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Abstract

Generating diverse molecules with desired chemical properties is important

for drug discovery. The use of generative neural networks is promising for

this task. To facilitate evaluation of generative models, this paper introduces a

metric of internal chemical diversity, and raises the following challenge: can a

nontrivial AI model reproduce observed internal diversity for desired

molecules? To illustrate this metric, a mini-benchmark is performed with two

generative models: a Reinforcement Learning model and the recently

introduced ORGAN. The aim of this paper is to encourage research about

internal diversity metrics.

Keywords: Chemical diversity; De Novo design; Reinforcement Learning;

Generative Adversarial Networks; Recurrent Neural Networks

1 Introduction

Drug discovery is like finding a needle in a haysack. The chemical space of potential drugs

contains more than 1060 molecules. Moreover, testing a drug in a medical setting is time-

consuming and expensive. Getting a drug to market can take up to 10 years and cost $2.6

billion [1]. In this context, computer-based methods are increasingly employed to acceler-

ate drug discovery and reduce development costs.
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In particular, there is a growing interest in AI-based generative models. Their goal is to

generate new lead compounds in silico, such that their medical and chemical properties are

predicted in advance. Examples of this approach include Variational Auto-Encoders [2],

Adversarial Auto-Encoders [3, 4], Recurrent Neural Networks and Reinforcement Learn-

ing [5, 6, 7], eventually in combination with Sequential Generative Adversarial Networks

[8, 9].

However, research in this field often remains at the exploratory stage: generated samples

are sometimes evaluated only visually, or with respect to metrics that are not the most

relevant for the actual drug discovery process.

Rigorous evaluation would be particularly welcome regarding the internal chemical di-

versity of the generated samples. Generating a chemically diverse stream of molecules is

important, because drug candidates can fail in many unexpected ways, later in the drug

discovery pipeline.

Based on visual inspection, [5, p. 8] reports that their Reinforcement Learning (RL) gen-

erative model tends to produce simplistic molecules. On the other hand, [8, p.6, p.8] argues

that their Objective-Reinforced Generative Adversarial Network (ORGAN) generates less

repetitive and less simplistic samples than RL. However, their argument is also based on

visual inspection and therefore, it remains subjective: our own visual inspection of the

ORGAN-generated samples (available on the ORGAN Github:

https://github.com/gablg1/ORGAN/tree/master/results/mol_results)

rather suggests that ORGAN produces molecules as repetitive and as simplistic as RL.

In this paper, we introduce a metric that quantifies the internal chemical diversity of the

model output. We also submit a challenge:

Challenge: Is it possible to build a non-trivial generative model, with (part of) its out-

put satisfying a non-trivial chemical property, such that the internal chemical diversity of

this output is at least equal to the observed diversity naturally found for the same kind of

molecules?
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To illustrate this challenge, we compare RL and ORGAN generative models, with respect

to the following chemical properties:

1 Being active against the dopamine receptor D2. The dopamine D2 receptor is the

main receptor for all antipsychotic drugs (schizophrenia, bipolar disorder...).

2 Druglikeness as defined in [8]. We are interested in this property because we can use

experimental results in [8] to facilitate discussion. However, the notion of druglike-

ness in [8] is different from the notion of Quantitative Estimation of Druglikeness

(QED) [10], which is an index measuring different physico-chemical properties fa-

cilitating oral drug action.

Here, druglikeness is the arithmetic mean of the solubility (normalized logP), nov-

elty (which equals 1 if the output is outside of the training set, 0.3 if the output is a

valid SMILES in the training set, and 0 if the output is not a valid SMILES), synthe-

sizability (normalized synthetic accessibility score [11]) and conciseness (a measure

of the difference of the length between the generated SMILES and its canonical rep-

resentation).

We mention that recently, [9] considers an ORGAN with the QED definition of drug-

likeness. However, we also performed our own experiments with the QED property,

and they did not affect our conclusions.

2 The metric of internal chemical diversity

Let a and b be two molecules, and ma and mb be their Morgan fingerprints [12]. Their

number of common fingerprints is |ma ∩ mb| and their total number of fingerprints is

|ma ∪mb|.

