonomous robotic drinking assistant. Our approach en-1106

abled the robot to fill a cup with a liquid, move the robot1107

to the user and finally provide the drink to the user by1108

execution of the corresponding drinking motion in front1109

of the user’s mouth. Fig. 13 shows examples for the ac-1110

tions move, grasp and pour. The first row contains the1111

task-plan visualizations of the goal formulation GUI, which1112

are displayed after a goal has been selected. Additionally,1113

the second row depicts the planning environment as used1114

by the navigation and manipulation planners to generate1115

collision-free motions. The corresponding view of the real1116

world is shown in the last line.1117

Table 2 shows the averaged results for the experiment.1118

Again, the user is one of the authors. Here, only 3.75 % of1119

the 160 scheduled actions had to be repeated in order to1120

complete the task successfully. In one run, plan recovery1121

was not possible leading to abortion of the task. Thus,1122

our system achieved in total a success rate of 90 % for the1123

drinking task. Planning and execution required on aver-1124

age 545.56±67.38 s. For the evaluation of the liquid level1125

detection approach, we specified a desired fill level and exe-1126

cuted 10 runs of the pour action. The resulting mean error1127

and standard deviation is 6.9±8.9 mm. In some instances1128

the bottle obstructed the camera view, resulting in poor1129

liquid level detection and a higher error. We have begun1130

investigation possible improvements for the monitoring of1131

liquid levels by additionally considering the brain activity1132

of an observer [58, 21]. Our latest results show that events1133

where the liquid spills over the cup can be detected with1134

an accuracy of 78.2±8.4 % (mean over 5 subjects) using1135

deep ConvNets and EEG [21]. This feedback can be used1136
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(a) approach (b) grasp (c) pour

Figure 13: Snapshots of our experiments for the actions approach,
grasp and pour . The first line shows the corresponding step in the
high-level planner user interface. The results of the motion and ma-
nipulation planning is depicted in the second row. Finally, the third
row shows the robot system, which executes the actions.

Actions # Executions Success Runtime [s]
(# Scheduled) Exec. [%] Mean Std

Grasp 34 (30) 91.0 40.42 10.31
Drop 30 (30) 97.0 37.59 4.83
Approach 80 (80) 100.0 20.91 7.68
Pour 10 (10) 100.0 62.90 7.19
Drink 13 (10) 77.0 57.10 8.20

Total 167 (160) 95.86 32.46 15.51

Table 2: Aggregated results for 10 runs (Exp. 6.4.2)

to inform the liquid level detection and pouring procedure1137

of the failure and trigger an adaptation of the algorithms1138

to prevent future spills. To completely prevent errors, de-1139

tection prior to a spill event will have to be achieved in1140

future work.1141

7. Conclusions1142

In this paper, we presented a novel framework that1143

allows users to control a mobile robotic service assistant1144

by thought. This is particularly interesting for severely1145

paralyzed patients who constantly rely on human care-1146

takers as some independence is thereby restored. Our sys-1147

tem performs complex tasks in dynamic real-world envi-1148

ronments, including fetch-and-carry tasks and close-range1149

human-robot interactions. Our experiments revealed that1150

the five-class-BCI has an uncued online decoding accuracy1151

of 76.9 %, which enables users to specify robotic tasks us-1152

ing intelligent goal formulation. Furthermore, a user study1153

substantiates that participants perceive the goal formula-1154

tion interface as user-friendly and intuitive. Finally, we1155

conducted experiments in which the proposed autonomous1156

robotic service assistant successfully provides drinks to1157

humans. By combining techniques from brain signal de-1158

coding, natural language generation, task planning, robot1159

motion generation, and computer vision we overcome the1160

curse of dimensionality typically encountered in robotic1161

BCI control schemes. This opens up new perspectives for1162

human-robot interaction scenarios.1163
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[6] S. M. Grigorescu, T. Lüth, C. Fragkopoulos, M. Cyriacks,1192
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