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Abstract:  

 

The transcription factor NeuroD2 is a recent candidate for neuropsychiatric disorders but its 

impact in cortical networks and associated behaviors remains unknown. Here we show that 

in the mouse neocortex, NeuroD2 is restricted to pyramidal neurons, from development to 

adulthood. In NeuroD2 deficient mice, layer 5 pyramidal neurons of motor area displayed 

reduced dendritic complexity and reduced spine density. In contrast, production, radial 

migration, laminar organization and axonal target specificity of pyramidal neurons were 

normal, revealing a synaptopathy phenotype. Electrophysiologically, intrinsic excitability and 

inhibitory inputs onto pyramidal neurons were increased. Behaviorally, NeuroD2 

homozygous and heterozygous mice exhibited normal interest and memory for objects but 

altered sociability and social memory, stereotypies, spontaneous epilepsy and hyperactivity. 

RNA sequencing from microdissected neocortex revealed that NeuroD2 target genes are 

highly associated with in cell intrinsic excitability, synaptic regulation, autism and 

schizophrenia. These results strongly reinforce the potential implication of NeuroD2 

mutations in human neuropsychiatric disorders.  

 

 

Keywords: cortical pyramidal neurons, NeuroD2 transcription factor, intrinsic excitability, 

dendrites and spines, autism/schizophrenia 
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Introduction 

Alterations in synaptic transmission, neuronal excitability and/or of excitation/inhibition 

balance in pyramidal neurons (PNs) of the neocortex are emerging theories of the 

pathophysiology of several neurodevelopmental and neuropsychiatric disorders including 

autism spectrum disorders (ASD) and schizophrenia (SCZ) (Rubenstein and Merzenich, 

2003; Zoghbi and Bear, 2012). Despite a field of intense investigation, the factors that 

regulate synaptic transmission or cell intrinsic excitability in cortical PNs remain poorly 

understood. 

NeuroD2 belongs to the family of NeuroD basic helix-loop-helix transcription factor that bind 

genomic E boxes (CANNTG) to regulate neuronal differentiation during development (Lee et 

al., 1995). While cortical expression of its closest and first identified paralog NeuroD1 is 

turned off around birth (Lee et al., 1995), NeuroD2 cortical expression persists postnatally 

(McCormick et al., 1996), suggesting that it might be involved in processes other than early 

neuronal differentiation (Lee et al., 1995). Interestingly, NeuroD2-mediated transcription is 

regulated by neuronal activity in cultured cortical PNs (Ince-Dunn et al., 2006). Moreover, few 

studies indicate that NeuroD2 might regulate synaptic formation and/ or function in the 

hippocampus (Wilke et al., 2012), amygdala (Lin et al., 2005) and cerebellum (Yang et al., 

2009). Finally, rare single nucleotide polymorphisms in NeuroD2 are associated with risks of 

schizophrenia (Spellmann et al., 2017). Together, the current evidence suggests that 

NeuroD2 might be involved in synaptic formation in the cerebral cortex and thus be related 

with neurodevelopmental and neuropsychiatric disorders. 

Here, we analyze the development of the cerebral cortex in NeuroD2 constitutive knockout 

(KO) mice, by focusing on layer 5 of the motor area because it has been associated with 

ASD (Willsey et al., 2013) and SCZ (Benes et al., 1986) in humans. We find that NeuroD2 

KO PNs display molecular, anatomical and electrophysiological alterations, which correlate 

with behaviors that are highly relevant to neurodevelopmental and neuropsychiatric disorders 

such as ASD and SCZ. Indeed, while NeuroD2 deficiency does not alter migration, subtype 

specification, layer position and axonal targeting identity of PNs, it specifically reduces spine 
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density, increases cell intrinsic excitability and alters the expression of ASD and SCZ-

associated genes as revealed by RNA deep sequencing. Behaviorally, NeuroD2 deficiency 

decreases sociability and social memory and induces ASD-comorbidity like behaviors such 

as epilepsy and hyperactivity.  These extensive analyses support the potential implication of 

NeuroD2 mutations in human neuropsychiatric disorders.  
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Material & Methods: 

Animals. Mice (mus musculus) were group housed (2–5 mice/cage; unless specified) with 

same-sex littermates on a 12 hr light-dark cycle with access to food and water ad libitum. 

NeuroD2 deficient mice were previously described (Bormuth et al., 2013). Mice were bred 

and maintained on a mixed SVeV-129/C57BL/6J background. Experimenters were blinded to 

the mouse genotype during data acquisition and analysis. Animal experiments were carried 

out in accordance with European Communities Council Directive and approved by French 

ethical committees (Comité d’Ethique pour l’expérimentation animale no. 14; permission 

number: 62-12112012). 

 

Histology - Immunohistochemistry. 

Mice were perfused transcardially with ice-cold 4% paraformaldehyde (in PBS). Brains were 

removed and post-fixed overnight at 4°C with the same fixative. Coronal sections were cut at 

50 um thickness using a cryostat (Leica) or a microtome (Microm). 

Immunofluorescence experiments were performed as described before (de Chevigny et al., 

2012). Briefly, free-floating sections were blocked and permeabilized for one hour in a 

“blocking solution” composed of 10% Normal Goat Serum, 0.2% Triton X-100 (Sigma) in 

PBS. Primary antibodies, diluted in blocking solution and added overnight at 4°C, were as 

follows: rabbit anti-NeuroD2 (Abcam # 104430, 1:1000), rabbit anti-Tbr1 (Abcam, 1:1000), rat 

anti-Ctip2 (Abcam # ab18465, 1:100), mouse anti-Satb2 (Abcam # ab51502, 1:500). 

Corresponding fluorescently labeled secondary antibodies (AlexaFluor, Invitrogen) were 

added for 2 hours in blocking solution. Hoechst was added in PBS for 10 minutes, and 

sections were mounted on microscope slides that were coversliped using Mowiol solution 

(Sigma). 