The Tanimoto-similarity Ts between a and b is defined by:

Ts(a, b) =
|ma ∩mb|
|ma ∪mb|
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Their Tanimoto-distance is:

Td(a, b) = 1− Ts(a, b)

We use rdkit implementation [13] of this distance, with fingerprint size 4.

2.1 Internal diversity

We define the internal diversity I of a set of molecules A of size |A| to be the average of

the Tanimoto-distance Td of molecules of A with respect to each other. Formally, we have:

I(A) =
1

|A|2
∑

(x,y)∈A×A

Td(x, y) (1)

Note that this sum includes self-distances, although their contributions are equal to zero.

For a sufficiently large setA, any sufficiently large subsetA′ ⊂ A, sampled with uniform

probability, has the same internal diversity asA. This property follows from the law of large

numbers. We can thus define the internal diversity of a generative model, by computing the

internal diversity of a sufficiently large generated sample. This allows to formalize our

challenge:

Challenge (restatement): Let N be the molecules observed in nature. Is there a non-

trivial generative model G and a non-trivial chemical property P such that:

I(G ∩ P ) ≥ I(N ∩ P ) ? (2)
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Internal chemical diversity is always smaller than 1 (because the Tanimoto-distance is

smaller than 1), and it is usually much smaller. That’s why we prefer this definition to the

Tanimoto-variance of a set of molecules A, which is:

V (A) =
1

|A|2
∑

(x,y)∈A×A

Td(x, y)
2 (3)

2.2 Relation of the internal diversity metric with the previous literature

Internal diversity quantitatively captures the visually observed fact that generated molecules

can be repetitive and simplistic [8, 5]. Previous metrics did not allow to do that.

2.2.1 Internal vs. external diversity metric [8, p.5]

Let A1 be the training set, and A2 be the generated set. The external diversity (called

’diversity’ in [8, p.5]) is defined by:

E(A1, A2) =
1

|A1| × |A2|
∑

(x,y)∈A1×A2

Td(x, y) (4)

External diversity and internal diversity metrics are different: in our definition we only

have one set A, the generated set (see equation (1)).

External diversity fails to capture the visually observed fact that generated molecules can

be repetitive and simplistic (as observed in [8, 5] ): according to table 1 page 5 in [8],

(external) diversity is significantly higher for RL than for ORGAN. That’s the opposite of

their debatable visual observation.

They dismiss RL generator in favor of their ORGAN generator only by their visual ob-

servation, but nowhere, their quantitative results support their observation.

On the other hand, our metric will give better results, because it better matches human

visual observation of samples: our diversity is slightly lower for RL than for ORGAN.
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Why internal diversity metric works better than external diversity metric:

Suppose the chemical space is R2 with the Euclidean distance (in place of the Tanimoto-

distance). Suppose the training data is located on a circle of radius one centered in the

origin. Suppose also a trivial generative model, with all generated samples located on this

origin. See figure 1.

In this setting, the external diversity of the model is equal to 1, because the distance

between a generated point and a training point is always equal to 1.

On the other hand, the internal diversity for this generative model is equal to zero, because

the distance between two generated samples is always zero.

Contrary to the external diversity metric in [8], our metric can distinguish between this

trivial case and a less trivial generative model, where generated points are spread around

(figure 2).

However, some sort of external diversity metrics is still important, in order to eliminate

another kind of trivial generative model, which simply reproduces the training set. There is

complementarity between suitable external and internal diversity metrics.

2.2.2 Internal diversity metric vs. Guimaraes et al. [8] novelty metric

In [8, p.4], Guimaraes et al. introduce a novelty metric, equal to 1 if the generated molecule

is not in the training set, equal to 0.3 if it is inside the training set, and equal to 0 if it is not

a valid SMILES.

Our trivial example above would have a high Guimaraes-novelty (all generated molecules

are outside of the training set), so Guimaraes-novelty is less useful than our metric for the

task of identifying some trivial generators.

2.2.3 Internal diversity metric vs. NN-Tanimoto similarity [6, p. 7 and figures 7 and 12]

In [6, p. 7 and figures 7 and 12], Segler et al. introduce a metric of Nearest Neighbor

Tanimoto similarity. Letm be a molecule andA1 be the training set. The Nearest Neighbor

Tanimoto-similarity between m and A1 is given by:
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NNTs(m,A1) = max
m1∈A1

Ts(m,m1)

Segler et al. consider the distribution of the Tanimoto-similarities between generated

molecules and their nearest neighbor in the training set. They qualitatively discuss the

shape of this distribution for their own models, but they do not use this distribution to

define a quantitative metric that allows ranking different models.

