
RESOURCE

Despite a century of efforts using morphologi-
cal, electrophysiological, histochemical and molecular 
approaches, we still lack systematic, comprehensive and 
detailed information about cell types in the nervous 
system. We do not know the number and variety of 
neurons, glia or vascular cells; we do not know their 
molecular relationships or local heterogeneity, and we 
have little systematic knowledge of the overall organiza-
tion of the nervous system in molecular terms. Neurons 
are clearly highly diverse, but how much diversity is 
there among astrocytes, oligodendrocytes or vascular 
cells? Does the glial diversity reflect local environment 
(e.g. local neuronal types), developmental compart-
ment, or some aspect of glia function? 

The organization of the adult mammalian nervous 
system is the result of developmental, functional, evo-
lutionary and biomechanial constraints. Our current 
understanding of its architecture originated with the 
pioneering studies of Santiago Ramón y Cajal, who 
mapped microscopic neuroanatomy in exquisite detail. 
The adult brain is organized into dorsoventral and ros-
trocaudal compartments, which result from patterning 
of the early neural tube (Rubenstein and Rakic, 2013). 
However, many neurons (e.g. telencephalic interneu-
rons) and glia (e.g. oligodendrocyte precursor cells), 
vascular and immune cells migrate long distances 
during embryogenesis and thus end up in a location 
different from their place of birth. Furthermore, 

convergent functional specialization occurs in many 
parts of the nervous system: for example, dopaminer-
gic neurons are found both in the midbrain and in the 
olfactory bulb, and noradrenergic neurons in the sym-
pathetic ganglia as well as the hindbrain. 

The question therefore arises if the molecular identity 
of a cell is determined mainly by its developmental 
ancestry, by its local environment, or by its function. All 
three possibilities are plausible a priori: neurons with 
shared function (for example, long-range projecting 
neurons, or neurons using a common principal neu-
rotransmitter) might be expected show common gene 
expression states across brain regions. Alternatively, 
chemical cues arising from a local environment might 
impose constraints forcing neighboring cells of different 
functions to become molecularly similar. Finally, de-
velopmental origin, through shared gene regulatory 
circuits, might retain an imprint on cell types in the 
adult, so that gene expression patterns would reflect de-
velopmental domains and borders.

Recently, single-cell RNA sequencing (scRNA-
seq) has emerged as a powerful method for unbiased 
discovery of cell types and states (Islam et al., 2011, 
2013; Jaitin et al., 2014; Macosko et al., 2015; Shekhar 
et al., 2016; Tang et al., 2009; Tasic et al., 2016; Usoskin 
et al., 2014; Zeisel et al., 2015), and initiatives are 
underway to create atlases of both human and model 
organisms (Han et al., 2018; Regev et al., 2017). Here, 
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The mammalian nervous system executes complex behaviors controlled by specialised, 
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million single cells to create a detailed census of cell types in the mouse nervous system. 
We mapped cell types spatially and derived a hierarchical, data-driven taxonomy. Neurons 
were the most diverse, and were grouped by developmental anatomical units, and by the 
expression of neurotransmitters and neuropeptides. Neuronal diversity was driven by 
genes encoding cell identity, synaptic connectivity, neurotransmission and membrane 
conductance. We discovered several distinct, regionally restricted, astrocytes types, which 
obeyed developmental boundaries and correlated with the spatial distribution of key 
glutamate and glycine neurotransmitters. In contrast, oligodendrocytes showed a loss of 
regional identity, followed by a secondary diversification. The resource presented here 
lays a solid foundation for understanding the molecular architecture of the mammalian 
nervous system, and enables genetic manipulation of specific cell types. 
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we used systematic scRNA-seq  to survey cells across 
the central and peripheral nervous system. We use the 
inferred molecular relationships between all cell types 
to propose a data-driven taxonomy of cell types, and 
we discuss the overall architecture of the mammalian 
nervous system in light of this taxonomy.

A molecular survey of the mouse nervous system 
We performed a comprehensive survey of the adolescent 
mouse nervous system by single-cell RNA sequencing. 
We dissected the brain and spinal cord into contiguous 
anatomical regions, and further included the peripheral 
sensory, enteric and sympathetic nervous system. In 
total, we analyzed 19 regions (Figure 1A), but omitting 
at least the retina, the olfactory epithelium, the vome-
ronasal organ, the inner ear, and the parasympathetic 
ganglia.

For each region, we typically sampled from all cells 
without selection. However, in the enteric nervous 
system, we used Wnt1-Cre;R26Tomato transgenic mice 
to isolate myenteric plexus cells of the small intestine by 
FACS (we did not include the submucosal plexus or any 
other regions of the gastrointestinal tract). In the sym-
pathetic nervous system, we used the same mice to guide 
dissection of the superior cervical and stellate ganglia, as 
well as thoracic ganglia 1-13 (we did not include lumbar 
ganglia). In the hippocampus and cortex we similarly 
isolated inhibitory neurons from the vGat-Cre;TdToma-

to strain by FACS. We used at least two mice for each 
tissue, typically one male and one female, and analyzed 
a total of 133 samples (Table S1) by droplet microfluid-
ics (10X Genomics Chromium) to reveal the transcrip-
tomes of 509,876 cells. 

Preliminary analyses showed that the dataset 
contained hundreds of distinct cell types, and that the 
dynamic range of cell type abundances spanned four 
orders of magnitude. In addition, the dataset was affected 
by a number of technical artefacts, including low-qual-
ity cells, batch effects, sex-specific gene expression, 
neuronal activity-dependent gene expression, and more. 
To overcome these challenges, we developed a multistage 
analysis pipeline called cytograph, which progressive-
ly discovers cell types or states, while mitigating the 
impact of technical artefacts. For scalability, cytograph 
uses algorithms that scale approximately linearly with 
the number of cells, and automatically parallelizes tasks 
when possible (Methods).

After an initial quality assessment of samples and 
cells, we retained 492,949 cells as inputs to the com-
putational analysis. During three stages of manifold 
learning and clustering we removed additional doublets, 
outliers and low-quality cells (Fig. S1A). As oligoden-
drocytes are extremelyabundant in the hindbrain and 
spinal cord, we removed more than 200,000 oligoden-
drocytes from these regions, in order to better balance 
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Figure 1 | Molecular survey of the mouse nervous system using 
single-cell RNA sequencing. (A) Schematic illustation of the 
sampling strategy. The brain was divided into coarse anatomical 
units and in addition we sampled from the spinal cord, dorsal root 
ganglia, sympathetic ganglion and the enteric nervous system. (B) 
Visualization of the single cell data using gt-SNE embedding (see 
Methods). Cells are colored by rank 3 taxonomy units, indicated 

in the legend. (C) Dendrogram describing the taxonomy of 
all identified cell types. Main branches, corresponding to the 
taxonomy, are annotated with labels and colored background. 
The neurotransmitter used by each cell types is indicated below 
the leafs as colored circles. Lower panel indicate the developmen-
tal compartment of origin for each cell types.
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the number of oligodendrocytes between tissues 
(but analyzing the full set of cells did not reveal any 
additional structure in the oligodendrocyte lineage). 
We then manually curated the automatically generated 
clusters, removing additional low-quality clusters and 
merging highly similar clusters. The final, high-quali-
ty curated compendium comprised 265 clusters repre-
sented by 160,796 high-quality single-cell transcrip-
tomes (Fig. 1B-C). This represents a highly conservative 
clustering, and significant heterogeneity likely remains 
within many of the reported clusters.

To assess the robustness of the clusters, we trained 
a random forest classifier to recognize cluster labels 
and then assessed its performance on held-out data 
(80% training set, 20% test set). The average precision 
and recall were both 82%, indicating a high level of 
robustness, particularly considering the large total 
number of clusters. Most classification errors occurred 
between closely related cell types. To reveal this type 
of relatedness of clusters, we computed the probability, 
for each cluster, that its cells would be classified as any 
other type (Fig. S1D). Mostly, only the correct cluster 
showed high probability, but in other cases the proba-
bility distribution revealed relatedness between sets of 
biologically related clusters (e.g. hindbrain serotonergic 
neurons). 

In order to validate our ability to recover known 
cell types, we next assessed the concordance with 
six different previously published and experimen-
tally validated scRNA-seq datasets, comprising two 
different technologies (Fludigm C1 and 10X Genomics 
Chromium) and five tissues: cortex (Zeisel et al., 2015), 
striatum (Muñoz-Manchado, in preparation), dentate 
gyrus (Hochgerner et al., 2018), spinal cord (Häring 
et al. 2018, in press) and sympathetic nervous system 
(Furlan et al., 2016). Of the 139 previously published 
clusters, 98% were perfect or near-perfect matches to 
corresponding clusters in the new compendium (84% 
perfect, 14% near-perfect, 2% mismatches; see Table S2). 

We performed a comprehensive annotation of the 
clusters using a variety of automated and manual 
methods. We assigned each cluster a unique mnemonic 
identifier (e.g. MBDOP1), a descriptive name (“Midbrain 
dopaminergic neuron”), a major class (e.g. “neuron”), 
neurotransmitter identity, putative developmental 
origin, anatomical location and region (Table S3). 

To characterize gene expression across clusters, we 
computed enriched genes for each cluster, indicating 
increased but not unique expression. We also computed 
a probabilistic “trinarization” score, which can be used 
to determine if a gene is expressed, not expressed, or 
ambiguous, in each cluster (Methods). We combined 
enrichment and trinarization scores to discover marker 
gene sets sufficient to uniquely identify each cluster, 
with high probability. Remarkably, we found that 248 
(93%) of all clusters were uniquely identifiable with just 
two genes, while 17 required three genes, and none 

required more than three (although, adding more genes 
could increase the robustness of identification). This 
finding attests to the precise molecular organization of 
the mammalian nervous system, and shows that nearly 
all cell types can be genetically accessed and manipulat-
ed using readily available intersectional gene targeting 
approaches (Allen and Luo, 2015).

We trained a support-vector machine classifier to au-
tomatically assign each cell to one of seven major classes: 
neurons, oligodendrocytes (all ~236,000), astrocytes, 
ependymal cells, peripheral glia (e.g. Schwann cells, 
satellite and enteric glia), immune cells and vascular 
cells (Fig. S1B). Neurons were most prevalent in rostral 
regions of the central nervous system (CNS), as well as 
in the cerebellum. In telencephalon, 61% of cells were 
neurons, compared with 43% in diencephalon, 19% in 
midbrain and 6% in hindbrain and spinal cord (not 
including cerebellum) and 78% in the cerebellum. In 
caudal regions, oligodendrocytes—needed to support 
long-range neurotransmission—dominated greatly, 
comprising 84% of cells in the hindbrain (excepting 
cerebellum) and  71% in the spinal cord. Astrocytes 
ranged from 13% of cells in the telencephalon to 6% 
in the hindbrain. In the peripheral nervous system 
(PNS), neurons were again the most common class in 
sensory and sympathetic ganglia (62% and 87%, respec-
tively), whereas the enteric nervous system comprised 
91% enteric glia and only 7% neurons. Due to sources 
of bias such as differential survival or cell capture, these 

Box 1 | Resources
The raw sequence data is deposited in the sequence 
read archive under accession SRP135960. 

The companion wiki at http://mousebrain.org, provides 
a report card for each cell type. The wiki can be browsed 
by taxon, cell type, tissue, and gene, with informa-
tion on enriched genes, specific markers, anatomical 
location and more. The download section of the wiki 
makes available the following resources:

• Aligned reads in the form of BAM files.

• Quality-control results of each sample 
(10X Genomics cellranger QC output).

• Expression data organized by individual 
Chromium sample, region, taxonomic group, and 
the entire final curated dataset. These files contain 
full metadata, graph layout, cluster assignments 
and cell type/state annotations, where appropriate.

Expression data is provided in Loom format (see 
http://loompy.org) and comes with an interactive, 
web-based viewer for explorative analysis. The wiki 
provides links to relevant Loom files, preloaded in the 
Loom viewer. 

The analysis software developed for this paper is 
available at https://github.com/linnarsson-lab, in repos-
itories named cytograph and adolescent-mouse. 
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estimates can be only approximate, but they are in good 
agreement with previous findings using scRNA-seq 
(Zeisel et al., 2015).

For a detailed description of all experimental and 
computational procedures, see Methods. An interactive 
browser, and links to all the data, code and annotations, 
is provided as a companion web site (see Box 1).

To begin to understand the molecular organiza-
tion of the mammalian nervous system, we calculated 
a robust dendrogram of cell types (Fig. 1C, Methods), 
showing relationships between cell types based on gene 
expression distance. The resulting arrangement of cell 
types revealed a surprisingly simple organization of 
the mammalian nervous system, which was largely 
organized according to three overlapping and interact-
ing principles: major class (e.g neurons, astrocytes), de-
velopmental origin (e.g. telencephalon, diencephalon, 
midbrain, hindbrain) and neurotransmitter type (e.g. 
GABA, glutamate). 

At the top level, neurons were separated from 
non-neuronal types regardless of tissue, reflecting a split 
between major classes of cells that express thousands 
of genes differentially. Notably, this first split does not 
correspond to any shared developmental or anatomical 
origins, as it groups neurons from both the central and 
peripheral nervous systems on one side, and the corre-
sponding central (e.g. astrocytes) and peripheral (e.g. 
Schwann cells) glia on the other, along with develop-
mentally unrelated vascular and immune cells.