 

Quantitative reverse transcription polymerase chain reaction (qRT-PCR). Total RNAs 

were extracted from whole cortex (for developmental expression of NeuroD2, Fig. S1) taken 

at various developmental stages (E14.5, E16.5, E18.5, P7, P14 and P30) (n = 3-4 brains per 
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stage in each condition), or from motor plus somatosensory areas (Fig. 5a, n=3 samples per 

condition) using TRIZOL reagent according to manufacturer's instructions (Life Technology). 

cDNA was synthesized from 1 µg of total RNA using Quantitect Reverse Transcription Kit 

and according to manufacturer protocol (Qiagen). RT-PCRs were then carried out using 

SYBR-Green chemistry (Roche Diagnostics) and Roche amplification technology (Light 

Cycler 480). PCR primers (Table below) were designed for 12 mouse genes, and for 3 

control genes, cyclo-oxigenase 2 (COX2), Ribosomal protein L13a (Rpl13a) and HPRT for 

relative quantification. All primer pairs were optimized to ensure specific amplification of the 

PCR product and the absence of any primer dimer. Quantitative PCR standard curves were 

set up for all. Values of fold change represent averages from duplicate measurements for 

each sample. 

 

In vitro electrophysiology. Coronal slices (250 µm) from 21 to 30 days-old mice were cut 

with a VT 1000S vibratome (Leica) in ice-cold high-choline artificial cerebro-spinal fluid 

(ACSF) containing (in mM): 130 choline, 2.5 KCl, 1.25 NaH2PO4, 7 MgCl2, 0.5 CaCl2, 25 

NaHCO3 and 7 glucose at 4°C. Slices were then maintained at room temperature in 

oxygenated ACSF containing (in mM): 126 NaCl, 2.5 KCl, 1.2 NaH2PO4, 1.2 MgCl2, 2.4 

CaCl2, 25 NaHCO3 and 11 glucose, to which 250 µM kynurenic acid and 1 mM sodium 

pyruvate were added. Slices were then transferred one at a time to a submersion recording 

chamber and were perfused continuously with ACSF warmed to 33°C at a rate of 2.5-3 

ml/min. All solutions were equilibrated with 95% O2/5% CO2. Neurons were visualized on an 

Gene	 Forward	 Reverse	
NeuroD2 AAGCCAGTGTCTCTTCGTGG  GCCTTGGTCATCTTGCGTTT  

Scn4b GAACCGAGGCAATACTCAGG ACGACAGGTACATGGGAAGC 

Kcnk4 CACTCACTGGCCTGGACAA GAGCTCCTGGGGAGCAGT 

Scn8a CAAGCTGGAGAATGGAGGCA TAAGAGGGGAGGGAGGCTGT 

Kcnh1 GGTGAGAATGTTCACAAGCACT ACTGGGGAAGGATGTCTGAA 

Scn1a GGTTTGAGACCTTCATTGTGTTC TTTTGATCGTCTTTCGCTGA 

Kcnq5 TACAGGAGCAGCACCGCCAG CCTTGTTCTTTCTTGGTAGGGC 

Cacna1c CCCTTCTTGTGCTCTTCG TC  TTGTGCATCTTTCCCATG AA  

Grin2b TGCTGTAGCTGTCTTTGTCTTTG CTTTGCCGATGGTGAAAGAT 

Htr2a CTGCTGGGTTTCCTTGTCAT  GTAAATCCAGACGGCACAGAG  

Cdh8 GTGACCCTGATATCACTTCCAGT TCTTCCCATCATCTGCATTG 

Ppia1 QT00247709 QT00247709 

Rpl13a CCCTCCACCCTATGACAAGA  GCCCCAGGTAAGCAAACTT  

HPRT QT00166768 QT00166768 

Primers for qPCR 
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upright microscope (Nikon Eclipse FN1) equipped with DIC optic and filter set to visualize 

EYFP using a x40 water-immersion objective. Recordings were interleaved in control and 

NeuroD2 KO mice.  

Miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs, 

respectively) were recorded in whole-cell configurations in voltage-clamp mode in 

oxygenated ACSF containing tetrodotoxin (TTX, 1 µM). Patch-clamp electrodes (4-6 MΩ) 

were filled with an intracellular solution of the following composition (in mM): 120 CsMeSO4, 

12.3 CsCl, 0.1 CaCl2, 1 EGTA, 10 HEPES, 4 MgATP, 0.3 NaGTP, pH adjusted to 7.25 with 

CsOH and osmolarity adjusted to 270-280 mOsm/L. Cells were kept at -60 mV, the reversal 

potential for GABAergic events, or -4 mV, the reversal potential for glutamatergic events, for 

the recordings of mEPSCs and mIPSCs, respectively. In some experiments, picrotoxin (50 

µM) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 µM) were applied at the end of the 

experiment to verify that the currents were indeed GABAergic and glutamatergic, 

respectively. Access resistance was monitored throughout the experiments with a 5-mV 

negative step and was found to be constant. For current-clamp recordings, glass electrodes 

(6–9 MΩ) were filled with an internal solution containing the following (mM): 130 KMeSO4, 5 

KCl, 10 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, 2.5 MgATP, 0.3 NaGTP, 0.2 

ethyleneglycoltetraacetic acid, 10 phosphocreatine, and 0.3-0.5% biocytin, pH = 7.21. 

Access resistance ranged between 15- 22 MΩ, and the results were discarded if the access 

resistance changed by >20%. TTX, was obtained from Abcam, CNQX from Tocris and 

picrotoxin and kynurenic acid from Sigma.  

Data were collected with a MultiClamp 700B amplifier (Molecular Devices), filtered at 2kHz, 

digitized (10kHz) with a Digidata 1440A (Molecular Devices) to a personal computer, and 

acquired using Clampex 10.1 software (PClamp, Axon Instruments, Molecular Devices). 