To extend the work done in [6], various metrics can be derived from this distribution (e.g.

variance, Wasserstein distance to the uniform distribution...). This will be interesting for

future work, but in any case, these metrics will be more complicated than our metric.

2.2.4 Internal diversity metric vs. NN-Levenshtein distance [6, p. 10 and figure 11]

The same remarks as with the NN-Tanimoto-distance apply. For future work, it will be

interesting to replace the Tanimoto distance in our work with the Levenshtein distance.

2.2.5 Internal diversity metric vs. visualizations [6, figures 5 and 8], [14, figures 5, 6 and

9] and [15, figure 2].

Recently, [15, figure 2] used a visualization to claim that the molecules generated by their

RL model (similar to [6]) ”populate” the chemical space. It is analogous to visualizations

in [14, figures 5, 6 and 9], and [6, figures 5 and 8] (except that in this latter case, it is a

t-SNE visualization, which is useful, but can also be misleading, see [16]).

The internal diversity metric introduced here is a contribution to give a precise meaning

to this expression ”populate”. This metric allows to compare different models, from the

viewpoint of which one ”populates” better.

2.2.6 Internal diversity metrics and computer vision

Generative models in computer vision are also considering internal diversity metrics. For

example, [17, section 4] introduced the Inception score, to assess both the quality and
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internal diversity of generated images. Other metrics are being considered and evaluated

in the literature [18]. For future work, it will be interesting to build analogous metrics for

molecule generation.

2.2.7 Beyond fingerprints

Our definition of internal diversity depends on Morgan fingerprints, which are hand-crafted

features that do not always capture the notion of chemical distance [19]. It would be better

to use automatically learned features, molecule vector representations, analogous to word

embeddings used in Natural Language Processing [20]. There is some work in this direction

[21].

3 Generative Models

3.1 Reinforcement Learning

As in the case of RL considered in [8], and as in [22, p. 4], the generator Gθ is a LSTM

Recurrent Neural Network [23] parameterized by θ.

Gθ maps the input embedding representations into a sequence of hidden states. More-

over, a softmax output layer maps the hidden states into the output token distribution. Gθ

generates SMILES (Simplified Molecular-Input Line-Entry System) sequences of length T

(eventually padded with ” ” characters), denoted by:

Y1:T = (y1, ..., yT )

Let R(Y1:T ) be the reward function.

• For the case of dopamine D2 activity, we take:

R(Y1:T ) = Pactive(Y1:T )
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where Pactive(Y1:T ) is the probability for Y1:T to be D2-active. This probability is

given by the predictive model made in [7][1], and available online at

https://github.com/MarcusOlivecrona/REINVENT/releases

• For the case of druglikeness, we take:

R(Y1:T ) = L(Y1:T )

where L(Y1:T ) is the druglikeness of Y1:T .

The generator Gθ is viewed as a Reinforcement Learning agent: its state st is the cur-

rently produced sequence of characters Y1:t, and its action a is the next character yt+1,

which is selected in the alphabet Y . The agent policy is: Gθ(yt+1|Y1:t). It corresponds to

the probability to choose yt+1 given previous characters Y1:t.

Let Q(s, a) be the action-value function. It is the expected reward at state s for taking

action a and for following the policy Gθ, in order to complete the rest of the sequence. We

maximize its expected long-term reward:

J(θ) = E[R(Y1:T )|s0, θ] =
∑
y1∈Y

Gθ(y1|s0)Q(s0, y1)

For any full sequence Y1:T , we have:

Q(s = Y1:T−1, a = yT ) = R(Y1:T )

For t < T , in order to calculate the expected reward Q for Y1:t, we perform a N -time

Monte Carlo search with the rollout policy Gθ, represented as:

[1]This reward function is slightly different than the function in [7], which is: −1 + 2× Pactive.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 30, 2018. ; https://doi.org/10.1101/292177doi: bioRxiv preprint 

https://doi.org/10.1101/292177
http://creativecommons.org/licenses/by/4.0/


Benhenda Page 10 of 20

MC(Gθ(Y1:t, N)) = {Y 1
1:T , ..., Y

N
1:T }

where Y n1:t = Y1:t and Y nt+1:T is randomly sampled via the policy Gθ.