The second level divided neurons according to their 

major region of origin. PNS neurons segregated from 
the CNS, reflecting the developmental split between 
neural crest-derived (PNS) and neural tube-derived 
(CNS) neurons. The peripheral neurons then split into 
sensory, sympathetic and enteric subdivisions, corre-
sponding to both functional, anatomical and develop-
mental differences between the three major divisions of 
the peripheral nervous system.

CNS neurons generally split first by anteroposte-
rior domain (olfactory, telencephalon, diencepha-
lon, midbrain, hindbrain, spinal cord), and then by 
excitatory versus inhibitory neurotransmitter. However, 
there were interesting exceptions, which will be explored 
further below. 

Based on these and similar observations, we propose 
a data-driven molecular taxonomy arranged in a 
hierarchy of more than 70 named taxa (Table 1 and Figs. 
S2 and S3), respecting the dendrogram of Figure 1. The 
taxonomy provides an objective structuring principle 
for exploring the global architecture of the mammalian 
nervous system. Note that, where the taxonomy 
conflicted with properties of a cell type, we neverthe-
less assigned it to a taxon according to the dendrogram. 
For example, a spinal cord cell type that ended up in the 
hindbrain part of the dendrogram was assigned to the 
Hindbrain taxon (but was still individually named and 
annotated according to its true location, e.g. SCINH1, 
spinal cord inhibitory neurons).

Postnatal neurogenesis in the CNS
Although most neuronal types were already mature at 
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Figure 2 | A map of neurogenesis 
in the juvenile mouse brain. (A) A 
cut-out from dendrogram of relevant 
cell types including neuroblast, 
radial glia-like, astrocytes, OPC 
and ependymal cells. (B) Sketch il-
lustrating the locations where 
we found neurogenic activity. (C) 
gt-SNE embedding of all cells from 
the relevant cell types shown in A. 
Dashed line suggests the border 
between glia-like cells and neuro-
blasts. (D) Expression distribution of 
individual key genes projected onto 
the gt-SNE embedding.
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the age investigated (postnatal day 20-30), we observed 
signs of ongoing neurogenesis in several regions (Fig. 
2). As expected, we detected the two regions that 
maintain adult neurogenesis in the mouse: the sub-
ventricular zone along the striatum and the dentate 
gyrus subgranular zone. In the subventricular zone, 
radial glia-like cells (RGSZ) and cycling neuronal inter-
mediate progenitor cells (SZNBL) were linked to more 
mature and presumably migrating neuroblasts along 
the rostral migratory stream and in the olfactory bulb 
(OBNBL3). In the subgranular zone of the dentate gyrus, 
radial glia-like cells (RGDG), neuroblasts (NBDG) and 
immature granule cells (DGNBL1 and DGNBL2) would 
give rise to mature granule cells (DGGC), as recently 
described in detail (Hochgerner et al., 2018). The radial 
glia-like cells (RGSZ and RGDG), which are the stem 
cells of both lineages, were closely related and were 
more similar to astrocytes than to any neuroblast. They 
expressed Riiad1 (shared with ependymal cells; Fig 2D), 
a gene of uncertain function otherwise found in lung, 
testis and the adrenal gland. We speculate that this gene 
is functionally required by ciliated cells such as radial 
glia, ependymal cells, sperm, lung ciliated epithelium 
and adrenal chromaffin cells which are common to 
these tissues. However, within the radial glia we found 
that RGDG and RGSZ further presented specific markers 
representing the local neurogenic niche (Fig. S4; for 
example the transcription factor Tfap2c in RGDG and 
Urah in RGSZ).  

Neuroblasts across the brain fell into two general 
categories, represented by two subtrees in the 
dendrogram (labelled NBL in Fig1D). The first category 
expressed Igfbpl1 and was either GABAergic (OBNBL3) or 
did not express any clear neurotransmitter phenotype. 
These neuroblasts were found in the rostral migratory 
stream (SZNBL and OBNBL3), dentate gyrus (DGNBL2) 
and in the habenula (DETPH). The second category 
expressed the T-box transcription factor Eomes (also 
known as Tbr2) and the vesicular glutamate transporter 
(Slc17a7, also known as VGLUT1), hence was glutamater-
gic. These neuroblasts were found in the olfactory bulb 
(OBNBL1, OBNBL2), cerebellum (CBNBL) and septum 
(SEPNBL). However, Eomes and Igfbpl1 overlapped in 
some populations (DGNBL1 and to some extent SZNBL), 
indicating that these categories of neuroblasts may 
represent sequential stages of neuronal maturation, 
rather than divergent cell types. Eomes-expressing neu-
roblasts, with a generally less mature neurotransmitter 
phenotype, may then represent early stages of neuronal 
differentiation, whereas Igfbpl1 spans both early and 
later stages, as was already shown in the dentate gyrus 
(Hochgerner et al., 2018). Our data suggest that the 
presence of neurogenesis in the juvenile brain is more 
widespread than previously appreciated. Although late 
neurogenesis in the cerebellum, olfactory bulb, the 
rostral migratory stream, the dentate gyrus and the hip-
pocampus have been well studied, importantly we now 

provide distinct molecular markers of all these popu-
lations or stages from RGL to neuroblasts (Figure S4). 
Furthermore, we identify immature neuronal cell types 
in the septum and habenula, which have previously 
been only poorly described.

Astroependymal cells are diverse and spatially 
patterned
Astrocytes, ependymal cells and radial glia are develop-
mentally related cell types, and formed a subtree in the 
dendrogram (Fig. 3). This taxon included two special-
ized secretory cell types: the hypendymal cells, HYPEN, 
which are specialized ependymal-like cells of the sub-
commissural organ that secrete SCO-spondin (encoded 
by Sspo) into the cerebrospinal fluid to form Reissner’s 
fiber; and the choroid plexus epithelial cells, CHOR, 
which are an extension of the ependymal lining of the 
ventricular surfaces that envelop branching capillaries 
protruding into the ventricles, and secrete the extremely 
abundant thyroxine and retinol transport protein Tran-
sthyretin (encoded by Ttr). 

Three types of ependymal all expressed Foxj1, the 
master regulator of motile cilia (Yu et al., 2008). The 
first, EPEN, was common along the rostrocaudal 
axis. The second, EPMB, was observed in the dorsal 
midbrain and—to a lesser extent—the hypothalamus. 
They expressed high levels of Gfap and the Efnb3 gene 
encoding Ephrin B3, but only low levels of Foxj1. They 
also expressed many markers of tanycytes of the third 
ventricle, including Nes, Vim, Rax and Gpr50 (Miran-
da-Angulo et al., 2014), but their location in the dorsal 
midbrain suggests that they instead represented a 
tanycyte of the circumventricular organs (Kettenmann 
and Ransom, 2013). The third, EPSC, was specific to the 
spinal cord and was distinguished by the expression of 
immediate-early genes such as Fos, Junb and Egr1. 

Astrocytes were described in 1856 by Rudolf 
Virchow as nervenkitt—neuroglia—and in the second 
half of the 19th century a number of distinct astrocyte 
types were identified (Somjen, 1988). Specialized retinal 
and cerebellar radial glia were described by Heinrich 
Müller (1851) and Karl Bergmann (1857). Common 
stellate astrocytes were described by Otto Deiters in 
1865, studied in detail by Camillo Golgi in the 1870s, 
and classified into protoplasmic (grey matter) and 
fibrous (white matter) by 1893. With the exception of 
the discovery of radial astrocytes in neurogenic regions 
of the brain (see above), reactive astrocytes in response 
to injury, and types defined solely by morphology such 
as velate astrocytes of the cerebellum and olfactory 
bulb, the modern understanding of astrocyte diversity 
essentially stands as it stood in 1900: the main types 
of mature astrocytes are believed to be the Müller glia, 
the Bergmann glia, and the protoplasmic and fibrous 
astrocytes (Ben Haim and Rowitch, 2016). 

Here, we observed seven molecularly distinct types of 
astrocytes with clear regionally specialized distribution. 
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Figure 3. Molecular and spatial diversity of the astroependymal cells in the CNS. (A) Subtree describing the hierarchy of astroependy-
mal cell types. (B) Schematic sagittal section showing the location of astroependymal cells. (C-E) gt-SNE embedding of all cells from the 
relevant clusters colored by cluster identity (C), tissue of origin (D) and patterning transcription factors (E). (F) Validation of spatial distri-
bution of astrocytes cell types using multiplex in-situ hybridization (RNAscope). Images from three consecutive sections were aligned and 
overlaid (see Methods) to generate a composite with dots representing cells (upper panel). Below, high-magnification images showing 
details of spatial location. (G) Gene expression of selected markers shown on the gt-SNE layout.
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All astrocytes expressed Aqp4, encoding aquaporin 4, 
the water channel located on astrocyte vascular end 
feet. In addition to Bergmann glia of the cerebellum 
(ACBG), we found olfactory-specific astrocytes (ACOB, 
unrelated to olfactory ensheathing cells; see below), two 
subtypes of telencephalon-specific astrocytes (ACTE1 
and ACTE2), two subtypes of non-telencephalon 
astrocytes (ACNT1 and ACNT2), and a Myoc-express-
ing astrocyte of the dorsal midbrain, ACMB. Müller glia 
were not observed because we did not sample from the 
retina. 

Olfactory astrocytes were located around the 
olfactory glomeruli, and could represent the previously 
described velate astrocytes, for which no molecular 
properties are known; they highly specifically expressed 
the Islr and Islr2 genes encoding immunoglobulin-do-
main cell adhesion proteins, (Figure 3, Figure S5) 
among other genes. 

Telencephalon astrocytes ACTE1 and ACTE2 were 
distinguished by the expression of several genes 
including Mfge8, Lhx2 and were found in the olfactory 
bulb, cerebral cortex, striatum, amygdala and hip-
pocampus, but absent from hypothalamus, thalamus, 
midbrain and hindbrain. Non-telencephalic astrocytes 
ACNT1 and ACNT2 showed the opposite distribu-
tion, marked by Agt (angiotensinogen) and found in 
all regions caudal to the telencephalon/diencephalon 
border (i.e. posterior to and including the hypothal-
amus and thalmus). The border between the two was 
sharp, as judged by in situ hybridization of the relevant 
genes (Fig. S5C), indicating that they do not intermingle 
across substantial distances.

We validated the identity and distribution of 
astrocyte cell types using RNA FISH (RNAscope) which 
was fully consistent with in situ hybridization (Figs. 
3F and S5). Co-staining of Mfge8 and Agt on a sagittal 
section revealed a clear border separating the telen-
cephalon from the diencephalon. Olfactory bulb and 
cerebellum were enriched with their local astrocytes 
ACOB and ACBG marked by Islr and Gdf10 respectively. 
Moreover, we validated the distribution of neurotrans-
mitter transporters with Slc6a11 (also known as GAT3, 
the GABA reuptake transporter) highly expressed in the 
olfactory and the non-telencephalon astrocytes (but not 
in cerebellum) and Slc6a9 (glycine transporter GLYT1) 
with similar pattern but lower olfactory expression and 
a higher expression in the cerebellum.

Both telencephalon and non-telencephalon astrocytes 
were further split into subtypes expressing Gfap at high 
or low levels (Fig. 3G). This distinction likely corre-
sponds to the fibrous astrocytes of the white matter and 
the glia limitans underneath the pia (Gfap-high) versus 
the protoplasmic astrocytes of the parenchyma (Gfap-
low). The difference between subtypes in both cases 
involved a similar set of genes, suggesting that this 
represents an independent axis of variation that can be 
activated in both telencephalon and non-telencephalon 

astrocytes as a function of local environmental cues, 
particularly the distance from the pia and white matter.

Interestingly, like neurons, these diverse astrocyte 
and ependymal cell types occupied distinct domains 
of the brain with little apparent mixing. The sharpness 
of the border between Mfge8 (telencephalon astrocytes) 
and Agt (non-telencephalon) expression, for example, 
and the fact that it coincided with a developmentally 
recognized boundary distinguishing the telencephalon 
from the rest of the brain, strongly implies that these 
astrocyte types are developmentally specified. In order 
to test this hypothesis, we examined the expression of 
region-specific neural tube patterning genes, the tran-
scription factors Foxg1 (telencephalon), En1 and Pax3 
(midbrain) and Hoxc6 (spinal cord). Each of these genes 
marked the expected subset of astrocyte and ependymal 
cell types (Fig. 3G). For example, Foxg1 labelled ACOB, 
ACTE1 and ACTE2 as well as radial glia of the striatum 
and dentate gyrus (RGSZ and RGDG), but not the 
non-telencephalon astrocytes or any of the specialized 
ependymal and choroid cells (e.g. ACMB, EPMB, CHOR, 
HYPEN, and EPSC). Conversely, Hoxc6 labelled a subset 
of the non-telencephalic astrocytes as well as spinal cord 
ependymal cells. The common, brain-wide ependymal 
cells (EPEN) were labelled by both Foxg1, En1 and Pax3, 
but not by Hoxc6, in agreement with their brain-wide 
distribution. Thus we have uncovered a previously 
unrecognized diversity of astrocyte and ependymal 
cell types, showing the hallmarks of developmentally 
specified identities and regional specialization.

We can only speculate as to the functional dis-
tinction between telencephalic and non-telencephal-
ic astrocytes. Given the important role of astrocytes in 
maintaining neurotransmission, it’s striking that the 
distinction between telencephalic and non-telencephal-
ic astrocytes coincided with the prevalence of VGLUT1 
in the telencephalon versus VGLUT2 in the di-/mesen-
cephalon and hindbrain (Fig. S1C and S5F; however, the 
thalamus used both VGLUTs). This indicates a possible 
role in maintaining distinct modes of glutamatergic 
neurotransmission. 