Data were analyzed and plotted in clampfit (Molecular Devices, v 10.2). Miniature currents 

were analyzed with Mini Analysis (Synaptosoft, version 6.0.7). 
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Behavior.  

All behavioral tests were done with age-matched littermate of male mice, aged 8-14 weeks 

old. All experiments were performed according to the European Union and national 

recommendations for animal experimentation. The experimenter was blind to the genotype of 

the mice during all the tests. 

 

Open-field. Open-field test was performed in a 40 x 40 cm square arena with an indirect 

illumination of 100 lux. Mouse mouvement was video-tracked using Smart 3.0 software 

(Panlab, Harvard apparatus) for one hour. Total distance traveled and time in center 

(exclusion of a 5 cm border arena), resting time, mean speed were measured. The open-field 

arena was cleaned and wiped with H20 and 70% ethanol between each mouse. All data 

shown are means +/- s.e.m. and analyzed using one way ANOVA or Kruskall-Wallis ANOVA 

when required. (WT : n=16 ; Het : n=15 ; KO : n=15). 

 

Stereotyped behavior. During the first 10 min open-field test period, the number of rearings 

and the number of circling were measured manually. Both on-wall and off-wall rearings were 

counted together. An on-wall rearing event was counted when both front-paws were apposed 

on the wall. An off-wall rearing event was counted when both front paws had left from the 

floor away from the wall. A complete 360-degree turn of nose angle with respect to the body 

center of the mouse was counted as one circling event. All data shown are means +/- s.e.m. 

and analyzed using Kruskall-Wallis ANOVA. (WT : n=16 ; Het : n=15 ; KO : n=15). 

 

Three-chamber social preference test. The test was performed as described previously 

(Gascon et al. 2014). The three-chamber apparatus consisted of a Plexiglas box (60 x 40 

cm, each chamber being 20 x 40 cm) with removable floor and partitions dividing the box into 

three chambers with 5-cm openings between chambers. Test mice were housed individually 

the day before test. The task was carried out in five trials of 5 min each. After each trial, the 
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mouse was returned to his home cage for 15 min. The three-chambers apparatus was 

cleaned and wiped with 70% ethanol between each trial. 

In the first trial, a test mouse was placed in the center of the three-chamber unit, where two 

empty wire cages were located in the left and right chambers to habituate the test mouse. 

The mouse was allowed to freely explore each chamber. The mouse was video-tracked for 5 

minutes with Smart 3.0 software. In the second 5-minute session, an 8-weeks old C57Bl/6J 

mouse (M1) was placed randomly in one of the two wire cages to avoid any place 

preference. The second wire cage remained empty (E). The test mouse was placed in the 

center, and allowed to freely explore the chamber for 5 min. In the following two trials, the 

same mouse M1 was used as target, and the test mouse was placed in the center and 

allowed to explore each chamber. In the last 5-min session, a new 8-weeks old C57Bl/6J 

mouse (M2) was placed in the second wire cage. Thus, the test mouse has the choice 

between a familiar mouse (M1) and a new stranger mouse (M2). Time spent in each 

chamber and time spent within a 5-cm square proximal to each wire cage with the nose 

towards the cage (that we called investigation time) were measured. All data presented are 

means +/- s.e.m. and analysed using two-way ANOVA with Bonferroni's post hoc analysis. 

(WT : n=14 ; Het : n=15 ; KO : n=13). 

 

New object recognition. The arena used for the novel object recognition test was the same 

used for the open-field test. The arena was cleaned and wiped with 70% ethanol between 

each mouse. In the habituaion session, the tested mouse was placed in the arena and 

allowed to explore for 10 min. Following habituation, two identical objects (50 ml orange 

corning tube) were placed in the opposite corners of the arena, 10 cm from the side walls. 

The tested mouse was placed in the center of the arena, and allowed to explore the arena for 

10 min. After 24 h, one object was replaced with another novel object, which was of similar 

size but differ in the shape and color with the previous object (white and blue lego bricks). 

Then, the same mouse was placed in the center, and allowed to explore arena and two 

objects (a new and an "old" familiar object) for 10 min. The movement of the mice was video-
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tracked with Smart 3.0 software. Time in each proximal area (nose located in a 2 cm area 

around the object) was measured. All data shown are means +/- s.e.m. and analyzed using 

Student's two-tailed, paired t-test or Wilcoxon Signed Rank Test when required. (WT : n=16; 

Het : n=15 ; KO : n=15). 

 

Retrograde tracing. P28 mice under xylazine/ketamine anesthesia received stereotaxic 

injections of 0.3 µl of cholera toxin subunit B (CT-B, 1 mg/ml; Thermo Fisher Scientific) 

conjugated with Alexa Fluor 488 in the striatum (AP: +1 mm; ML: +1.8 mm; DV: −2.9 mm 

from dura) and conjugated with Alexa Fluor 647 in the thalamus (AP: −1.3 mm; ML: +1.15 

mm; DV: −3.5 mm from dura) using Bregma coordinates. This allowed retrograde labeling of, 

respectively, L5 PNs (striatal injection) and L6 PNs (thalamic injection). Another group of 

animals were injected with Alexa Fluor 488 CT-B in motor cortex (AP: 0.6 mm; ML: 1.3 mm; 

DV: 0.7 mm). At 10 d after injection, animals were perfused transcardially with 4% 

paraformaldehyde. 