For t < T , Q is given by:

Q(s = Y1:t−1, a = yt) =
1

N

N∑
n=1

R(Y n1:T )

3.2 Objective-Reinforced Generative Adversarial Network (ORGAN)

To obtain an ORGAN, [8] brings a Character-Aware Neural Language Model [24] Dφ

parameterized by φ. Basically,Dφ is a Convolutional Neural Network (CNN) whose output

is given to a LSTM. Dφ is fed with both training data and data generated by Gθ. It plays

the role of a discriminator, to distinguish between the two: for a SMILES Y1:T , the output

Dφ(Y1:T ) is the probability that Y1:T belongs to the training data.

For the case of dopamine D2-activity, the reward function becomes:

R(Y1:T ) = λDφ(Y1:T ) + (1− λ)Pactive(Y1:T )

and for the case of druglikeness:

R(Y1:T ) = λDφ(Y1:T ) + (1− λ)L(Y1:T )

where λ ∈ [0, 1] is a hyper-parameter. For λ = 0, we get back the RL case, and for

λ = 1, we obtain a Sequential Generative Adversarial Network (SeqGAN) [22].
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The networks Gθ and Dφ are trained adversarially [25, 26], such that the loss function

for Dφ to minimize is given by:

min
φ

EY∼train[logDφ(Y )] + EY∼gen[log(1−Dφ(Y ))] (5)

4 Experiments

4.1 Dopamine D2 activity

As in [8], we pre-train the models 240 steps with Maximum Likelihood Estimation

(MLE), on a random subset of 15k molecules from the ZINC database of 35 million

commercially-available compounds for virtual screening, used in drug discovery [27]. Then

we further train the models with RL and ORGAN respectively, for 30 and 60 steps more.

60 steps are enough to see how internal diversity drops. Training for longer increases

the proportion of Valid SMILES, but it does not increase internal diversity of the desired

molecules. See the second experiment. 30 steps are halfway between 0 and 60 steps, it

allows to show the evolution.

Here are 5 samples from ZINC database (structures in figure 3):

COc1ccc(OC)c([C@@H]2CCCN2CN2C(=O)c3cccc(N)c3C2=O)c1

COc1cccc([C@@H](CNC(=O)Nc2ccc([N+](=O)[O-])cc2)[NH+](C)C)c1

COc1cccc(OC(=O)c2cc3ccccc3oc2=O)c1

CCCCC(=O)Nc1ccccc1NS(=O)(=O)c1ccc(Cl)cc1

COc1cc(CC[NH2+][C@H](C)c2cccnc2)ccc1F

In table 1, we show the proportion of valid SMILES output (Prop. Valid SMILES), the

average probability of activity on dopamine D2 (Avg. Pa), the average internal diversity

(Avg. int. div.), the proportion of molecules with probability of activity greater than 0.8

(Prop. Pa > 0.8), and most importantly, the average internal diversity among samples with
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probability of activity greater than 0.8. That’s the most important column, because it is

related with our open problem.

The averages are computed over the set of valid SMILES, whereas the proportions are

computed over all the generated SMILES (both valid and invalid).

We compute those quantities for the model after the first 240 training epochs with Maxi-

mum Likelihood Estimation (MLE), a D2-active set of 8324 molecules from ExCAPE-DB

[28] (which is essentially the training set of the SVM classifier in [7]) (DRD2), for the

output of the Reinforcement Learning model after 30 steps (RL 30) and 60 steps (RL 60),

and for the output of ORGAN with λ = 0.04 after 30 steps and 60 steps (ORGAN-0.04

30, ORGAN-0.04 60) and for λ = 0.5 after 60 steps (ORGAN-0.5 60). All those outputs

have 32k samples.