Furthermore, one of the genes most highly enriched 
in non-telencephalic astrocytes was Slc6a9 (Fig. 3G), 
encoding the glycine reuptake transporter GLYT1. 
Glycine is a widely used inhibitory neurotransmitter 
only in the caudal parts of the brain and in the spinal 
cord. This suggests a specific role for non-telencephal-
ic astrocytes in clearing glycine from the synaptic cleft. 
We note that since GLYT1 is a reversible glycine trans-
porter (Supplisson and Roux, 2002), if it were expressed 
in telencephalic astrocytes then those cells would po-
tentially secrete glycine into the synaptic cleft instead 
of absorbing it. Glycine is not only an inhibitory neu-
rotransmitter, but also an co-ligand for the NMDA 
glutamate receptor, involved in coincidence detection. 
This may explain the need for distinct types of astrocytes 
in glycine-rich and glycine-poor regions of the brain.
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Loss of patterning in the oligodendrocyte lineage, 
and convergence to a single brain-wide intermedi-
ate state
Oligodendrocytes wrap myelin sheets around axons to 
support long-range neurotransmission. We previously 
described using scRNA-seq (Marques et al., 2016) how 
the mature cell types are generated from oligodendro-
cyte progenitor cells (OPCs) that differentiate through 
a series of intermediate stages including committed ol-
igodendrocyte progenitors (COPs), newly-formed and 
myelin-forming oligodendrocytes (NFOLs and MFOLs) 
to acquire one of several myelinating oligodendrocyte 
fates (MOLs). OPCs remain present in the adult brain, to 
regenerate myelin as needed. In our previous study, we 
examined approximately five thousand cells of the oli-
godendrocyte lineage. 

Here, we observed more than two hundred thousand 
oligodendrocyte lineage cells, yet the overall picture was 
very similar. The greatly increased sampling depth did 
not reveal any additional, clearly distinct subtypes of 
mature oligodendrocytes beyond those we had already 
described. Furthermore, OPCs remained a single cluster, 
with only a distinction between cycling and non-cy-
cling OPCs (Fig. 4A-B). In tSNE plots (Fig 4A), a gap still 
remained between OPCs and COPs, suggesting a rapid 
transition between those two states (although, tSNE 
can tend to exaggerate discontinuities). To confirm 
the relatedness of these two cell types, we examined 
pairs of mutual nearest neighbors that spanned cluster 
boundaries; as expected, all links from OPCs extended 
to COPs, and none to NFOLs (Fig 4A). Cells from OPC, 
COP and NFOL were intermingled in all tissues, demon-
strating a lack of region-specific types of these cells. The 
exception was COP and NFOL from medulla and pons, 
which segregated somewhat from other tissues (Fig 4B). 
However, for technical reasons, those tissues had been 
analyzed using a different version of the Chromium 
reagent kit, and thus likely represent a batch effect 

rather than a genuine biological difference. 
Thus, regardless of the tissue sampled, OPC, COP 

and NFOL presented as single, brain-wide common cell 
types. Since OPCs are the progenitors of the entire ol-
igodendrocyte lineage, this observation demonstrates 
that the diversity observed among mature oligodendro-
cytes (Table S3) must be the result of a secondary di-
versification, not developmental patterning. Oligoden-
drocyte morphology varies according to the type of 
axon they myelinate, but transplantation experiments 
indicate that those differences are plastic (Richardson 
et al., 2006). This may also explain the graded, inter-
spersed pattern of diversity among mature oligoden-
drocytes, in contrast to the division into cell types 
with clear boundaries (molecularly and anatomical-
ly) that we observed among astrocytes and neurons. 
Of mature oligodendrocytes, the spinal cord-enriched 
MOL3, expressing the serine protease Klk6 was the most 
distinct. Klk6 was recently implicated in the pathogen-
esis of experimental autoimmune encephalomyelitis, a 
model of multiple sclerosis in mice (Bando et al., 2018).

OPCs are generated along the length of the neural 
tube from precursors that are patterned along the an-
tero-posterior axis. This has been demonstrated clearly 
e.g. by genetic lineage tracing of Emx1-positive neural 
progenitors, which selectively labels forebrain oligo-
dendrocytes (Kessaris et al., 2006). Thus, at some point, 
cells that later become OPCs must have been molecular-
ly distinct along the antero-posterior axis, for example 
expressing Emx1 in the forebrain, En1 in the midbrain, 
and Hox genes in the hindbrain and spinal cord. Yet, 
this did not translate into distinct OPC types along 
the same axis. Clearly, at some point antero-posterior 
patterning must be lost in the oligodendrocyte lineage. 
We therefore asked if, despite the lack of clearly distinct 
subtypes, OPCs, COPs or NFOLs sampled from different 
tissues retained any traces of patterning gene expression 
(Fig 4D). We confirmed induction of key transcription 

OPC
(n=820)

COP
(n=1074)

NFOL
(n=1001)

A B C

D

Top2a

Bmp4 Tmem2

Pdgfra

Amygdala
Hippocampus (CA1)
Cerebellum
Cortex 1
Cortex 2
Cortex 3
Dentate gyrus
Hippocampus
Hypothalamus
Midbrain (dorsal)
Midbrain (ventral)
Olfactory
Spinal cord
Cortex (SS)
Striatum (dorsal)
Striatum (ventral)
Thalamus

Medulla
Pons

Chromium V2
Chromium V1

Sox10Hox_6-10Hox_1-5Otx2En1Foxg1Emx1 Mog

N
eu

ro
ns

As
tr

oc
yt

es
O

PC
CO

P
N

FO
L

M
FO

L
M

O
L

N
eu

ro
ns

As
tr

oc
yt

es
O

PC
CO

P
N

FO
L

M
FO

L
M

O
L

N
eu

ro
ns

As
tr

oc
yt

es
O

PC
CO

P
N

FO
L

M
FO

L
M

O
L

N
eu

ro
ns

As
tr

oc
yt

es
O

PC
CO

P
N

FO
L

M
FO

L
M

O
L

N
eu

ro
ns

As
tr

oc
yt

es
O

PC
CO

P
N

FO
L

M
FO

L
M

O
L

N
eu

ro
ns

As
tr

oc
yt

es
O

PC
CO

P
N

FO
L

M
FO

L
M

O
L

N
eu

ro
ns

As
tr

oc
yt

es
O

PC
CO

P
N

FO
L

M
FO

L
M

O
L

N
eu

ro
ns

As
tr

oc
yt

es
O

PC
CO

P
N

FO
L

M
FO

L
M

O
L

Olfactory

Cortex

Hippocampus

Striatum

Amygdala

Hypothalamus

Thalamus

Midbrain

Hindbrain

Spinal cord

10%

50%

100%

Fraction
non-zero

Figure 4. Convergence 
to a common state at the 
early stages of oligoden-
drocytes lineage. (A-B) 
gt-SNE embedding of the 
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factor Sox10 in OPCs, and of the myelin oligodendro-
cyte glycoprotein Mog in COPs. In the spinal cord, we 
detected a clear expression of Hox genes 6-10 (that is, 
Hoxa6, Hoxb6, … , Hoxd10), which are responsible for 
patterning the thoracic spinal cord. These genes were 
expressed in spinal cord oligodendrocytes only, at levels 
similar to those observed in neurons and astrocytes, 
and they remained expressed throughout the oligo-
dendrocyte lineage. Similarly, we found that Hox genes 
1-5 (that is, Hoxa1, Hoxb1, … , Hoxc5) were expressed 
in the hindbrain and spinal cord oligodendrocytes, 
remained expressed into mature oligodendrocytes, and 
were expressed at levels similar to those in neurons and 
astrocytes. We conclude that hindbrain and spinal cord 
oligodendrocytes do retain patterning signals, although 
this did not translate into clearly distinct hindbrain or 
spinal cord OPCs, COPs or NFOLs. 

In contrast, several transcription factors responsible 
for patterning the forebrain and midbrain were detected 
only at very low levels (<1% of cells), if at all, and did not 
appear in mature oligodendrocytes. At such low levels 
of expression, it is difficult to rule out a contamination 
from adjacent neurons, and thus it is possible that they 
were not expressed at all in the oligodendrocyte lineage. 
One exception was the forebrain transcription factor 
Foxg1, which was detected in OPCs at levels comparable 
to neurons and astrocytes. However, its expression was 
reduced or absent in mature oligodendrocytes. 

We conclude that OPCs (and, to a lesser extent, COP 
and NFOL) may retain a memory of their antero-poste-
rior position, in the form of expression of region-specif-
ic transcription factors. However, this does not translate 
into clearly distinct region-specific cell types, and the 
memory fades as the cells mature. This is akin to an 
endogenous reprogramming, analogous to in vitro re-
programming by transcription factors, and shows that 
cellular states can diverge and then converge. Similar 
phenomena were recently reported in embryonic stem 
cells in vitro (Briggs et al., 2017) and in the developing 
Drosophila brain (Li et al., 2017). In the oligodendro-
cyte lineage, the COP likely represents the convergent 
cellular state after developmental patterning has been 
largely lost, but before secondary diversification in 
response to extrinsic signals has occurred.

Vascular cells, and a family of broadly distributed 
mesothelial fibroblasts
A recent paper characterized vascular cells across the 
murine brain (Vanlandewijck et al., 2018), describing 
twelve vascular cell types. Our findings agree with these 
published data, with a few key differences. Like Vanland-
ewijck et al., we observed distinct endothelial cell types 
carrying known arterial (e.g. Bmx; VECA) and venous 
(Slc38a5; VECV) markers, as well as capillary endothe-
lial cells (VECC) expressing Meox1. We found three 
types of pericytes instead of one (but note that pericytes 
are notoriously difficult to dissociate from endotheli-
al cells and these subtypes may represent potential en-

dothelial contamination) and a single arterial vascular 
smooth muscle type (Acta2, Tagln; VSMCA). Based on 
the proportion of all cells that were vascular, the mid- 
and hindbrain and spinal cord were the most vascular-
ized (Fig. 5B).

Vanlandewijck et al. described two brain fibro-
blast-like cell types expressing fibril-forming collagens 
(e.g. Col1a1, Col1a2), collagen fiber crosslinking proteins 
(Lum, Dcn) as well as the platelet-derived growth factor 
receptor alpha, Pdgfra, which were interposed between 
astrocyte endfeet and vascular endothelial cells. Brain 
fibroblast-like cells are likely identical to the vascular 
leptomeningeal cells (VLMCs) that we previously 
described in mouse CNS (Marques et al., 2016). In the 
present dataset, we observed four subtypes sharing 
the canonical markers. Two types were distinguished 
by expression of genes including the pro-inflammato-
ry cytokine Il33 (VLMC1) and the Prostaglandin D2 
synthetase Ptgds (VLMC2), the latter previously shown 
as the most enriched gene in mouse leptomeninges 
(Yasuda et al., 2013) (Fig. S6). 

Furthermore, we discovered two additional related 
cell types which shared expression of the canonical 
VLMC markers. We identified one, ABC, as arachnoid 
barrier cells, based on the expression of Abcg2 and Pgp. 
These two genes encode drug and xenobiotic transport-
ers known as BCGP and P-gp, respectively, which are 
expressed on barrier cells of the arachnoid mater of the 
meninges (Yasuda et al., 2013). The most specific gene 
expressed on ABCs was Slc47a1, which encodes the 
multidrug and toxin extrusion protein MATE1, rein-
forcing the putative function of ABCs to cleanse the cer-
ebrospinal fluid of toxic substances. In contrast to all 
other VLMC-like cell types, ABCs did not express Lum, 
and showed only very low levels of Pdgfra.

The fourth VLMC-like cell type (enteric mesothlial 
fibroblasts; ENMFB), expressed all the VLMC marker 
genes, but was found exclusively in the enteric nervous 
system. This demonstrates that VLMC-like cells are 
present throughout the body and are not brain-specif-
ic. Like the brain, organs of the abdomen are wrapped 
in protective layers of cells, called the tunica serosa 
and the tunica adventitia. These membranes serve 
protective, lubricating as well as active signalling 
functions, especially during development. Both serosa 
and adventitia are made up of mesothelial fibroblasts, 
but with different properties adapted to freely moving 
versus rigid organs. 

Our  observations thus support the view that 
VLMC-like cells are a family of functionally related 
(but organ-specific) mesothelial fibroblasts that form 
protective membranes around internal organs, including 
the pia and arachnoid membranes of the brain. This is 
similar to macrophages, which share a common origin 
in hematopoiesis, but assume organ-specific identities 
such as the perivascular macrophages and microglia in 
the brain. The developmental origin of mesothelium 

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 6, 2018. ; https://doi.org/10.1101/294918doi: bioRxiv preprint 

https://doi.org/10.1101/294918
http://creativecommons.org/licenses/by-nd/4.0/


10Zeisel et al. Molecular architecture of the mouse nervous system

outside the brain and heart is unknown (Winters et al., 
2012). However, the fact that ENMFBs were obtained by 
sorting Wnt1-Cre;R26Tomato cells indicates that these 
cells are derived from the neural crest, as has previously 
been shown for both pia and arachnoid. 

A common regulatory state shared by neural 
crest-derived glia and oligodendrocyte progenitors
A subtree of the dendrogram in Figure 1 comprised 
peripheral glia—seven types of enteric glia (ENTG1-7), 
proliferating (SATG1)  and non-proliferating (SATG2) 
satellite cells of the sensory and sympathetic nervous 
system and Schwann cells (SCHW)—along with 
olfactory ensheathing cells (OEC) and oligodendrocyte 
progenitor cells (OPC) of the CNS. 