 

RNA Isolation and library preparation. Tissue from motor plus somatosensory cortex of 

P28 mice were rapidly micro-dissected and frozen at -80˚C (n=3 experiments for WT, 

heterozygous and KO samples, 1 to 4 mice per sample). Total RNA was purified using spin 

columns of the RNeasy Mini Kit (Qiagen) according to manufacturer’s protocol. Library 

preparation was made with the TruSeq mRNA-seq Stranded v2 Kit sample preparation 

(Illumina) according to manufacturer’s instructions. One µg total RNA was used for poly(A)-

selection and Elution-Fragmentation incubation time  was 8 min to obtain 120-210 bp 

fragments. Each library was barcoded using TruSeq Single Index (Illumina). After library 

preparation, Agencourt AMPure XP (Beckman Coulter, Inc.) was performed for 200 to 400 bp 

libraries size-selection (282 nt average final library size). Each library was examined on the 

Bioanalyzer with High Sensitivity DNA chip (Agilent), quantified on Qubit with Qubit® dsDNA 

HS Assay Kit (Life Technologies), diluted to 4 nM and then pulled together at equimolar ratio. 
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Illumina NextSeq-500 sequencing. Sequencing was performed by the TGML Facility 

(INSERM U) using PolyA mRNA isolation, directional RNA-seq library preparation and the 

Illummina NextSeq 500 sequencer. The denaturation was performed with 5 µl of pooled 

libraries (4 nM) and 5 min incubation with 5 µl of fresh NaOH (0.2N) and then addition of 5 µL 

of fresh Tris-HCl (200 mM - pH 7), according to manufacturer’s instructions. The dilution of 

20 pM pooled libraries was performed with HT1 to a 1.2 pM final concentration. PhiX library 

as a 1% spike-in for use as a sequencing control was denatured and diluted, and 1.2 µl was 

added to denature and dilute pooled libraries before loading. Finally, libraries were 

sequenced on a high-output flow cell (400M clusters) using the NextSeq® 500/550 High 

Output v2 150 cycles kit (Illumina), in paired-end 75/ 75nt mode, according to manufacturer’s 

instructions. 

 

RNA-seq data primary analysis. 467 548 934 clusters were generated whose for 71 Gbp 

sequenced with 75 % >= Q30. Reads were first trimmed with sickle v1.33 (Joshin et al., 

2011) (RRID:SCR_006800) with parameters –l 25 –q 20 and then aligned to mm10 using 

STAR v2.5.3a (Dobin et al., 2013) to produce BAM alignment files. Multi-mapped reads and 

reads with more than 0.08 mismatches per pair relative to read length were discarded. 

Transcriptome assembly were performed with Cufflinks v2.2.1 (Trapnell C. et al 2010) 

(RRID:SCR_014597) using the relative UCSC mm10 GTF file. For each sample Cufflinks 

assembles the RNA-Seq reads into individual transcripts, inferring the splicing structure of 

the genes and classified them as known or novel. The output GTF files from each of the 

Cufflinks analysis and the GTF annotation file were sent to Cuffmerge v2.2.1 (Trapnell C. et 

al 2010) (RRID:SCR_014597) to amalgamate them into a single unified transcript catalog. 

 

Isoforms expression analysis from RNAseq data 

Transcripts expression in fragments per kilobase of exon per million reads mapped (FPKM), 

were estimated and normalized with Cuffdiff v2.2.1 (Trapnell C. et al 2010) 

(RRID:SCR_014597) with default parameters from Cuffmerge GTF file result and alignment 
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files. The R package CummeRbund v2.16 (Trapnell C et all 2012) (RRID:SCR_014568) was 

used for data exploration and figure generation of some isoforms of interest. 

 

Differential gene expression analysis 

Gene counts were calculated with featureCounts v1.4.6-p4 (Liao Y et al., 2014) 

(RRID:SCR_012919) from a GTF containing known UCSC mm10 genes as well as the novel 

genes detected by Cufflinks (Cufflinks class code “u”) and alignment files. The R package 

DESeq2 v1.14.1 (Love MI et al., 2014) (RRID:SCR_000154) was then used to normalize 

counts and detect the differentially expressed genes (FDR < 0.05). Batch effect between 

replicates was added in the design formula of DESeqDataSetFromMatrix function to model it 

in the regression step and subtract it in the differential expression test. 

The RNA-Seq data discussed in this publication have been deposited in NCBI’s Gene 

Expression Omnibus and are accessible through GEO Series accession number 

GSE110491 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE110491).  

 

Gene ontology. Gene ontology enrichment was performed using all of the expressed genes 

as background. We used DAVID (RRID:SCR_003033) with high stringency parameters 

(Huang da et al., 2009), and ClueGo (Cytoscape) (Bindea et al., 2009) with a similar 

approach. DAVID adjusted p-values were used for further evaluation.  

 

RNA-Seq statistics. We assumed that the samples were normally distributed. P-values for 

overlaps were calculated with binomial test using a custom made R script. P-values were 

subsequently adjusted for multiple comparisons using Benjamini-Hochberg FDR procedure. 

Two-way permutation test of 1000 was adapted to validate the overlaps. We randomized the 

differentially expressed gene sets by randomly selecting same number of genes from RNA-

seq expressed genes and subsequently calculating the overlap P-values. Moreover we 

adapted a permutation test to evaluate the detected differentially expressed genes, 

randomizing 1000 times the RNA-seq data and recalculating the differentially expressed 
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genes. Analysis for RNA-seq was performed using custom made R scripts implementing 

functions and adapting statistical designs comprised in the libraries used. The heatmap for 

gene expression was performed from the gene overlap file using scripts written on R. 