Prop. Valid
SMILES

Avg. Pa Avg. int. div. Prop. Pa > 0.8
Avg. ext. div.
for Pa > 0.8

Avg. int. div.
for Pa > 0.8

MLE 0.290406 0.009643 0.393832 0 n/a n/a

DRD2 0.996636 0.911519 0.089478 0.876367 0.353919 0.081972

RL 30 0.379844 0.160777 0.112864 0.018906 0.638772 8.65864e− 05

RL 60 0.536 0.389979 0.014994 0.078438 0.850716 0.000775

ORGAN-0.04 30 0.425375 0.097810 0.242544 0.013531 0.540684 0.005826

ORGAN-0.04 60 0.604406 0.342687 0.028563 0.100969 0.575253 0.000170

ORGAN-0.5 60 0.264687 0.006502 0.324884 0.000187 0.527566 0

Table 1: Experimental results for probability of D2 activity Pa

The most interesting case is RL after 30 steps. In this case, increasing the probability of

D2 activity is contradictory with keeping diversity. After 30 steps, internal diversity is even

higher than the DRD2 diversity baseline.

However, when we only keep the molecules of interest, with Pa > 0.8, internal diversity

dramatically drops to vanishingly small levels. Note that even in these cases, generated

SMILES remain distinct from each other.

For ORGAN-0.04, results are mostly analogous to RL. Note that at 30 steps, diversity for

Pa > 0.8 is 2 orders of magnitude better than RL 30. However, it still remains one order of
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magnitude lower than the DRD2 baseline, and at 60 steps, diversity has dropped to levels

similar with RL.

For ORGAN-0.5, learning the D2 property still did not start after 60 steps. The situation

is analogous to the SeqGAN case (λ = 1) described in [8]: high diversity, but no learning

of the objective. In particular, that’s why the internal diversity for Pa > 0.8 is indetectable:

there are only 6 samples satisfying the desired property, among 32k.

The intermediate cases between λ = 0.04 and λ = 0.5 are analogous to either of them. It

is hard to situate the tipping point, between the cases where training is just slow, and where

training will never take off.

Note that external diversity can be high, despite that internal diversity can be vanishingly

small.

Here are the SMILES (structures in figure 4) of 10 samples for ORGAN with λ = 0.04

after 30 steps, selected such that Pa > 0.8 (most diverse case):

CCOCCNC[C@H]1CCCN1CCc1ccsc1

CCCOC[C@H]1Cc2ccccc21

CC[C@H]1CCNCOc2ccccc21

CC[C@H]1CCN(CCc2ccccc2)c1

CCCO[C@@H]1CCN(C)Cc2ccccc21

CCC[C@@H]1CCC[NH+]1CC[C@H]1CCCn1

CC[C@@H]1CCN(CCc2ccccc2)c1

CC[C@H]1CCN(Cc2ccccc2)c1

CCOC1CCN(CCCNCCCc2ccccc2)c1

CCCN1CCO[C@H]1C[C@@H]1CCOc2ccccc21

4.2 Druglikeness

Here, we use the experimental data from [8], made available on their Github:

https://github.com/gablg1/ORGAN
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[8] pre-trains the models 240 epochs with Maximum Likelihood Estimation (MLE), on

a random subset of 15k molecules from the ZINC database of 35 million commercially-

available compounds for virtual screening, used in drug discovery [27]. Then [8] further

trains the models with RL and ORGAN respectively, for 200 steps.

Table 2 shows the proportion of valid SMILES output (prop. Valid SMILES), average

druglikeness (Avg. L), the average internal diversity (Avg. int. div.), the proportion of

molecules with druglikeness greater than 0.8 (Prop. L > 0.8), and most importantly, the

average internal diversity among samples with druglikeness greater than 0.8. Again, that’s

the most important column, because it is related with our challenge.

Again, the total averages are computed over the set of valid SMILES, whereas the pro-

portions are computed over all the generated SMILES (both valid and invalid).

Those quantities are computed for the model after the first 240 training epochs with Max-

imum Likelihood Estimation (MLE), for the training set ZINC of 15k molecules (ZINC),

which serves as a baseline, for the output of the Reinforcement Learning model after 200

steps (RL 200) and for the output of ORGAN with λ = 0.8 after 200 steps (ORGAN 200).

λ = 0.8 was the highest parameter in experiments in [8]. Those outputs have 6400 samples.