The function of peripheral glia has been poorly 
studied, with the exception of Schwann cells, which 
are the myelinating cells of peripheral nerves. Satellite 
glia cover the surfaces of sensory and sympathetic 
neurons and are thought to support their function, but 
in unknown ways. Satellite glia were enriched in trans-
porters of amino acids (Slc7a2), purine nucleobases 
(Slc43a3) and long-chain fatty acids (Slc27a1), indicating 
a role in supporting the metabolism of neurons. 

The diversity and function of enteric glia is not 

known in detail. Enteric glia were very abundant in our 
dataset (91% of all enteric cells), and almost as diverse 
as enteric neurons, with seven distinct types. One type 
(ENTG1) was proliferating (expressing Top2a) and could 
represent a progenitor type. Intriguingly, some enteric 
glia expressed the vesicular monoamine transporter 
Slc18a2 (Fig. S6A), which otherwise loads monoamine 
neurotransmitters into synaptic vesicles in neurons.

Olfactory ensheathing cells are neural crest-derived 
(Barraud et al., 2010) cells that ensheath axons of the 
olfactory sensory neurons, but do not form myelin. 
Molecularly, they showed a peculiar combination of 
markers otherwise archetypical of oligodendrocytes 
(Plp1, Sox10), pericytes (Vtn), endothelial cells (Cldn5), 
neurons (Npy) and astrocytes (Aldoc), as shown in 
Figure S6A. 

In contrast to all other cell types of this taxon, which 
are neural crest-derived, OPCs are derived from the 
neural tube and assumed to be produced by the same 
progenitors as astrocytes and neurons. Interesting-
ly, however, OPCs share many features of neural crest 
cells: they require the expression of the two key tran-
scription factors that specify neural crest (Sox10 and 
Sox9) (Takada et al., 2010), they are highly migratory, 
and they do not respect developmental borders in the 
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brain. These observations, and the finding that OPCs 
align molecularly with all the neural crest-derived glia, 
suggest that they are a neural crest-like type of glia and 
supports the view that they have a common evolution-
ary origin with Schwann cells (Kastriti and Adameyko, 
2017). Although they are not derived from the physical 
neural crest, they appear to use similar regulatory 
mechanisms as neural crest-derived cells. We therefore 
named this taxon “Neural crest-like glia”.

Peripheral nervous system
Neurons of the peripheral nervous system segregated 
molecularly from the CNS, and formed distinct sensory, 
sympathetic and enteric subdivisions (Fig. 1B and C). 
Within the peripheral sensory neurons (of the dorsal 
root ganglia), cell-types were divided into three main 
branches: peptidergic (8 types), non-peptidergic (6 
types) and neurofilament (3 types), which suggests re-
finements to previous classifications (Li et al., 2016; 
Usoskin et al., 2014) (Table S2, Fig. 6 and S7). 

Within the sympathetic ganglia we found two cho-
linergic and five noradrenergic cell types, in agreement 
with our previous classification (Furlan et al., 2016) 
(Table S2, Fig. 6 and S7). 

The enteric nervous system has not been previously 
studied in molecular detail using single-cell methods. 
Here we report on the composition of the myenteric 
plexus of the small intestine, whereas we did not include 
cells from the submucosal layer or other regions of the 
gastrointestinal tract. Based on marker gene expression, 
morphology, location and projection targets, approxi-
mately ten cell types have been previously described 
(Furness et al., 2014; Qu et al., 2008) in the myenteric 
plexus of the mouse. 

We found nine molecularly distinct neuron types. 
Although enteric neurons are commonly divided into 
nitrergic and Calretinin-expressing subtypes, our data 
indicates that the more natural split is between nitrergic 
(i.e. expressing the neuronal nitric oxide synthase Nos1, 
ENT1-3) and cholinergic (i.e. expressing Chat and Slc5a7, 
ENT4-9) neurons. In addition, ENT7 and ENT8 co-ex-
pressed Slc17a6 (VGLUT2). Many enteric neurons also 

expressed a variety of neuropeptides (Fig. S7), including 
Gal, Cartpt, Nmu, Vip, Cck, and Tac1. A more detailed 
analysis of these neurons will be published elsewhere 
(manuscript in preparation). 

CNS neurons
A set of 32 clusters formed a subtree of the dendrogram, 
and included pyramidal cells of the cortex and hip-
pocampus as well as medium spiny neurons of the 
striatum. We named them Telencephalon projecting 
neurons (expressing high Ptk2b, Ddn, Icam5). The 
cerebral cortex was the most diverse, with 20 projection 
cell types, which were glutamatergic (all VGLUT1, but 
some additionally VGLUT2 or VGLUT3). Closely related 
were the hippocampal pyramidal cells (three types) 
and the dentate gyrus granule cells, as well as a single 
cluster from the basolateral amygdala, all of which—
like the isocortex—develop from the pallium. We will 
discuss the spatial distribution of these cell types in 
detail below. 

The GABAergic medium spiny neurons (MSNs) of the 
striatum are classified as D1 or D2 type according to 
the dopamine receptor they express. A long-standing 
question concerns the diversity of these cell types, in 
particular relative to structural and functional features 
of the striatum. For example, dorsal MSNs initiate and 
control movements, whereas ventral MSNs are involved 
in motivation, reward, aversion and similar behaviours. 
We found two D1-type MSNs (MSN1 and MSN4), one 
enriched in dorsal and one in ventral striatum, as well 
as two D2-type MSNs (MSN2 and MSN3), also dorsal 
and ventral, demonstrating a molecular distinction 
corresponding to the distinct circuits and functions of 
dorsal and ventral MSNs. In addition, we found putative 
patch-specific D1/D2-type neurons (expressing Tshz1) 
and matrix-specific D2 neurons (expressing Gng2), 
consistent with staining patterns of these genes in the 
Allen Mouse Brain Atlas. 

Telencephalic inhibitory interneurons, including 
cells from the olfactory bulb, cortex, hippocampus 
and thalamus formed a taxon, with the olfactory cells 
as a separate group. The thalamic inhibitory neurons 
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expressed Meis2 and shared key transcription factors 
(e.g. Dlx1, Dlx2, Dlx5, Dlx6) with the other cell types 
in this taxon, as well as with striatum medium spiny 
neurons, suggests a common developmental origin in 
the ganglionic eminences.

Most olfactory neurons were GABAergic, consistent 
with previous work (Nagayama et al., 2014), and two 
were also dopaminergic. We found no mature gluta-
matergic neurons in the olfactory bulb. However, two 
neuroblast types (OBNBL1 and OBNBL2), putatively 
located in the mitral cell layer, may represent immature 
versions of the olfactory projection neurons, the mitral 
and tufted cells. One of them, OBNBL1, expressed the 
identifying marker of mitral cells, the T-box transcrip-
tion factor Tbx21. 

A single taxon collected nearly all cholinergic, mon-
oaminergic neurons (which we identified based on 
expression of the necessary biosynthesis enzymes and 
vesicular and reuptake transporters; Fig. S9C) from 
the whole brain, as well as the peptidergic neurons 
mainly of the hypothalamus. These included the 
cholinergic afferent nuclei of cranial nerves III-V 
(HBCHO4) and VI-XII (HBCHO3), the adrenergic 
nucleus of the solitary tract (HBADR), the noradrener-
gic cell groups of the medulla (HBNOR), five seroton-
ergic hindbrain types, two dopaminergic neuron types 
of the ventral midbrain, and 15 types of peptidergic 
neurons including those secreting neurotensin (Nts), 
vasopressin (Avp), oxytocin (Oxt), gonadotropin-re-
leasing hormone (Gnrh), galanin (Gal), enkephalin 
(Penk), orexin (Hcrt), CART peptides (Cartpt), thyro-
tropin (Trh), pro-opiomelanocortin (Pomc), agouti-re-
lated peptide (Agrp) and neuromedin (Nmu)  (Lam et 
al., 2017; Romanov et al., 2016). Most of these peptider-
gic cell types were located in hypothalamus, but some 
were from telencephalon (bed nuclei of stria terminalis 
and septal nucleus), midbrain (Darkschewitz nucleus) 
and spinal cord (central canal neurons, see below). The 
fact that the majority of cholinergic, monoaminergic 
and peptidergic neurons clustered together suggests 
a common underlying regulatory state, distinct from 
that in neurons using canonical neurotransmitters. On 
the other hand, they still retained their CNS neuron 
character, and did not intermingle with cholinergic or 
monoaminergic neurons of the PNS.

We further found 38 excitatory and inhibitory cell 
types of the diencephalon (thalamus and hypothalamus) 
and midbrain, forming a unified taxon. These types 
segregated near-perfectly into glutamatergic (mostly 
VGLUT1) and GABAergic subsets, but included two cho-
linergic types (of the red nucleus and the habenula). The 
thalamus proper contained only glutamatergic neurons, 
except for the Meis2-expressing neurons of the reticular 
nucleus that forms a capsule around the thalamus. In 
the midbrain, the superior and inferior colliculi were 
the most diverse, comprising 17 excitatory (exclu-
sively VGLUT1) and inhibitory (GABA) cell types and 

spatially distinct distribution. In the ventral midbrain, 
we identified two types of dopaminergic neurons, one 
cholinergic and four GABAergic.

In the hindbrain (15 types not including cerebellum), 
all inhibitory neurons were glycinergic (GLYT1 or 
GLYT2, or both) and excitatory neurons were a mix of 
VGLUT1 and VGLUT2. We identified six cell types in 
the cerebellum, of which five are previously known: 
Purkinje cells, granular cells, granular layer interneu-
rons, molecular layer interneurons and granular cell 
neuroblasts. A sixth cell type (MEINH1), curiously, was 
found in the midbrain but molecularly indistinguish-
able from cerebellum molecular layer interneurons 
(CBINH1). It is the only example of a neuronal cell type 
found in two different and distant regions. 

Finally, in the spinal cord we identified 22 cell types, 
again split into inhibitory (GABAergic or glyciner-
gic) and glutamatergic (VGLUT2) in good agreement 
with an independent experiment focused on the dorsal 
horn (Häring et al. in press) (Table S2). In addition, 
here we identified central canal neurons (SCINH11), 
known as cerebrospinal fluid-contacting neurons, 
which expressed transcription factors Gata2 and Gata3 
(Fig. S10) (Petracca et al., 2016). They also specifical-
ly expressed polycystin-like genes (Pkd1l2 and Pkd2l1) 
which encode a mechanosensory protein complex that 
detects fluid flow, and Espn, which encodes an actin 
bundling protein with a major role mediating sensory 
transduction in mechanosensory cells. Thus, central 
canal neurons are likely specialized cells that monitor 
cerebrospinal fluid flow.

Spatial distributions reflect molecular diversity
Given the importance of location for neuronal function, 
we wanted to assign a spatial distribution to each cell 
type. The Allen Mouse Brain Atlas provides systematic 
high-quality information about gene expression, based 
on in situ hybridization. The data is available both as 
images and in the form of three-dimensional volumetric 
maps. We computed the spatial extent of each cell type 
by correlating volumetric and RNA-seq gene expression, 
using only cell type-specific genes as determined by a 
significant enrichment score. That is, using only cell 
type-enriched genes, for each voxel we computed the 
correlation of RNA-seq expression values with in situ 
hybridization expression values. The resulting data was 
visualized as three-dimensional density maps, expected 
to peak in regions where each cell type was abundant. 
We used the Allen Mouse Brain Atlas anatomical 
ontology to name the top-ranked anatomical regions 
for each cell type. 

Note that this approach will clearly fail in certain 
cases. First, if the cell type is not located within the 
CNS, then the resulting density map will be mean-
ingless, and we therefore do not provide maps for 
peripheral neurons. Second, many enriched genes can 
be shared between a set of related cell types (e.g. cortical 
pyramidal cells), with only a smaller number of highly 
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specific genes; in those cases, we expect the density map 
to show both the overall distribution of related cell types, 
as well as a stronger peak at the location of the specific 
cell type. To alleviate this concern, we carefully curated 
the location of each cell type by manual inspection of 
individual in situ hybridization images (available in 
Table S3, column “Probable location”). We sought to 
provide the most plausible location for each cell type, 
rather than refraining from assigning a location when 
it was uncertain.

Inspecting the resulting cell type distribution maps, 
we found reassuringly that the automatically assigned 
locations corresponded well with the known source 
of the cells. For example, cortical and hippocampal 
projection neurons were assigned to cortex and hip-

pocampus as expected (Fig. S8). But the spatial maps 
provided much more detail: for example, the distinc-
tion between CA1 and CA3 pyramidal cells was clear 
(Fig. S8, right), and cortical pyramidal cells could be 
assigned highly specific distributions across the cortical 
surface (Fig. S8, left) and layers. Interestingly, the spatial 
distribution of cortical pyramidal neurons correlated 
with their molecular similarity. For example, pyramidal 
neurons of the piriform and entorhinal cortex, as well as 
the subiculum, were molecularly closely related (shown 
by their forming a separate subtree of the dendrogram) 
as well as spatially aligned. Similarly, the pyramidal cells 
of the neocortex were arranged by molecular similarity 
in layer order (i.e. layers 2/3, layer 4, layer 5, layers 6/6b). 
Notably, this also corresponds to their order of develop-
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Figure 7. Neuronal cell types are spatially restricted. Examples of inferred spatial distributions for cell types across the brain. Left column 
show reference images from the Allen Brain atlas. Each row shows one coronal section, ordered rostro-caudally, and each column shows 
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ment during embryogenesis.
Beyond the cortex, many cell types were assigned 

to very specific locations, greatly aiding interpreta-
tion of the data. For example, midbrain dopaminergic 
neurons (MBDOP2) were found in the substantia nigra 
and ventral tegmental area (Fig. 7). One of the most 
complex regions was the superior and inferior colliculi, 
to which 17 celltypes were assigned (ten excitatory, seven 
inhibitory). Spatial distribution maps are provided for 
all CNS neurons at the companion wiki web site (Box 1).