 

Statistics. All values represent the averages of independent experiments ± SEM. Statistical 

significance between two normally distributed groups was determined by Student’s t-test 

using two-tailed distribution unless specified, and by Mann-Whitney test when distributions 

were not normal. Significance of multiple groups was determined by either one- way, or two-

way, or two-way repeated measure ANOVA followed by either Bonferroni’s or Tukey’s post 

hoc test as indicated. Differences were considered to be significant if p < 0.05. All statistical 

analyses were performed with Sigmaplot 12.5 or Prism 6 (Graphpad) softwares. 
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Results 
 

NeuroD2 is confined to excitatory pyramidal neurons (PNs) in the embryonic and adult cortex 

We first examined NeuroD2 expression in the brain throughout development. In situ 

hybridizations (Allen Brain Atlas, http://www.brain-map.org/) showed that NeuroD2 mRNA is 

expressed in the cortical plate and hippocampus starting from E13.5 (Fig. S1a-e). In the 

postnatal cortex, NeuroD2 mRNA was maintained after birth, and observed in layers 2 to 6 at 

all ages examined (Fig. S1d-e). Quantitative RT-PCR from E14.5, E16.5 and E18.5, P7, P14 

and P30 cortices showed that NeuroD2 mRNA expression reached a peak at E18.5 and then 

remained expressed at a constant level postnatally (Fig. S1f). At the protein level, NeuroD2 

was detected embryonically (Fig. 1a, Fig. S1g) and maintained postnatally in cortical layers 2 

to 6 (Fig. 1b, Fig. S1h, i). NeuroD2 protein was expressed in Ctip2-expressing PNs of layer 5 

(Fig. 1c at P28; Fig. S1h at P3), and also by PNs of other layers (not shown). NeuroD2 

protein was never found in Gad67-GFP+ inhibitory neurons (Fig. 1c, Fig. S1i) nor in glial cells 

(not shown). In sum, NeuroD2 is confined to PNs in all cortical layers including layer 5 and 

expressed lifelong, with an expression peak at E18.5. 

 

Normal cortical layering, migration and connectivity in the absence of NeuroD2 

To determine the impact of NeuroD2 deletion on gross cortical development, we first 

analyzed cortical architecture and laminar distribution of PNs in P30 NeuroD2 KO versus wild 

type (WT) mice. Global anatomy of the mutant cortex appeared unaltered as demonstrated 

by a normal thickness of both cortical plate and corpus callosum (Fig. 1d-e). We analyzed 

density and laminar distribution of PN subtypes as determined by the expression of major 

regulatory genes for cortical layers: Tbr1 for layer 6 cortico-thalamic (CT) neurons, Ctip2 for 

layer 5 pyramidal tract (PT) neurons, Satb2 for intratelencephalic (IT) neurons of layers 2/3 

and 5 (Shepherd, 2013; Harris and Shepherd, 2015), and Cux1 for layer 2-3 and 4 neurons 

(Cubelos et al., 2010). Each PN type was observed in normal amount and laminar 

distribution in the motor cortex (Fig. 1f-i). These parameters were also unaltered in the 
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somatosensory cortex (Fig. S2a-d), another area associated with ASD (Willsey et al., 2013) 

and possibly SCZ (Reite et al., 2003; Newson et al., 2005), indicating that normal 

developmental patterning might be a general feature in the mutant cortex.  

Despite normal adult lamination, delayed or accelerated radial migration can lead to 

neurodevelopmental disorders through abnormal maturation and connectivity of cerebral 

cortical PNs (Falace et al., 2014). As NeuroD2 is already expressed when neurons 

translocate through the embryonic intermediate zone (IZ, Fig. 1a and Fig. S1g) we asked if 

radial migration of PN precursors is altered in mutant mice. To this aim, a red fluorescent 

protein (RFP) reporter plasmid was introduced into layer 5 neural progenitors by E13.5 in 

utero electroporation, and the distribution of RFP+ cells analyzed 5 days later. At E18.5, in 

both genotypes the majority of RFP+ cells were found in the lower cortical plate (LCP), 

indicating that constitutive NeuroD2 deficiency does not prevent or accelerate radial 

migration out of the ventricular zone (VZ) and subventricular zone (SVZ) (Fig. 1j-l).  

 

The subtype identity of a cortical PN is determined not only by the expression of specific 

transcriptional regulators and the laminar position of the cell body, but also by its axonal 

targets (Lodato et al., 2011; Rouaux and Arlotta, 2013; Ye et al., 2015). Thus, we asked if 

axon targeting specificities are altered in NeuroD2 KO mice. We injected mice with 

retrograde tracers at each of three main target regions of motor cortex: the ventrolateral 

thalamus to label layer 6 CT neurons, the striatum to label ipsilateral PT and IT layer 5 PNs 

and contralateral M1 to label callosal IT neurons (Oswald et al., 2013; Shepherd, 2013). In 

both WT and KO mice, thalamic, striatal and contralateral M1 injections retrogradely labeled 

preferentially layers 6, 5 and 2/3, respectively (Fig. 1m-p), indicating that axonal targeting 

specificities of PN subtypes is preserved in absence of NeuroD2 expression. Normal shape 

of the corpus callosum and of other axonal tracts after L1 immunostaining (Fig. S2e-f) 

confirmed the absence of axonal targeting deficits. In conclusion, NeuroD2 deficiency did not 

alter amount, migration, molecular and axonal targeting identities of PN subtypes. 
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Dendritic and synaptic phenotypes in layer 5 PNs of NeuroD2 KO mice 

Chip-seq analyses of NeuroD2 binding sites in the neonatal cortex point to an enrichment in 

genes involved in dendritic development and synapse organization (Guner et al., 2017). 

Furthermore, alterations in dendritic organization and spine density are specific hallmarks of 

ASD and SCZ (Penzes et al., 2011). For these reasons, we searched for a role of NeuroD2 

in dendritic and synaptic morphogenesis. As for migration analyses, we used layer 5 neurons 

as a model cell type relevant to ASD (Willsey et al., 2013) and SCZ (Benes et al., 1986). 

Experimentally, we obtained high-resolution access to these neurons by breeding NeuroD2 

KO with the Thy1-GFP colony (line M) (Feng et al., 2000; Fenelon et al., 2013).  

First, we analyzed dendritic length and complexity. In basal compartment, dendritic length 

was reduced between the 4th and 5th nodes away from soma in NeuroD2 KO mice (Fig. 