Prop. Valid
SMILES

Avg. L Avg. int. div. Prop. L > 0.8
Avg. ext. div.
for L > 0.8

Avg. int. div.
for L > 0.8

MLE 0.290406 0.835164 0.393832 0.668891 0.347230 0.276438

ZINC 1 0.661094 0.331222 0.020133 0.235352 0.025986

RL 200 0.975625 0.917358 0 0.974844 0.262789 0

ORGAN-0.8 200 0.943906 0.906885 0.000151 0.940625 0.602854 0.000150

Table 2: Experimental results for Druglikeness L

Results show that ORGAN indeed improves over RL, since it is able to raise internal

diversity to detectable levels. However, ORGAN diversity still remains 2 orders of magni-

tudes lower than ZINC diversity when L > 0.8. ORGAN diversity also remains 3 orders of

magnitude lower than the total diversity of ZINC, which corresponds to the level of internal

diversity to which most eyes are used to. We conclude that for our limited setting (small
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datasets...), both RL and ORGAN for λ = 0.8 fail to generate internally diverse molecules

for this property.

Note again that external diversity can be very high, despite that internal diversity can be

vanishingly small.

Note also that for ZINC, which is the training set, external and internal diversities for

L > 0.8 are still different, because external diversity is taken over all training molecules,

whereas internal diversity is taken over the small fraction (2 %) of them that have L > 0.8.

Here are 10 SMILES samples (structures in figure 5) from ORGAN for λ = 0.8 and 200

steps:

Cc1ccccc1CCSc1ccccc1C

COCCc1ccccc1CCCCCCSC

CCCCCCn1cccc1CCCSC

COCc1ccccc1CCCc1ccccc1CC

CCCC(=O)CCCc1ccccc1CCCc1ccccc1C

COCCNC(=O)CCc1ccccc1

CCOC(=O)CCCCc1ccccc1CCN(C)CCCCc1ccccc1C

COCCCC(=O)CC(C)CCCCc1ccccc1C

CCCC(=O)CSCCC(=O)CCCCC(=O)OC

CCC(=O)COCCCCCCC(=O)CCCSC

5 Conclusion and additional future work

The conclusion of this mini-benchmark is that for small training datasets, small architec-

tures, and the specific hyperparameters tested, both RL and ORGAN fail to match observed

internal diversity for desired molecules, although ORGAN is slightly better than RL. Fu-

ture work about the diversity metrics was already discussed in subsection 2.2. There is

also future work for a more comprehensive benchmark, with larger datasets, with larger

and more models (like the recent [29]), and with testing various hyperparameters. Finally,
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there is also work for better ORGAN training. For this point, two distinct problems can be

considered:

• The perfect discriminator problem in adversarial training

• The imbalance between different objectives in Reinforcement Learning

5.1 The perfect discriminator problem

In ORGAN training, the discriminator Dφ quickly becomes perfect: it perfectly distin-

guishes between training data and generated data. In general, this situation is not very good

for adversarial learning [30]. Here, the discriminator still teaches something to the gener-

ator. On average, according to the discriminator, the probability for a generated sample to

belong to the training set still remains far from 0, although always smaller than 0.5. This

probability is transmitted to the generator through the reward function.

However, not being able to ’fool’ the discriminator, even in the SeqGAN case of λ = 1

(without any other objective), shows generator weakness: it shows inability to reproduce

a plain druglike dataset like ZINC. Training a SeqGAN properly should be a first step

towards improving ORGAN.

To achieve this, it might be possible to take a larger generator, to replace the discriminator

loss in equation (5) with another function (like CramerGAN [31]), and to use one-sided

label smoothing [17, p.4].

The discriminator might also overfit training data. Taking a larger training set could help,

we took 15k samples here (less than 1MB), and this is small compared with training sets in

Natural Language Processing. On the other hand, datasets in drug discovery rarely exceed

10k molecules, and therefore, it could also be interesting to look in the direction of low-data

predictive neural networks [32].

Once adversarial training is stabilized, it might be interesting to replace all classifiers in

the reward function with discriminators adversarially trained on different datasets. Various

desired properties might be instilled into generated molecules with multiple discriminators.

This might better transmit the chemical diversity present in the various training sets.
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5.2 Imbalance in multi-objective RL

The main issue is the imbalance between the various objectives in the reward function, a

problem occurring also in RL. Multi-objective reinforcement learning is a broad topic (for

a survey, see [33]).