Drivers of neuronal and glial diversity
In order to better understand the forces that drive 
gene expression diversity in the mammalian nervous 
system, we next examined the expression of neuro-
transmitters and neuropeptides. How do diverse neu-
rotransmitters cooperate or interact with each other? 
And more generally, how do neuropeptides overlap 
with classical neurotransmitters and with each other, 
in different contexts across the nervous system? We 
examined the co-expression of neurotransmitters, 
while retaining information about the tissue compart-
ment (Figure S9A). While VGLUT2 was the only neu-
rotransmitter expressed in all compartments, GABA 
contributed the larger number of cell types and was 
mostly concentrated in the forebrain.  GABAergic and 
glutamatergic (VGLUT1 and VGLUT2) neurotransmis-
sion was mutually exclusive; we did not find a single cell 
type anywhere in the nervous system that expressed 
both. Glutamatergic neurons in the telencephalon all 
used VGLUT1, with some additionally using VGLUT2, 
whereas in more caudal regions, VGLUT2 dominated. 
Interestingly, the boundary that separated VGLUT1 
dominance from VGLUT2 dominance appeared to be 
the telencephalon-diencephalon border, analogous to 
the separation of the two major types of astrocytes at 
this same boundary (although, both were expressed in 
the thalamus).

In contrast, the atypical vesicular glutamate trans-
porter VGLUT3 was often co-expressed (Figs. 1C and 
S9A) with cholinergic and monoaminergic neurotrans-
mitters (12 cell types) and more rarely alone (1 cell type) 
or with the other VGLUTs or GABA. This supports the 
notion that VGLUT3 plays a distinct role in cell types 
that release non-canonical neurotransmitters. 

Acetylcholine occurred alone, or together with no-
radrenaline (in the sympathetic nervous system) or 
glutamate, but never with GABA or glycine. Similarly, 
noradrenaline co-localized with acetylcholine, whereas 
serotonin occurred only alone or with VGLUT3. In 
contrast, the gaseous neurotransmitter nitrix oxide (i.e. 
Nos1) was detected throughout the nervous system, and 
did not combine preferentially with (or avoid) any other 
neurotransmitter (Figs. 1C and S9A).

Examining the co-expression matrix of individual 
genes encoding neurotransmitter enzymes, vesicular 
and reuptake transporters, and neuropeptides, we found 
stereotyped combinatorial patterns assigned to specific 

compartments of the nervous system (Figure S9C). This 
analysis demonstrates how the rules governing gene 
co-expression can vary between brain regions.  For 
example, somatostatin (Sst) is a canonical marker of 
inhibitory neuronal subtypes in the forebrain, but was 
widely expressed in excitatory neurons in the spinal 
cord, hindbrain and di-mesencephalon. Moreover, Sst 
was also expressed in combination with Fev (serotonin, 
hindbrain), Dbh (noradrenalin, PNS) or the neuropep-
tide Trh (hypothalamus). Pvalb—another canonical 
marker of forebrain inhibitory cells—was also expressed 
in excitatory neurons in the mid- and hindbrain. These 
results demonstrate that neuropeptides, neurotrans-
mitters, calcium-binding proteins, and other neuronal 
molecules are used in a highly modular fashion and 
serve different functions in different contexts.

Expanding the analysis to all genes, we note that 
the dendrogram and taxonomy  (Fig. 1C, S2 and S3) 
reflect systematic patterns of shared and unique gene 
expression. However, while some subtrees and taxa 
reflect biologically natural categories, with shared 
molecular properties, others may be more diverse and 
lack such shared features. For example, the distinction 
between CNS and PNS may reflect shared properties 
primarily among PNS neurons, primarily among CNS 
neurons, or both. To gain more insight into these 
patterns, we systematically searched for genes that 
were expressed ubiquitously in one set of cell types, but 
absent from most other cell types (Fig. S9B, Table S4). 
We used stringent statistical criteria (Fisher’s exact test 
with 5% false discovery rate using Benjamini Hochberg 
correction), and retained only genes that were detected 
in more than 70% of cell types within the set, but less 
than 10% of clusters outside it. We note that, since the 
scRNA-seq data is far from 100% sensitive, our estimates 
of class-specific genes are very conservative and more 
sensitive measurements may uncover additional such 
genes.

Comparing first neurons to all non-neurons, corre-
sponding to the first split of the dendrogram, we found 
205 pan-neuronal genes. These included well-known 
neuronal markers (e.g. the kinase Camk2b, the beta-3 
tubulin Tubb3 and the membrane glycoprotein Thy1); 
transcription factors Myt1l, Ncoa7, Mafg and Zcchc18; 
synaptic proteins (synaptosome proteins Snap25, 
Snap47 and Snap91, synapsins Syn1 and Syn2, synap-
togyrin Syngr1, synaptojanin Synj1, synaptophysin Syp, 
synaptotagmins Syt1 and Syt4 and neurexin Nrxn3); 
stathmins (Stmn2 and Stmn3); as well as the RNA-bind-
ing proteins Elavl4 (also known as HuD), Rbfox1, Rbfox2 
and Rbfox3 (also known as NeuN).

In contrast, examining glia as a group (but excluding 
microglia), we found only six pan-glial genes, including 
S100a1, showing that macroglia is not a natural category 
of cells with shared properties. However, there were 74 
pan-astrocyte genes (e.g. Aqp4, Sox2 and Sox9), 135 
pan-oligodendrocyte genes (e.g. Sox10) and 51 genes 
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shared across neural crest-like glia (e.g. the transcrip-
tion factors Sox10 and Hes1, and the myelin protein 
zero-like protein Mpzl1, related to the Schwann-cell 
specific Mpz). Thus each major glial lineage is charac-
terized by distinct gene modules, with very few genes in 
common across PNS and CNS glia. 

We found 111 genes that were ubiquitous in PNS but 
not CNS neurons. The top hits included the homeobox 
transcription factor Tlx2 (also known as Enx, Ncx and 
Hox11l1), the intermediate filament cytoskeletal protein 
peripherin (Prph) and the phosphoinositide-interacting 
membrane protein Pirt. Tlx2-null mice show myenteric 
neuron hyperplasia and megacolon (Shirasawa et al., 

1997), supporting a fundamental role in enteric neuron 
specification, whereas Pirt knockout animals are viable, 
fertile and show normal appearance and behaviour 
(Kim et al., 2008). 

In contrast, we found only ten genes that were 
expressed in most CNS but not PNS neurons, including 
the NMDA glutamate receptor subunit Grin2b, the 
potassium/choline transporter Slc12a5, the tyrosine 
kinase Matk, and the fractalkine ligand Cx3cl1 (which 
binds to the CX3C chemokine receptor, encoded by 
Cx3cr1, found on immune cells in the brain). Thus, 
while the PNS is a natural biological category that shares 
expression of many genes, the CNS is too diverse to be 
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Figure 8. Drivers of cellular diversity. (A) Gene ontology analysis of the most highly enriched genes in CNS neuronal clusters. Each 
panel shows the significantly (false discovery rate, FDR < 10%) enriched terms, ranked by FDR. Bars show the percentage of all genes 
(belonging to each term) that were enriched, and the FDR. Colors indicate major categories of terms, as indicated below the figure. (B) 
Gene expression of developmental patterning transcription factors is shown along the cell types taxonomy. Each row represents one 
transcription factor and columns represent clusters. Circles represent mean expression values, proportional to area. Genes are sorted 
according to their expression pattern, with Hox genes sorted rostro-caudally. Labels on the right indicate the approximate anatomical 
extent of the expression of corresponding Hox genes.
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considered as a unit.

Focusing next on CNS neurons, we searched for 
the genes that contributed the most to CNS neuronal 
diversity. We  collected the top ten most highly enriched 
genes in each cell type, reflecting both high expression 
and high specificity (in contrast to the pan-CNS genes 
analyzed above). A gene set enrichment analysis against 
the Gene Ontology (Fig. 8A) (Huang et al., 2009) pointed 
to four clear categories of genes: those that establish 
cell identity (e,g, transcription factors, developmen-
tal genes), membrane conductance (e.g. ion channels, 
calcium binding proteins), neurotransmission (e.g. neu-
rotransmitter synthesis enzymes, transporters, neuro-
peptides and their receptors), and synaptic connectivity 
(e.g. synaptic and cell junction proteins). These findings 
point to the specific functions that differ between 
neuronal types (connectivity, electrophysiology and 
neurotransmission), and to the underlying regulatory 
machinery (transcription factors). 

The gene family that best distinguished CNS neuron 
classes (defined by the “functional category” label) was 
homedomain transcription factors (Fig. S10), consistent 
with an important role in specifying and maintain-
ing neuronal cell types. Other transcription factor 
families showed less specificity in the CNS, but were 
more variably expressed in the PNS and among glia and 
vascular cells. 

Many homeodomain transcription factors are 
involved in dorso-ventral and antero-posterior 
patterning (as well as the specification of e.g. the neural 
crest). Although patterning takes place during embryo-
genesis, we reasoned that significant traces of patterning 
gene expression might remain, and could explain the 
observation that the nervous system was molecular-
ly organized according to developmental origin. In 
agreement with this prediction, we found that Hox genes 
were expressed in cell types derived from the hindbrain, 
spinal cord and the peripheral nervous system (Fig. 8B). 
For example, spinal cord cell types expressed Hoxa1 
(rhombomere 1) through Hoxd10 (thoracic bordering 
on lumbar), with additional expression of lumbar Hox 
genes in some cell types. Most spinal cord cell types 
appeared to express a similar range of Hox genes, corre-
sponding to cervical and thoracic levels and indicating 
that they were not segment-specific (rather, the subtypes 
corresponded to dorso-ventral layers). However, three 
inhibitory types expressed Hoxa11, Hoxb11 and Hoxc11, 
indicating a more lumbar extent. Two cell types located 
in the medulla (HBINH9 and HBGLU10) intermingled 
with spinal cord cell types in the dendrogram, but did 
not express Hox genes beyond Hoxb7. These cell types 
were presumably derived from the most posterior 
part of the medulla, explaining their spinal cord-like 
character, yet they retained proper medulla patterning 
gene expression.

Enteric neurons and glia of the small intestine, which 
are believed to develop from the vagal (neck) neural 

crest, both expressed a Hox code broadly consistent 
with a vagal origin. However, we also noticed some 
expression of more thoracic Hox genes, indicating a 
broader origin of these cells. 

Sensory and sympathetic neurons, as well as satellite 
glia, expressed Hox genes from all rostrocaudal levels 
(lumbar cells were not analyzed in the sympathet-
ic nervous system). However, curiously, sympathet-
ic neurons showed highly preferential expression from 
the HoxC cluster only. This is reminiscent of the role of 
the HoxD cluster during digit formation (Deschamps, 
2008), and suggests that the HoxC cluster may be 
involved in the specification of distinct sympathetic cell 
types along some spatial axis. 

Hox genes are not expressed in the forebrain and 
midbrain. Nevertheless, as in the hindbrain and spinal 
cord, forebrain cell types retained patterning gene 
expression. For example, the forebrain patterning gene 
Foxg1 was found in all forebrain neurons, as well as 
in telencephalon-specific astrocytes. Dorso-ventral 
patterning was also preserved: the dorsal gene Emx1 
was expressed in cortical, hippocampal and striatal 
projection neurons, whereas ventral Dlx1 and Dlx5 were 
found mainly in inhibitory neurons of the same tissues.

Among cholinergic and monaminergic neurons, 
which did not align molecularly with their tissue of 
origin (Fig. 1), those sampled from the medulla retained 
patterning gene expression (e.g. Hox genes in HBSER4, 
see Table S3 and Fig. 8) whereas those from the pons 
did not (e.g. HBCHO4, afferent nuclei of cranial nerves 
III-V).

Discussion
We have described the molecular architecture of the 
mammalian nervous system, based on a systematic 
survey using single-cell RNA sequencing. 

Although we present a comprehensive analysis, our 
data has several limitations. First, there were technical 
and experimental limitations as detailed above, 
including doublets, sex-specific gene expression and 
low-quality cells. Second, we sampled only a little more 
than half a million cells across the nervous system, and 
deeper sampling is likely to reveal additional structure 
that was obscured in the present study. Similarly, 
we used relatively shallow sequencing, and deeper 
sequencing using more sensitive RNA-seq methods 
is likely to resolve more subtypes. Third, some cell 
types may have been lost to differential survival or size 
selection biases (for example, Purkinje cells were likely 
undersampled here due to their size). Fourth, we have 
performed a very conservative clustering, designed 
to reveal clearly distinct major cell types, but did not 
analyze the substantial remaining heterogeneity within 
clusters. Finally, we have described only molecular cell 
types, but the task of linking molecular properties to 
functional, anatomical, morphological and electrophys-
iological properties remains.
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We suggest that the diversity of gene expression 
patterns in the nervous system can be understood 
through three major principles. 