S3a,b). Furthermore, extensive 3D Sholl analysis demonstrated a significantly reduced 

dendritic complexity in NeuroD2 KO cells (Fig. 2a). Similarly, 3D Sholl analysis in the apical 

tuft showed a reduced complexity of terminal branches (Fig. 2b), while total dendritic length 

was unaltered (Fig. S3c-d). 

Next we investigated dendritic spines, the post-synaptic elements of excitatory synapses. In 

P30 KO mice, spine density was significantly reduced in dendritic branches of the basal 

compartment (Fig. 2c,d) and even stronger in the apical tuft (Fig. 2e,f). Reduced basal spine 

density was mainly due to a difference in the number of thin spines (Fig. 2g), while reduced 

apical spine density was essentially seen for stubby spines (Fig. 2h). Morphological 

parameters such as head diameter, neck diameter or spine length were unaltered in 

NeuroD2 KO neurons (Fig. S4). Overall, we found reduced dendritic complexity and 

decreased spine density in NeuroD2 KO PNs, indicating that the total number of excitatory 

synaptic inputs might be reduced.  

 

Electrophysiological phenotypes in layer 5 PNs of NeuroD2 KO mice 

The dendritic and synaptic phenotypes prompted us to analyze physiological synaptic inputs 

onto GFP+ layer 5 PNs. Although spine density was reduced the frequency of AMPAR-

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 12, 2018. ; https://doi.org/10.1101/296889doi: bioRxiv preprint 

https://doi.org/10.1101/296889


 17 

mediated miniature excitatory post-synaptic currents (mEPSC) was not significantly affected 

(Fig. 3a,b). This absence of phenotype can be attributed to the fact that spine loss occurred 

mostly in apical tuft branches that are far from the soma, making a reduction in mEPSC 

frequency likely difficult to detect by our electrophysiological recordings. The amplitude of 

mEPSC was also unaltered (Fig. 3c). When measuring miniature inhibitory post-synaptic 

current (mIPSC) we found no significant change in frequency (Fig. 3d,e) but a significant 

increase in amplitude (Fig. 3d,f) in NeuroD2 KO mice.  

Because NeuroD2 regulates several cell intrinsic properties of layer 2/3 neurons in the 

somatosensory area (Chen et al., 2016), we asked if intrinsic parameters were also altered in 

layer 5 neurons of the motor area. Input membrane resistance was increased (Fig. 3g) and 

capacitance was decreased (Fig. 3h), likely reflecting the reduction in dendritic ramification 

shown by our 3D Sholl analysis. Interestingly, NeuroD2 KO neurons fired significantly more 

action potentials than WT neurons in response to depolarizing current injections (Fig. 3i,j), 

demonstrating increased intrinsic excitability. This increased excitability was not due to 

variations in action potential after-hyperpolarization as suggested for layer 2/3 neurons in 

these mutants (Chen et al., 2016), nor to alterations in resting membrane potential or action 

potential threshold and amplitude (Fig. S5). Finally, we measured hyperpolarization-activated 

cation (Ih) currents (Benarroch, 2013) since these currents are critical integrators of synaptic 

integration and excitability in layer 5 PNs (Carr et al., 2007; Sheets et al., 2011) and are 

associated with both epilepsy (Benarroch, 2013) and ASD (Yi et al., 2016). Compared with 

WT neurons, NeuroD2 KO neurons exhibited a significant increase in Ih current density (Fig. 

4l,m), suggesting that NeuroD2 deficiency might affect expression or function of HCN 

channels. This increase in Ih current possibly represents a compensatory mechanism to 

reduce neuronal hyperexcitability (Benarroch, 2013).  

 

ASD/ SCZ-like behaviors, epilepsy and hyperactivity in NeuroD2 KO and heterozygous mice 

The morphological and electrophysiological phenotypes we found in layer 5 PNs of NeuroD2 

KO mice have been strongly associated with ASD and SCZ (Penzes et al., 2011; Han et al., 
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2012; Harrington et al., 2016; Yi et al., 2016). We therefore decided to measure social 

behavior in NeuroD2 KO mice. We also analyzed NeuroD2 heterozygous mice, as they are 

more likely to represent the putative human mutations. In the novel object recognition test 

KO and heterozygous mice showed normal interest and memory for objects as, like WT 

littermates, they spent around 65% of the time investigating a novel vs familiar object (Fig. 

4a-c). This result indicates that working memory is not dependent on NeuroD2. However, 

NeuroD2 KO mice clearly displayed abnormal social interest and social memory as 

demonstrated in in the three-chamber test. Unlike WT littermates, mutant mice showed no 

preference for the mouse-containing quadrant (Fig. 4d-f) or chamber (Fig. S6a), indicating 

alteration of sociability. NeuroD2 heterozygous mice behaved similar to WT in this social 

interaction test (Fig. 4f). In the social memory test, WT mice showed strong preference for 

the novel vs familiar mouse, while NeuroD2 KO and heterozygous mice did not (Fig. 4g-i for 

times in quadrants, Fig. S6b for times in chambers). These results indicate that sociability is 

altered only in KO mice while social memory/ interest is impaired in both KO and 

heterozygous mice.  

We then looked at stereotypies, another core feature of ASD. We quantified two types of 

repetitive behaviors, rearing and circling, which are two accepted signs of stereotypy in mice 

relevant to ASD (Ryan et al., 2010; Silverman et al., 2010). Mutant mice showed increased 

rearings both at and outside cage walls while, as previously described (Olson et al., 2001), 

heterozygous mice displayed increased circling (Fig. 4j).  

Next, we investigated behaviors that show comorbidity with ASD and SCZ. A well-described 

comorbidity is hyperactivity (Han et al., 2012; Rao and Landa, 2014; Gough and Morrison, 

2016). Interestingly, this was an obvious phenotype of NeuroD2 KO mice in the open-field 

(Fig. 4k). NeuroD2 KO mice travelled significantly more than WT and heterozygous mice, 

while heterozygous displayed subtly increased locomotion compared to WTs (Fig. 4k, Fig. 