A problem here is that with a weighted sum, the agent always focuses on the easiest

objective, and ignores harder ones. Moreover, the relative difficulty between objectives

evolves over time. For example, the average probability of D2 activity initially grows ex-

ponentially, and so this growth is small when this probability is near 0.

Using time-varying adaptive weights might help. Moreover, those weights might not nec-

essarily be linear: For example, the reward function can be of the form (xλ + yλ)1/λ,

which converges towards min(x, y) as λ → −∞. Using an objective function of the form

min(x, y) focuses the generator on the hard objective (but in our experiments, due to the

perfect discriminator problem, it did not work).

Morever, in the reward function, a penalty can be introduced for newly generated

molecules that are too similar with the generated molecules already having the desired

properties.

In any case, the (varying) relative weights between different objectives must be deter-

mined automatically, and not through guesswork. In a drug discovery setting, a molecule

must simultaneously satisfy a large number of objectives. For example, for an antipsychotic

drug, it is not enough to be active against D2. The molecule must also pass toxicity and

druglikeness tests. Moreover, to avoid side-effects, the molecule must not be active with

D3, D4, serotonin, or histamine. That’s a lot of objectives to include in the reward function.
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2. Gómez-Bombarelli, R., Duvenaud, D., Hernández-Lobato, J.M., Aguilera-Iparraguirre, J., Hirzel, T.D., Adams,

R.P., Aspuru-Guzik, A.: Automatic chemical design using a data-driven continuous representation of molecules.

arXiv preprint arXiv:1610.02415 (2016)

3. Kadurin, A., Aliper, A., Kazennov, A., Mamoshina, P., Vanhaelen, Q., Khrabrov, K., Zhavoronkov, A.: The

cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in

oncology. Oncotarget 8(7), 10883 (2017)

4. Kadurin, A., Nikolenko, S., Khrabrov, K., Aliper, A., Zhavoronkov, A.: drugan: an advanced generative adversarial

autoencoder model for de-novo generation of new molecules with desired molecular properties in silico.

Molecular Pharmaceutics (2017)

5. Jaques, N., Gu, S., Bahdanau, D., Hernández-Lobato, J.M., Turner, R.E., Eck, D.: Sequence tutor: Conservative

fine-tuning of sequence generation models with kl-control. In: International Conference on Machine Learning,

pp. 1645–1654 (2017)

6. Segler, M.H., Kogej, T., Tyrchan, C., Waller, M.P.: Generating focussed molecule libraries for drug discovery with

recurrent neural networks. arXiv preprint arXiv:1701.01329 (2017)

7. Olivecrona, M., Blaschke, T., Engkvist, O., Chen, H.: Molecular de novo design through deep reinforcement

learning. Journal of Cheminformatics 9(1), 48 (2017)

8. Guimaraes, G.L., Sanchez-Lengeling, B., Farias, P.L.C., Aspuru-Guzik, A.: Objective-reinforced generative

adversarial networks (organ) for sequence generation models. arXiv preprint arXiv:1705.10843 (2017)

9. Benjamin, S.-L., Carlos, O., L., G.G., Alan, A.-G.: Optimizing distributions over molecular space. an

objective-reinforced generative adversarial network for inverse-design chemistry (organic). ChemRxiv Preprint

https://doi.org/10.26434/chemrxiv.5309668.v3 (2017)

10. Bickerton, G.R., Paolini, G.V., Besnard, J., Muresan, S., Hopkins, A.L.: Quantifying the chemical beauty of

drugs. Nature chemistry 4(2), 90–98 (2012)

11. Ertl, P., Schuffenhauer, A.: Estimation of synthetic accessibility score of drug-like molecules based on molecular

complexity and fragment contributions. Journal of cheminformatics 1(1), 8 (2009)

12. Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5),

742–754 (2010)

13. Landrum, G.: Rdkit: Open-source cheminformatics. http://www.rdkit.org (2017)

14. Gupta, A., Müller, A.T., Huisman, B.J., Fuchs, J.A., Schneider, P., Schneider, G.: Generative recurrent networks

for de novo drug design. Molecular informatics (2017)