First, major classes of cells—e.g. neurons, astrocytes, 
ependymal cells, oligodendrocytes, vascular and 
immune cells—are distinguished by large sets of 
class-specific genes that implement the specific function 
of each class of cells. For example, neurons share an 
extensive gene program involving synaptic, cytoskeletal 
and ion channel genes, while oligodendrocytes express 
gene programs required for generating myelin.  Multiple 
levels of hierarchical subdivision exist within these 
classes; for example, within neurons, neurotransmit-
ter phenotype showed a modular and highly regulated 
pattern of expression.

Second, some—but only some—cell classes show ar-
ea-specific patterns of gene expression that likely reflect 
their developmental history. This trend was strongest 
amongst neurons, astrocytes, and ependymal cells; by 
contrast, oligodendrocytes, vascular, and immune cells 
exhibited similar gene expression patterns across brain 
regions. The territories defining these gene expression 
domains corresponded closely to those marked out 
by embryonic morphogens, and spatial differences in 
adult expression patterns correlated with persistent 
expression of developmental transcription factors. This 
suggests that transcription factor networks induced 
in early development by local morphogens result in 
heritable regulatory states which in turn are relayed into 
the diversification of terminal neuronal and astrocytic 
types specific to each brain region. The fact that oligo-
dendrocytes did not show similar spatial patterns—
despite being derived from the same initially patterned 
neural tube as neurons and astocytes—suggests there 
is a prevalent loss of regional patterning in the oligo-
dendrocyte lineage, presumably because region-specific 
patterning is transient and not converted to permanent 
states in these lineages. 

Third, a secondary diversification, more graded 
and less region-specific, results from interaction with 
the local environment, and likely reflects inducible 
gene regulatory networks that respond in graded and 
transient fashion to local molecular cues. This was 
observed most clearly in the oligodendrocyte lineage, 
but likely occurs to some extent in all lineages.

It remains unclear why the initial patterning is 
retained by neurons and to some extent astrocytes, 
but not by oligodendrocytes. Among CNS neurons, we 
found that four main categories of genes drive neuronal 
diversity: those involved in cellular identity (transcrip-
tion factors), connectivity (synaptic proteins, junction 
proteins), neurotransmission (neurotransmitters, neu-
ropeptides), and membrane conductance (ion channels, 
calcium-binding proteins, solute carriers). But synaptic 
connectivity, neurotransmission and membrane con-
ductance are uniquely neuronal properties, and their 
diversity between regions in consistent with the 

diverse computational roles of each neuronal circuit. 
Conversely, the relative homogeneity of oligodendro-
cytes points to a common function, myelination, across 
all regions. The intermediate behaviour of astrocytes is 
therefore consistent with the emerging view that they 
are not simply support cells, but play an active role in 
computational processing (Henneberger et al., 2010).  

Our atlas can be used to identify genes and gene 
combinations unique to specific cell types, which in 
turn can be used to genetically target cells for visualiza-
tion, ablation, optogenetic manipulation, gene targeting 
and more. Surprisingly, we found that two genes were 
sufficient to uniquely target most cell types in the entire 
nervous system, and none required more than three 
genes. These findings provide a powerful starting point 
for precise genetic manipulation of defined cell types in 
the mouse nervous system.

The atlas will also help us understand the function of 
specific genes, for example those implicated in disease 
(Skene and Grant, 2016). This can lead to actionable 
hypotheses on the mechanism of disease as well as iden-
tifying the relevant cell types to generate mouse models 
of human disease. Similarly, one can use the atlas to 
find, across the entire nervous system, those cell types 
likely to respond to a drug (with known target). This 
will be important to advance our understanding of the 
specificity of drugs and their potential off-target effects. 

In summary, we provide a resource and an initial 
analysis revealing key principles of the molecular 
diversity and composition of the mammalian nervous 
system.
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Methods
Animals. Table S1 details the animals used per experiment. 
In summary, male and female mice were postnatal ages 
P12-30, as well as 6 and 8 weeks old. We mainly used wild 
type outbred strains CD-1 (Charles River) and Swiss (Janvier). 
Wnt1-Cre:R26Tomato (C57Bl6J background) (Danielian et 
al., 1998; Madisen et al., 2010) were used to isolate peripheral 
and enteric nervous system, and Vgat-Cre:tdTomato (het-
erozygous for Cre and homozygous for tdTomato; mixed 
CD-1, C57BL/6J background) (Ogiwara et al., 2013) to isolate 
inhibitory neurons (vesicular GABA transporter, Slc32a1). 
All experimental procedures followed the guidelines and 
recommendations of Swedish animal protection legislation 
and were approved by the local ethical committee for experi-
ments on laboratory animals (Stockholms Norra Djurförsök-
setiska nämnd, Sweden).

Single-cell dissociation (brain). Single cell suspensions of all 
brain regions, i.e. all regions except spinal cord, sympathetic 
and enteric nervous system as well as dorsal root ganglia, were 
prepared as described previously (Hochgerner et al., 2018). 
Briefly, mice were sacrificed with an overdose of isoflurane, 
followed by transcardial perfusion with artificial cerebrospi-
nal fluid (aCSF, in mM: 87 NaCl, 2.5 KCl, 1.25 NaH2PO4, 26 
NaHCO3, 75 sucrose, 20 glucose, 1 CaCl2, 7 MgSO4). The 
brain was removed, 300μm vibratome sections collected and 
the regions of interest microdissected. The pieces were dis-
sociated using the Worthington Papain kit, with 25-35 min 
enzymatic digestion, as needed, followed by manual tritura-
tion using fire polished Pasteur pipettes and filtering through 
a 30μm aCSF-equilibrated cell strainer (CellTrics, Sysmex). 
Importantly, aCSF equilibrated in 95% O2 5% CO2 was used 
in all steps, and cells were kept on ice or at 4°C at all times 
except for enzymatic digestion. 

Single-cell dissociation (spinal cord, sympathetic and 
dorsal root ganglia). CD-1 mice (DRG and spinal cord) or 
Wnt1-Cre:R26RTomato mice (sympathetic) were sacrificed 
and tissues of interest collected in freshly oxygenated, ice 
cold aCSF (see above). Sympathetic (SG) and dorsal root 
ganglia (DRG) were dissected and dissociated as described 
before (Furlan et al., 2016), with minor modifications. Briefly, 
following dissection (DRG: ~30 ganglia collected in total 
from cervical 1 - lumbar 6; SG: thoracic 1 - 12 and stellate), 
the ganglia got transferred into a 3cm plastic dish with 2.7ml 
of pre heated (37°C) digestion solution (400µl TrypLE™ 
Express (Life Technologies), 2000µl Papain (Worthing-
ton; 25U/ml in aCSF), 100µl DNAse I (Worthington; 1mM 
in aCSF) and 200µl Collagenase/Dispase (Roche; 20mg/ml 
in CS)). Non-ganglia tissue was removed from the ganglia. 
After 30 min incubation at 37°C, ganglia were triturated 
with 0.5% BSA-coated glass Pasteur pipette (flamed to 70% 
of original opening). DRG were also carefully ripped open 
by using fine forceps to make cells more accessible for the 
enzymes. This procedure was repeated every 20-30 min using 
Pasteur pipettes with decreasing diameter appropriate to the 
dissociation state. Depending on the dissociation progress 
50µl of Collagenase/Dispase (20mg/ml) and 100µl of TrypLE 
solution was added. 

Dissociation of the spinal cord followed the procedure 
described in Häring et al., (2018, in press). In short, following 
the isolation of grey matter (from cervical to sacral levels), the 
tissue was transferred into a 3cm plastic dish with 2.5ml of 
pre heated (37°C) digestion solution (300µl TrypLE™ Express 
(Life Technologies), 2000µl Papain (Worthington; 25U/ml 
in aCSF), 100µl DNAse I (Worthington; 1mM in aCSF) and 
100µl aCSF. Meninges were removed and the grey matter cut 
into pieces 1-2mm2. After 30 min incubation at 37°C, pieces 
were triturated with the first Pasteur pipette (see above). This 

procedure was repeated every 20min using Pasteur pipettes 
with decreasing diameter appropriate to the dissociation 
state. Depending on the progress of spinal cord dissociation, 
100µl of TrypLE solution was added. 

As soon as all ganglion or spinal cord pieces were dissoci-
ated (DRG, SG: ~1.5-2h; Spinal Cord: 45-60min), the cell sus-
pensions were filtered using a 40µm cell strainer (FALCON) 
and collected in a 15ml plastic tube. The digestion solution 
was diluted with 3ml aCSF and centrifuged at 100g for 4min 
at 4°C. The supernatant was removed and the pellet resus-
pended in 0.5ml aSCF and 0.5ml complete Neurobasal 
medium (Neurobasal-A supplemented with L-Glutamine, 
B27 (all Gibco) and Penicillin/Steptamycin (Sigma)). The cell 
suspension was carefully transferred with a Pasteur pipette 
and layered on top of an Optiprep gradient: 90µl (DRG) or 
80µl (SG) Optiprep Density Solution (Sigma) in 455µl aCSF 
and 455µl complete Neurobasal; and for spinal cord 170µl of 
Optiprep in 915µl aCSF and 915µl complete Neurobasal. The 
gradient was centrifuged at 100g for 10min at 4°C, the super-
natant removed until only 100µl remained and 10µl DNaseI 
added to avoid cell clumping.

Single-cell dissociation (enteric nervous system). 
Wnt1-Cre;R26RTomato mice were killed by cervical dis-
location followed by dissection of small intestine. During 
all steps the tissue was kept in aCSF (in mM: 118 NaCl, 4.6 
KCl, 1.3 NaH2PO4, 25 NaHCO3, 20 glucose, 7 mM CaCl2 
and MgSO4) equilibrated in 95% O2 5% CO2 for 30 min 
before use and held on ice. The small intestines of male and 
female (P21) mice were cut in 5cm pieces and flushed clean 
with ice-cold aCSF using a blunt 20G needle attached to a 
20ml syringe. The mesentery was removed, the pieces opened 
lengthwise along the mesenteric border and pinned with the 
mucosa side down on a Sylgaard (Dow Corning) covered 
dissection dish. The outer smooth muscle layers, containing 
the myenteric plexus were peeled off from the submucosa 
using forceps. The tissue was digested in 1,5 mg/ml Liberase™ 
(Grundmann et al., 2015), 0.1 mg/ml DNAseI and 1xAnti-
biotic-Antimycotic (ThermoFisher) in aCSF at 37°C for 1h, 
with shaking of the tube every 15 min. The cells were gathered 
by centrifugation at 356g for 5min followed by incubation in 
TrypLE for 30 min. The suspension was washed in aCSF, cen-
trifuged at 356g for 5 min and resuspended in aCSF, 1% BSA. 
After manual trituration using BSA-coated fire-polished 
Pasteur pipettes with decreasing opening size, the single cell 
suspension was filtered through 70μm filter (Miltenyi Biotec) 
and cleaned of debris by centrifugation through 1 ml FBS at 
800g for 10min. The cells were resuspended in oxygenated 
aCSF, 1%BSA and filtered through a 30μm filter (Miltenyi 
Biotec). Tom+ cells were FAC sorted on a BD FACSAria II 
and collected in ice cold aCSF.

Single-cell RNA-seq (10x Genomics Chromium). The 
majority of sampling was carried out with 10X Genomics 
Chromium Single Cell Kit Version 1, although part of the 
hindbrain sampling was done in Version 2 (Table S1). Suspen-
sions were prepared as described above and diluted in aCSF, 
to concentrations between 300-1000 cells/μl (listed in Sup-
plementary Table S1), and added to 10x Chromium RT mix 
to achieve loading target numbers between 2500-8000 (V1 
kit) or 7000-10,000 (V2 kit), as indicated. For downstream 
cDNA synthesis (12-14 PCR cycles), library preparation, and 
sequencing, we followed the manufacturer’s instructions. 

RNAScope. CD-1 mice (Charles River) were killed with 
an overdose of isoflurane and transcardially perfused 
with artificial cerebrospinal fluid. Brains were dissected 
out, snap frozen in OCT on a bath of isopentane with dry 
ice and stored at –80°C. Fresh frozen sagittal whole-brain 
sections (including the olfactory bulb, SVZ, hippocampus 
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and cerebellum) of 10 µm thickness were cryosectioned and 
stored at –80°C. Sections were thawed just prior to staining 
and fixed with 4% PFA for 15 min followed by rinsing in PBS. 
RNAScope in situ hybridizations were performed according 
to the manufacturer’s instructions, using the RNAScope 
Multiplex Fluorescent kit (Advanced Cell Diagnostics) for 
fresh frozen tissue, as previously described(Hochgern-
er et al., 2018). A 10 min treatment in SDS (4% in 200 mM 
sodium borate) was added in the protocol after the Protease 
IV incubation. Following probes with suitable combina-
tions were used (indicated with gene target name for mouse, 
respective channel and catalogue number from Advanced 
Cell Diagnostics): Mfge8 408771, Agt 426941-C2, Aqp4 
417161-C3, Slc6a9 525151, Slc6a11 492661-C3, Islr 450041 
and Gdf10 320269-C2. All sections were mounted with 
Prolong Diamond Antifade Mountant (P36961, ThermoFish-
er Scientific). Imaging was carried out on a Nikon Ti-E epif-
luorescence microscope (Nikon) at 10X magnification. 

Cytograph pipeline. Chromium samples were sequenced, 
typically one sample per lane, per the manufacturer’s in-
structions with one 98 bp read located near the 3' end of the 
mRNA. Illumina runs were demultiplexed, aligned to the 
genome and mRNA molecules were counted using the 10X 
Genomics cellranger pipeline. 