S6c-g). Quantification showed that KO mice had shorter resting periods and higher 

displacement velocities (Fig. S6d,e), confirming hyperactivity. Another comorbidity of both 

ASD (Canitano, 2007) and SCZ (Cascella et al., 2009) is spontaneous epilepsy. We 
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observed spontaneous epileptic seizures in one third of NeuroD2 KO mice (Fig. 4l) during the 

course of the behavioral assessments. This fraction of epileptic mice is obviously an 

underestimate since mice were not observed continuously. Finally, we measured conflict 

anxiety, which requires functional integrity of the cerebral cortex (Weisstaub et al., 2006) and 

is altered in ASD (Crawley, 2007) and SCZ (Gonzalez-Maeso et al., 2008). The open field 

arena presents a conflict between innate drives to explore a novel environment and safety. 

Under brightly lit conditions, the center of the open field is aversive and potentially risk-laden, 

whereas exploration of the periphery provides a safer choice. We found that heterozygous 

and KO mice explored the center portion of the environment (as measured by the time of 

exploratory activity) more than their intact WT littermates did (Fig. 4m,n).  

All together, our behavioral results show that NeuroD2 KO mice have behavioral defects that 

are reminiscent of the symptoms (altered social interest and memory, stereotypies) and 

comorbidities (epilepsy, hyperactivity, anxiety alterations) of ASD and SCZ in humans. 

NeuroD2 heterozygous mice share parts of these phenotypes, indicating that NeuroD2 is a 

haploinsufficient gene. 

 

NeuroD2 target genes show a strong enrichment in voltage-sensitive ion channel activity, 

synapse modulation, ASD and SCZ  

Since NeuroD2 is a nuclear transcription factor, we sought to identify differentially expressed 

genes in KO mice and to ask which proportion might regulate synaptic transmission, 

neuronal cell intrinsic excitability and/or behaviors relevant to neuropsychiatric disorders. We 

analyzed differentially expressed genes in the cerebral cortex of KO versus WT mice at P28. 

We micro-dissected ASD and SCZ-relevant cortical tissue encompassing motor and 

somatosensory areas (Willsey et al., 2013) (Fig. 5a). Deep sequencing of polyA-enriched 

mRNAs (RNA-seq) identified 263 differentially expressed genes, including 184 genes with a 

decreased expression and 79 genes with an increased expression (70% versus 30%, 
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respectively). No particular bias towards a specific cortical layer was found among the 

differentially expressed genes (Fig. 5b and Fig. S8).  

Gene ontology (GO) analysis with ClueGO (Bindea et al., 2009) and DAVID (Huang da et al., 

2009) functional annotation tools both revealed that genes with reduced expression in KO 

mice were most significantly enriched for the following biological processes: voltage-gated 

ion channel activity, cell projection morphogenesis, chemical synaptic transmission and 

neuronal action potential (Fig. 5c and Fig. S7 for ClueGO; Table 1 and Supplementary file 1 

for DAVID). Differentially expressed genes coding for voltage sensitive ion channels included 

the sodium channels Scn1a, Scn4b and Scn8a, the potassium channels Kcnh1, Kcnq5, 

Kcnj6, Kcna5, Kcnv1 and Kcnk4, Kcnma1 and the calcium channels Cacna1c and Cacna2d2 

(Fig. 5d). Dysregulation of one or more of these channels is likely involved in the 

hyperexcitability of layer 5 NeuroD2 KO PNs. Analysis of genes up-regulated in NeuroD2 KO 

mice revealed a significant enrichment for multicellular organismal response to stress (Fig. 

S7, Table 1), which since NeuroD2 is a putatively pure transactivator might be at least in part 

a homeostatic consequence of initial cell dysfunction induced by downregulated genes.  

Among downregulated genes, a good candidate for spine density regulation is the 

glucocorticoid receptor, Nr3c1, because it is a critical regulator of spine development in layer 

5 neuron apical dendrites, which is where spine density is most affected in NeuroD2 KO 

neurons (Fig. 2). Another candidate for this phenotype is the synaptome gene Syne1 (Fig. 

5e) because it encodes many actin-binding protein isoforms of which only one, called CPG2, 

is brain-specific and regulates synapse formation (Packard et al., 2015). Isoform expression 

analysis showed that CPG2 is the main Syne1 isoform in WT cortex and with the strongest 

downregulation in NeuroD2 KO mice (Fig. S9), confirming that CPG downregulation could be 

causally linked with spine defects in mutant neurons. Concerning increased Ih current 

density in mutant neurons (Fig. 3l,m), a likely candidate gene that comes out of our RNA-seq 

screen is Trip8b (Supplementary File 1), a known brain-specific auxiliary subunit of HCN1 

and critical regulator of the membrane localization and expression of HCN1 channels and 

thus of Ih current density (Santoro et al., 2009; Piskorowski et al., 2011). Concerning 
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increased mIPSC amplitude (Fig. 3f) however, we found no dysregulated gene directly linked 

with postsynaptic inhibitory signaling (Jacob et al., 2008). 

To further characterize the NeuroD2 KO differentially expressed genes, we compared our 

dysregulated gene list with the recently updated risk genes from the Simons Foundation 

Autism Research Initiative (Pereanu et al., 2017) (SFARI database, 859 genes), mRNAs 

associated with FMRP  (Darnell et al., 2011) (842 genes), ID-associated genes from multiple 

sources (Inlow and Restifo, 2004; Ropers, 2008; van Bokhoven, 2011; Lubs et al., 2012), 

SCZ-associated genes ((Schizophrenia Working Group of the Psychiatric Genomics, 2014) 

and OMIM with “schizophrenia” as a keyword, 196 genes) and synaptic-associated genes  

(Pirooznia et al., 2012) (SynaptomeDB, 1876 genes). Strikingly, among the 263 differentially 

expressed genes, 39 were synaptome-related genes, 35 were associated with ASD, 37 with 

FMRP and 6 with SCZ (Fig. 5f,g). Statistically, these proportions of synaptome, ASD, FMRP 

and SCZ-related genes were very considerably higher than what a random sampling would 

produce (Fig. 5e for binomial test, but hypergeometric test gave comparable significance). 