15. Merk, D., Friedrich, L., Grisoni, F., Schneider, G.: De novo design of bioactive small molecules by artificial

intelligence. Molecular informatics (2018)

16. Wattenberg, M., Viégas, F., Johnson, I.: How to use t-sne effectively. Distill (2016). doi:10.23915/distill.00002

17. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training

gans. In: Advances in Neural Information Processing Systems, pp. 2234–2242 (2016)

18. Anonymous: An empirical study on evaluation metrics of generative adversarial networks. International

Conference on Learning Representations (2018)

19. Giordanetto, F., Boström, J., Tyrchan, C.: Follow-on drugs: How far should chemists look? Drug discovery today

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 30, 2018. ; https://doi.org/10.1101/292177doi: bioRxiv preprint 

https://doi.org/10.1101/292177
http://creativecommons.org/licenses/by/4.0/


Benhenda Page 19 of 20

16(15), 722–732 (2011)

20. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases

and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

21. Wu, Z., Ramsundar, B., Feinberg, E.N., Gomes, J., Geniesse, C., Pappu, A.S., Leswing, K., Pande, V.:

Moleculenet: A benchmark for molecular machine learning. arXiv preprint arXiv:1703.00564 (2017)

22. Yu, L., Zhang, W., Wang, J., Yu, Y.: Seqgan: sequence generative adversarial nets with policy gradient. In:

AAAI-17: Thirty-First AAAI Conference on Artificial Intelligence, vol. 31 (2017). Association for the Advancement

of Artificial Intelligence

23. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997)

24. Kim, Y., Jernite, Y., Sontag, D., Rush, A.M.: Character-aware neural language models. In: AAAI, pp. 2741–2749

(2016)

25. Schmidhuber, J.: Learning factorial codes by predictability minimization. Neural computation 4(6), 863–879

(1992)

26. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.:

Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

27. Sterling, T., Irwin, J.J.: Zinc 15–ligand discovery for everyone. J. Chem. Inf. Model 55(11), 2324–2337 (2015)

28. Sun, J., Jeliazkova, N., Chupakin, V., Golib-Dzib, J.-F., Engkvist, O., Carlsson, L., Wegner, J., Ceulemans, H.,

Georgiev, I., Jeliazkov, V., et al.: Excape-db: an integrated large scale dataset facilitating big data analysis in

chemogenomics. Journal of Cheminformatics 9(1), 17 (2017)

29. Dai, H., Tian, Y., Dai, B., Skiena, S., Song, L.: Syntax-directed variational autoencoder for molecule generation.

NIPS Workshop (2017)

30. Arjovsky, M., Bottou, L.: Towards principled methods for training generative adversarial networks. arXiv preprint

arXiv:1701.04862 (2017)

31. Bellemare, M.G., Danihelka, I., Dabney, W., Mohamed, S., Lakshminarayanan, B., Hoyer, S., Munos, R.: The

cramer distance as a solution to biased wasserstein gradients. arXiv preprint arXiv:1705.10743 (2017)

32. Altae-Tran, H., Ramsundar, B., Pappu, A.S., Pande, V.: Low data drug discovery with one-shot learning. ACS

central science 3(4), 283–293 (2017)

33. Roijers, D.M., Vamplew, P., Whiteson, S., Dazeley, R.: A survey of multi-objective sequential decision-making.

Journal of Artificial Intelligence Research 48, 67–113 (2013)

Figures

Figure 1: Trivial generative model. Generated samples all coincide on the blue dot, and
training data are the red crosses. External diversity= 1, and internal diversity =0

Figure 2: Non-trivial generative model. Generated samples (blue dots) are spread
around. Training data are the red crosses.

Figure 3: ZINC 15 structures.
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Figure 4: Generated structures for DRD2.

Figure 5: Generated structures for druglikeness.

Additional Material

Additional file 1 — trivialmodel.jpeg

Figure 1

Additional file 2 — nontrivialmodel.jpeg

Figure 2

Additional file 3 — zinc15.jpg

Figure 3

Additional file 4 — drd2 generated.jpg

Figure 4

Additional file 5 — druglikeness.jpg

Figure 5

Code and data — https://github.com/mostafachatillon/ChemGAN-challenge
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