Each raw Chromium sample was manually inspected after 
sequencing. Samples that showed no obvious structure in 
their t-SNE plots (generated automatically by the Chromium 
cellranger pipeline) were excluded from further analysis. The 
complete list of input samples is given in Table S1.

All subsequent analyses were automated in the cytograph 
library and adolescent-mouse pipeline, freely available as 
open source. Cytograph evokes both the fact that our cell 
type clustering and visualizations are graph-based, and the 
fact that the pipeline itself is organized as a directed acyclic 
graph.

Our pipeline is based on Luigi (Spotify), a Python-based 
software that orchestrates a set of tasks with dependen-
cies. Each task takes zero or more input files, and generates 
exactly one output file. Luigi automatically determines which 
outputs are missing, and the order in which tasks have to be 
executed to generate them. It can also allocate independent 
tasks in parallel, to increase throughput.

Quality controls. Cells with less than 600 detected molecules 
(UMIs), or less than 1.2-fold molecule to gene ratio, were 
marked invalid. Genes detected in fewer than 20 cells or 
more than 60% of all cells were marked invalid. These filters 
were applied separately to each input file.

Preliminary exploratory analysis. In preliminary analyses, 
we explored a large number of approaches for dimensional-
ity reduction, manifold learning, clustering and differential 
expression analysis methods, in order to get a deep prelimi-
nary understanding of the dataset. 

For normalization and noise reduction, we tried simple 
things like mean-centering, normalization to a common 
molecule count, standardization (division by the standard 
deviation) and log transformation; we also explored MAGIC 
(a method that imputes expression based on neighbors in the 
KNN graph) and diffusion maps.

For manifold learning, we projected the high-dimen-
sional dataset either to a graph (e.g. of k nearest neighbors 
KNN, and variants such as mutual nearest neighbors) or 
to two or three dimensions (using PCA, t-SNE, SFDP). We 
also combined these approaches, first projecting to a graph, 
then calulating distances on the graph (e.g. Jaccard distance, 
or multiscale KNN distance; see below), then using those 
distances to project to 2D space using graph-t-SNE (gt-SNE; 
see below).

For clustering, we explored standard methods such as 
K-means (and iterative K-means) in PCA space, as well as 
graph-based algorithms (Louvain community detection) 
and density-based algorithms in 2D or 3D projections (e.g. 
DBSCAN, HDBSCAN). 

The final algorithm choices below reflect what we learned 
in this exploratory phase.

Preliminary clustering and classification.  We extensively 
mined clusters obtained in preliminary analyses and found 
that they largely corresponded to known and putative cell 
types, broadly consistent with previous data. Some clusters 
were also clearly derived from doublets, expressing contra-
dictory markers e.g. from neurons and vascular cells.

With any type of clustering the choice of feature space 
is crucial. For preliminary clustering, we used genes in-
formative across the entire set of cells, projected by PCA. 
This would be expected to be suitable for finding major cell 
types, but would not be optimal for finding finer subdivi-
sions among cells of the same kind (e.g. interneurons in a 
dataset containing both neurons, vascular cells and glia). 
For example, running Louvain clustering on the full dataset 
resulted in only 44 clusters, compared to the 265 found by the 
multi-level, iterative approach described below.

We decided to first split cells by major class. In order to split 
the data, and to reject many doublets, we trained a classifier to 
automatically detect the major class of each single cell, as well 
as classes representing doublets. We first manually annotated 
clusters to indicate major classes of cells: Neurons, Oligo-
dendrocytes, Astrocytes, Bergman glia, Olfactory ensheath-
ing cells, Satellite glia, Schwann cells, Ependymal, Choroid, 
Immune, and Vascular. For some of these classes, we distin-
guished proliferating cells (e.g. Cycling oligodendrocytes, i.e. 
OPCs). We also manually identified clusters that were clearly 
doublets between these major classes (e.g. Vascular-Neurons) 
as well as clusters that were of poor quality. 

We then trained a support vector classifier to discrimi-
nate all of these labels, using the training set of preliminary 
clusters manually annotated with class labels. We sampled 
100 cells per cluster and used 80% of this dataset to optimize 
the classifier, and the remaining 20% to assess perfor-
mance. On average, the classification accuracy was 93% for 
non-cycling cells. The precision and recall for neurons was 
93% and 99%, respectively. That is, 99% of all neurons were 
classified correctly, and 93% of all cells classified as neurons 
were actually neurons. The classifier struggled to distin-
guish cycling cells, presumably because they shared most 
gene expression with their non-cycling counterparts. For 
this reason, we always pooled cycling and non-cycling cells 
after classification. The table below shows the accuracy for all 
major classes of interest:

              Precision Recall
Astrocyte  87% 96%
Astrocyte,Cycling 59% 38%
Bergmann-glia  100% 97%
Blood   77% 65%
Ependymal  98% 97%
Immune  96% 98%
Neurons  93% 99%
Neurons,Cycling 63% 54%
OEC   100% 95%
Oligos  91% 97%
Oligos,Cycling  39% 19%
Satellite-glia  90% 95%
Satellite-glia,Cycling 91% 88%
Schwann  100% 100%
Choroid  100% 80%
Vascular  87% 97%
Vascular,Cycling 100% 25%
Average  93% 93%
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We used this classifier to individually assess the class identity 
of each cell in each dataset, and to pool cells by major class 
into new files (with neurons further separated by tissue).

Removing doublets. We expected about 2% of all cells to 
be doublets. Preliminary exploratory analysis (including by 
generating simulated doublets) showed that most doublets 
would either form separate clusters, or would tend to end up 
at the fringes of other clusters (in graph embeddings, and in 
t-SNE). To eliminate many doublets, we (1) removed clusters 
classified with ambiguous labels; (2) removed cells classified 
with a different label from the majority of cells in its clusters; 
(3) removed outliers when clustering, typically on the fringes 
of clusters in t-SNE space.

Level 1 analysis. We pooled samples by tissue and 
performed manifold learning, clustering, classification, gene 
enrichment, and marker gene detection (see below for details 
on these procedures). 

Level 2 analysis. We split cells by major class according to 
the class assignment probability. For each cluster at level 
1, we removed cells with conflicting classification (i.e. cells 
classified as Neuron in a cluster where the majority of cells 
are classified as Vascular). We performed the same analysis 
steps as for Level 1. 

Level 3 analysis (neurons). Because of the way we had 
dissected the brain, we would expect some clusters to appear 
in multiple tissues. For example, our olfactory sample 
included the anterior-most part of the cortex and underlying 
tissue (intended to cover the anterior olfactory nucleus), and 
could overlap with the cortex samples. In order to allow 
clusters to merge across such boundaries, and in order to 
improve resolution in clustering, we pooled cells in broader 
categories, and split them by (mostly) neurotransmitter, as 
follows:

Region  Class
Spinal cord  GABAergic, glycinergic
Spinal cord  Glutamatergic
PNS   All
Hypothalamus Peptidergic
Hindbrain  GABAergic, glycinergic
Hindbrain  Glutamatergic
Whole brain  Neuroblasts
Forebrain  GABAergic
Forebrain  Glutamatergic
Di- and mesencephalon GABAergic
Di- and mesencephalon Glutamatergic
Whole brain  Granule cells
Whole brain  Cholinergic and monoaminergic
Striatum  Medium spiny neurons

Note that we pooled granule cells of the dentate gyrus and 
the cerebellum not because we think they are related (they 
are not), but because they are both extremely abundant and 
tended to skew manifold learning when included with other 
cells.

Level 4 analysis. Despite our efforts, at level 3 there remained 
still some clusters that were suspected doublets, as well as 
over-split clusters that lacked clearly defining gene expression 
differences. We therefore manually curated all clusters, 
merging some and eliminating others. We then recomputed 
the manifolds, but did not recluster.

Level 5 analysis. To create the final consolidated dataset, we 
extensively annotated and named each cluster (Table S3). We 
pooled all cells into a single file along with all metadata and 
annotations, and performed gene enrichment analysis and 
marker gene set discovery on this dataset. The level 5 analysis 
was the basis for all downstream analysis.

Level 6 analysis. Finally, level 6 is identical to level 5, but 
organized into subsets accroding to the taxonomy (Fig. S3). 

This provides gene enrichment analysis and marker gene set 
discovery, individually for each taxon. 

Manifold learning. Each individual cell can be viewed as a 
point in a high-dimensional space, with coordinates given by 
the expression of every gene. This space would have about 
27,000 dimensions, one per gene. In principle, cell types 
can be viewed as high-density regions in this space, and 
clustering methods can be used to find them. 

In some sense, cells reside on a low-dimensional manifold 
in the high-dimensional gene expression space. However, 
the high dimensionality and sparseness of this space creates 
the “curse of dimensionality”, where distance measures es-
sentially stop making sense. A second issue concerns meas-
urement noise, with generally low counts and large numbers 
of dropouts (false negatives). Both of these issues can be 
mitigated by (1) selecting a reduced set of informative genes 
and (2) linearly projecting the data to a transformed space 
where each coordinate corresponds to many co-regulat-
ed genes. The most effective way of selecting informative 
genes, would be to select them relative to known classes. We 
therefore developed a staged procedure to learn the manifold.

We first selected 1000 informative genes by fitting a sup-
port-vector regression to the coefficient of variation (CV) as a 
function of the mean, and selecting genes having the greatest 
offset from the fitted curve; this would correspond to genes 
with higher-than-expected variance. We normalized each 
cell to a sum of 5,000 molecules (UMIs), then log-trans-
formed and subtracted the mean (per gene).

We then used principal component analysis (PCA) to both 
reduce noise and to reduce the gene expression space further. 
Dropping non-significant principal components (Kolmogor-
ov-Smirnov test, P < 0.05) reduced the space to a few tens of 
dimensions (typically about forty).

Given a reduced and denoised dataset, we next sought to 
learn the shape of the manifold of cells (that is, the underlying 
lower-dimensional gene expression space on which cells are 
preferentially located). Examining the PCA revealed that 
the manifold consisted of feather-like, elongated structures, 
extending variously into the different principal components. 
We found that the manifold was structured at many levels, 
ranging from broadly different classes of cells, individual cell 
types, to more subtle sub-types or states. 

We constructed a balanced mutual k nearest-neighbor 
(KNN) graph with k = 100 using Euclidean distance in the 
space of significant components. We allowed a maximum 
of 200 incoming edges to each cell and then dropped 
all non-mutual edges. We performed Jaccard multilevel 
community clustering on this graph to define a preliminary 
set of cell types/states. 

Given this preliminary clustering, we were able to select 
an even more informative set of 500 genes, by calculating an 
enrichment score (see below) for each cluster, and selecting 
the 500 / n_clusters most highly enriched genes for each 
cluster. 

Next, we repeated the procedure (PCA, mutual KNN, 
clustering) with modifications as follows. First, for 
computing the PCA transform, we limited the number of 
cells from the largest clusters to contribute max 20% of the 
total cells (to avoid skewing the PCA towards dominant 
cell types; note that we still kept all cells in the dataset, only 
masking those cells when computing the PCA transforma-
tion matrix). Second, we computed a balanced KNN as before 
but we assigned weights w(i,j)=1/k^α, where k is the rank of j 
among the neighbors of i and a is a power that sets the scale 
of the weights. Large values of a will emphasize local neigh-
borhoods, whereas smaller values will emphasize global 
structure, but in both cases, both local and global structures 
are accounted for. For practical purposes, we calculated the 
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multiscale graph only up to k = 100 (beyond which the edge 
weights are vanishing), and we used a = 1. Using a fixed 
maximal k also ensured that the algorithm remained linear 
in the number of cells. We call this a multiscale KNN, and 
stored both the KNN and the mutual KNN for use in further 
clustering and visualization (available as column graphs 
named KNN and MKNN in the Loom files). 

We projected the multiscale KNN graph to two dimensions 
using a modified t-SNE algorithm we call graph t-SNE 
(gt-SNE). In contrast to standard t-SNE, which is based on 
distance measures, we directly projected the multiscale KNN, 
which is based on multiscale weighted ranks. We achieved 
this by replacing the distance matrix P in regular t-SNE with 
the distance matrix of the weighted multiscale KNN graph. 
The result was a more accurate projection of the graph itself, 
with more compact and well-defined neighborhoods. We 
stored the gt-SNE embedding as column attributes _X and _Y 
in the Loom files. 

Clustering. We performed clustering on the multiscale KNN 
graph. We used Louvain multilevel community clustering 
(Blondel et al., 2008). However, modularity-based graph 
clustering suffers a well-known resolution limit (Fortunato 
and Barthélemy, 2007), failing to find small clusters even 
when they are perfectly unambiguously defined. Some 
variants (so called resolution limit-free algorithms) can be 
tuned to detect smaller clusters, but at the expense of breaking 
up large clusters. To circumvent this issue, we exploited the 
fact that we had both a graph, and an embedding of the graph 
in two dimensions. We first used Louvain clustering on the 
graph to find most clusters, and then isolated and re-clus-
tered each cluster using DBSCAN in the low-dimensional 
space. We call this approach “Polished Louvain”.

In more detail, we first performed Louvain community 
detection on the MKNN graph, with resolution set to 1.0 
(except for level 3 where we used 0.6 for astrocytes, 0.35 for 
sensory neurons and 0.6 for granule cells). 

We marked cells as outliers if they (1) belonged to clusters 
with less than ten cells; or (2) were marked as outliers by 
DBSCAN (on the 2D embedding) with ε set to the 80th 
percentile of the distance to the kth nearest neighbor and 
min_samples = 10; or (3) if more than 80% of the cell’s 
nearest neighbors belonged to a different cluster.

Next, we isolated each cluster and considered it for further 
splitting, in the 2D space of the gt-SNE embedding. We 
centered it using PCA and standardized it by subtracting the 
mean and dividing by the standard deviation. We marked 
the cluster for splitting if it now showed three or more 
outliers based on the median absolute deviation (MAD) 
with threshold 3.5. We also marked the cluster for splitting 
if more than 5% of the cells (or 25 cells, whichever is larger) 
were located at a distance greater than the 70th percentile of 
the distance to the kth nearest neighbor. 

If a cluster was marked for splitting, we performed 
DBSCAN on that cluster with ε set to the 70th percentile of 
the distance to the kth nearest neighbor and min_samples = 
5% of the cells (or 25 cells, whichever is larger).

Finally, we set the cluster label of each cell to the majority 
label of its ten nearest neighbors. We stored cluster labels as 
column attribute Clusters in the Loom files (integer ranging 
from 0 to n). At level 5 and 6, cluster names are given by the 
column attribute ClusterName.

Gene enrichment. To aid interpretation of the data (and 
for gene selection, as noted above), we computed a set of 
genes enriched in each cluster. We computed an enrichment 
statistic Ei,j for gene i and cluster j, as follows:

where f is the fraction of non-zero expression values, and μ 
is the mean expression, and j with overdash denotes cells not 
in the cluster. Small constants ε1 = 0.1 and ε2 = 0.01 are added 
to prevent the enrichment score from going to infinity as the 
mean or non-zero fractions go to zero. Enrichment scores 
are available as matrix layer enrichment in the aggregated 
Loom files (named “…agg.loom”). We also computed an 
enrichment q value by shuffling the expression matrix, 
available as layer enrichment_q. To find genes enriched at 
a 10% false discovery rate, for example, simply select genes 
with q scores below 0.1.

Trinarization. It is often useful to estimate (for each cluster) 
if a gene is likely expressed, not expressed, or we are not sure. 
That is, we want to trinarize the raw expression data into calls 
of expressed, not expressed, and indeterminate. Here we used 
a Bayesian beta-binomial model to trinarize the raw data.

The model applies to a cluster of cells representing a 
putatively homogeneous population. In this cluster, we have 
measured gene expression in n cells, and for each cell we have 
either detected the gene, or not. Given detection in k out of n 
cells, we want to know the underlying population frequency 
of expression, Θ. The observed fraction of expressing cells 
can be expressed conditional on the number of cells and the 
population expression frequency. By providing a prior on 
Θ, we can derive the posterior distribution of Θ given the 
observed number of detections:

k | n,θ ~ Binomial(θ, n)
θ ~ Beta(a,b)
θ | n,k ~ Beta(a + k, b + n - k)

The Beta distribution is the conjugate prior to the Binomial, 
and as a consequence the posterior distribution is also Beta, 
and can be calculated simply by updating the parameters. 
Setting a = b = 1 results in a non-informative uniform prior. 
Here, we used instead a weakly informative prior with a = 
1.5, b = 2, which slightly favours the “not expressed” and “in-
determinate” calls.

Using this model to trinarize gene expression, we call 
a gene expressed when P(Θ > f) > (1 - PEP), where f is the 
population fraction of cells expressing the gene, and PEP is 
the desired posterior error probability (also called local false 
discovery rate). For example, with PEP = 0.05, there is less 
than 5% risk, given the observations, that the expressed call 
is wrong. Similarly, we call a gene not expressed when P(Θ > 
f) < PEP. For values between 1-PEP and PEP, we call the gene 
indeterminate. Note that PEP is applied individually to each 
gene (hence, “local FDR”) and the actual genome-wide FDR 
will be strictly equal to or lower than PEP. 

The probability P(Θ > f) can be calculated as:

The formula was derived by evaluating the expression Prob-
ability[x>f, {x~BetaDistribution[a+k, b+n-k]}] in 
Mathematica (version 10, Wolfram Research Inc.). Here, 
B(z; a, b) is the regularized incomplete beta function, B(a, b) 
is the beta function, and Γ is the gamma function.

Evaluating this function, for a given k and n (and hy-
perparameters f, a and b) yields a probability P, which we 
compare to the thresholds 1-PEP and PEP to give the gene 
an expression call. We used a=1.5, b=2, f=0.2 and PEP=0.05 
to make the calls in this paper, unless otherwise indicated. 
Thus a gene was considered expressed if it was estimated to 
be present in at least 20% of the cells with no more than 5% 
posterior error probability.

Note that the formula as written suffers from numerical 
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instability when evaluated at finite precision. This problem 
can be avoided by using logarithms of the beta and gamma 
functions, and then exponentiating. See the source code of 
function p_half in the file diff_exp.py for a complete, nu-
merically stable implementation.

Trinarization scores are available in layer trinaries in 
the aggregated loom files.

Marker gene set discovery. Many, even most, of the cell 
types described in this paper were not previously associated 
with known makers. We therefore designed an algorithm to 
automatically propose marker sets for all clusters. Here, we 
define a marker gene set as a set of genes that are all expressed 
in a given cluster, but not all expressed in any other cluster. 
We used trinarization to judge if a gene is expressed or not 
in each cluster.

Given a cluster, we first selected the most highly enriched 
gene, which would often not be unique to that cluster, but 
highly selective for a small number of closely related clusters. 
Next, we added the most specific gene, based on trinariza-
tion with a PEP of 0.05. This gene was very often specific to a 
very small number of clusters, and using the first two genes 
together would often lead to fully specific marker combi-
nations. However, sometimes adding more genes would be 
necessary.

We added genes one at a time by picking the most selective 
gene, in combination with the previously selected genes. 
When more than one gene was equally selective, we picked 
the one that was most highly enriched. We defined selec-
tivity as the reciprocal of the number of clusters that would 
be selected given the current gene set and the trinarization 
scores. That is, gene set that would be all-positive in k clusters 
would have selectivity 1/k. Adding more genes rapidly drove 
selectivity towards 1.

We generated gene sets in this manner for all clusters, with 
up to six genes per cluster. We also calculated the cumulative 
selectivity, specificity (difference between the posterior prob-
ability for the best cluster and that of the second-best cluster), 
and robustness (the posterior probability that all genes would 
be detected in the cluster, based on trinarization scores). We 
reported these statistics cumulatively for n = 1, 2, 3, 4, 5 and 6 
genes. Generally, robustness drops as more genes are added, 
while selectivity increases. Specificity tends to increase as 
the gene set becomes more selective, but then decrease as it 
becomes less robust.  

We note that marker gene sets are excellent candidates to 
use for experimentally identifying cell types, e.g. based on 
genetic or antibody labelling. Marker gene sets and associated 
statistics for all clusters are provided in the wiki, and in the 
Loom files under column attributes MarkerGenes, MarkerSe-
lectivity, MarkerSpecificity and MarkerRobustness.

Dendrogram construction. All linkage and distance calcu-
lations were performed after log2(x+1) transformation. The 
starting point of the dendrogram construction was the 265 
clusters. For each gene, we computed average expression, 
trinarization with f = 0.2, trinarization with f = 0.05 and 
enrichment score. For each cluster we also know the number 
of cells, annotations, tissue distribution and samples of 
origin.

We defined major classes of cell types based on prior 
knowledge: neurons, astroependymal, oligodendrocytes, 
vascular (without VLMC), immune cells and neural crest-
like. For each class, we defined pan-enriched genes based 
on the trinarization 5% score. Each class (except neurons) 
was tested against neurons, to find all the genes where the 
fraction of clusters with trinarization score = 1 in the class 
was greater than the fraction of clusters with trinarization 
score > 0.9 among neurons.

In order to suppress batch effects (mainly due to ambient 
oligodenderocyte RNA in hindbrain and spinal cord samples), 
we collected the unique set of genes pan-enriched in the 
non-neuronal clusters, as well as a set of non-neuronal genes 
that we believe to have tendency to appear in floating RNA 
(Trf, Plp1, Mog, Mobp, Mfge8, Mbp, Hbb-bs, H2-DMb2) and 
a set of immediate early genes (Fos, Jun, Junb, Egr1). These 
genes were set to zero within the neuronal clusters to avoid 
any batch effect when clustering the neuronal clusters. We 
further removed sex specific genes (Xist, Tsix, Eif2s3y, Ddx3y, 
Uty, and Kdm5d) and immediate early genes Egr1 and Jun 
from all clusters.

We bounded the number of detected genes in each cluster 
to the top 5000 genes expressed, followed by scaling the total 
sum of each cluster profile to 10,000.

Next, we selected genes for linkage analysis: from each 
cluster select the top N=28 enriched genes (based on pre-cal-
culated enrichment score), perform initial clustering using 
linkage (Euclidean distance, Ward in Matlab), and cut the 
tree based on distance criterion 50. This clustering aimed to 
capture the coarse structure of the hierarchy. For each of the 
resulting clusters, we calculated the enrichment score as the 
mean over the cluster divided by the total sum and selected 
the 1.5N top genes. These were added to the previously 
selected genes.

Finally, we built the dendrogram using linkage (correla-
tion distance and Ward method).

Test for dendrogram stability. We tested the stability of the 
dendrogram structure while changing the number of genes 
selected for calculating the dendrogram. We selected N in 
the range 10-44. For each N we repeated the procedure above 
and stored the selected genes and dendrogram structure. We 
then examined all branches (junctions) of the reference tree 
(N=28)  and compared them to the corresponding branch in 
the test tree. We derived two stability criteria (1) branches 
with leafs below having 90% overlap in test compared to 
reference, (2) branches with exactly the same set of clusters 
and the same order of the leafs. For each branch we calculated 
the fraction of cases that either criteria (1) or (2) occurred. 
More than 65% of the 264 branches had probability of 1 and 
94% had probability greater than 0.5 based on criterion (1). 
Based on the more stringent criterion (2) more than 50% had 
probability of 1 and about 85% greater than 0.5.

Testing for dendrogram without any gene exclusion. In 
the dendrogram construction described above we used 
several steps of exclusion genes either from all clusters or 
from the neuronal clusters in particular. This was done due 
to our observation of background levels of gene detection 
which seemed to be depend on very abundant cell types 
the dissected region (e.g. oligodendrocytes in hindbrain 
or enteric glia in the enteric nervous system). This is likely 
because of floating RNA coming from dead cells or doublets 
either with abundant cells or parts of broken cells. Still, due 
to the risk of misinterpreting the data we also constructed 
the dendrogram based on similar procedure but without any 
gene exclusion. The resulting dendrogram was not funda-
mentally changed from Fig. 1C, but included a few key differ-
ences which we believe are technical artefacts. First, enteric 
neurons clustered together with the enteric glia probably due 
to fact that enteric glia were extremely abundant in the tissue. 
This created a big enough change that the other PNS neurons 
created a separate branch disconnected from the other 
neurons. Second, the olfactory bulb inhibitory neurons were 
placed next to the MSNs. This branch in turn was connected 
to a branch mainly containing neuroblasts. Finally, the 
OPC cluster was placed next to the SZNBL cluster probably 
because of strong cell-cycle signal.
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Spatial correlation analysis. Our aim here is to try and map 
the gene expression profile at the cluster level to the in-situ 
hybridization atlas of the Allen Institute for Brain Research. 
The Allen Mouse Brain Atlas was summarized into a 200 
µm voxel dataset, providing the gene expression profile (all 
genes) for each voxel. In this analysis we used simple corre-
lation between the voxel gene expression (from in situ hy-
bridization) and the cluster gene expression profile (from 
scRNAseq).

For each gene, the voxel data is a 67×41×58 (rows × 
columns × depth) array, giving an “energy” value represent-
ing the expression. In addition, for each voxel we know the 
anatomical annotation. The Allen Brain reference atlas is 
given at a finer resolution with voxels of 25µm (528×320×456). 
In order to achieve finer resolution and smoother images we 
used linear interpolation of the coarse (200 µm) in-situ data 
into the finer grid (25 µm). For annotation we used the color 
code of the Allen reference atlas.

Since many genes have information only from sagittal 
sections of one hemisphere, we can neglect one hemisphere 
also from the genes that have coronal data. Coronal data is 
preferred since it has better sampling.

Procedure. First, we define the energy of any voxel outside 
the valid domain to -1. We define genes as high-quality 
(in situ data) when they satisfy: average voxel energy > 0.2 
and more than 30 voxels higher than 5. This was calculated 
over the valid domain voxels. The thresholds were based 
on inspection of the mean-vs.-CV, variance etc (data not 
shown). Next, we normalized the voxel energy: for each gene, 
transform the energy by (log2(voxel_energy(i, in)+1) - m)/s, 
where m = mean(log2(voxel_energy(i,in)+1)); s = std(log2(vox-
el_energy(i,in)+1)) and in = voxel_energy(i,:)>0.

We then loaded aggregate (mean per cluster) data for 
each cell type and selected the genes as described above for 
dendrogram construction analysis. We then intersected the 
selected genes from aggregate data and quality filter on energy 
voxel data. We calculated the correlation between each voxel 
and each cell-type, where voxel data was normalized as above 
and the aggregate data was normalized in a similar way ( 
(X-m)/s ) after log2(x+1) transform. Finally, we calculated the 
regional fold enrichment: for each cell-types take the top 
100 pixels (across the whole brain) and calculate the fold-en-
richment of the anatomical region IDs that are among them 
by normalizing to frequency within the 100 to the overall 
frequency of each region ID.
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