ASD/ SCZ genes included the Dravet syndrome gene Scn1a and the Timothy syndrome 

gene Cacna1c that both are voltage-gated ion channels, but also Grin2b, Htr2a, Pcdh9 and 

other well described ASD genes (Fig. 5h). In contrast, the proportion of intellectual disability 

genes among the differentially expressed genes was not significantly higher than expected 

by chance (Fig. 5e). Using quantitative PCR (qPCR) or immunohistochemistry, we validated 

dysregulation of several voltage-gated ion channels and factors related to neuropsychiatric 

disorders  in NeuroD2 KO mice (Fig. S10).  

Overall, our RNAseq data analysis suggests that NeuroD2, either directly or indirectly, 

influences a large, complex gene expression program that controls neuronal and synapse 

development, and numerous syndromic and idiopathic ASD and SCZ-linked genes. 
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Discussion 

By analyzing the development of the cerebral cortex in NeuroD2 KO mice and focusing on 

layer 5 of the ASD/ SCZ-associated (Benes et al., 1986; Willsey et al., 2013) motor area, we 

find that NeuroD2 KO PNs exhibit molecular, structural, electrophysiological and behavioral 

alterations that are highly relevant to ASD and SCZ. NeuroD2 deficiency does not alter 

migration, subtype specification, layer position and axonal targeting identity of PNs, but 

reduces spine density, increases cell intrinsic excitability and mIPSC amplitude, and alters 

the expression of a high fraction of known ASD and SCZ genes. At the behavioral level, 

NeuroD2 deficiency decreases sociability and social memory, increases stereotypies and 

induces epilepsy and hyperactivity, two ASD/ SCZ-comorbid behaviors.  These extensive 

analyses strongly support the potential implication of NeuroD2 mutations in human 

neuropsychiatric disorders.  

 

NeuroD2 as a synapse/ excitability regulating transcription factor 

Previous Chip-seq studies have found that NeuroD2 is able to bind many genetic loci (Fong 

et al., 2012; Bayam et al., 2015). Moreover, NeuroD2 is highly expressed in PNs, from 

postmitotic neural progenitors in the subventricular zone to mature neurons. Thus, NeuroD2 

functional targets were initially thought to be likely involved in many biological processes 

throughout neural development in the neocortex. This is exemplified by a Chip-seq analysis 

in the embryonic cortex that revealed an enrichment of migration-related genes in NeuroD2 

binding targets (Bayam et al., 2015). 

However, in juvenile mice (P28), our gene expression analysis reveals that NeuroD2 

absence is mainly impacting voltage-sensitive ion channels, synaptic and ASD/ SCZ genes. 

Moreover, our extensive phenotypic analysis indicates that more than a generic pro-neuronal 

gene, NeuroD2 could be a regulator of synaptic integration and/ or excitability in neurons. It 

is striking that we did not observe any obvious axonal growth defects in mutant mice, 

strongly contrasting with the phenotype of NeuroD2/NeuroD6 double mutant animals 

(Bormuth et al., 2013). A possible explanation resides in the functional redundancy with other 
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NeuroD family members during neuronal development. In this context, it seems plausible that 

synaptic regulation and/ or excitability regulations are specific function(s) of NeuroD2 among 

other NeuroDs. Indeed, NeuroD2 is the only member of the NeuroD family that has been 

linked to synaptic integration and maturation (Ince-Dunn et al., 2006; Wilke et al., 2012; Chen 

et al., 2016; Chen and Hall, 2017), indicating that functional redundancy may not hold true for 

regulation of synaptic integration/ excitability.  

 

Initial defects and homeostatic compensation in complex cortical phenotypes 

Whether regulation of synaptic integration and of intrinsic excitability are independent 

consequences of a NeuroD2 effect or whether one is a homeostatic consequence of the 

other remains an open question. This problem is in line with recent theories pointing the 

difficulty to separate initial deficits from homeostatic compensation in the study of syndromic 

ASD models (Nelson and Valakh, 2015). At the electrophysiological level, Chen et al. (2016) 

found that layer 2/3 PNs of the somatosensory area receive less excitatory and inhibitory 

inputs after NeuroD2 deletion, as the frequencies of both mEPSCs and mIPSCs were 

reduced (Chen et al., 2016). This striking difference with our electrophysiological data 

showing normal mEPSCs and increased mIPSC amplitude suggests that a genetic mutation 

can induce different and even opposite cellular phenotypes in different cortical areas/layers. 

Also, these complex region-dependent phenotypes constitute another demonstration that 

initial defects and homeostatic compensation phenotypes cannot be discriminated when 

studying constitutive mutations. In the future, conditional deletion and the use of neuron 

subtype specific driver mice should allow separating initial from compensatory defects in 

different brain areas to better elucidate the mechanisms responsible for complex cortical 

phenotypes in neuropsychiatric disorders. 
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Associating NeuroD2 transcriptional targets with cellular and behavioral phenotypes: insights 

from our RNA-seq data  

Literature-based screening of our gene list indicated that dysregulation of the Syne1 splice 

variant CPG and the glucocorticoid receptor Nr3c1 might be involved in spine density 

deficits.  

Importantly, Nr3c1 regulates spine density in apical tuft dendrites of layer 5 neurons (Liston 

and Gan, 2011), precisely where we found the strongest phenotype. Chronic and short-term 

stresses both preferentially affect apical tuft dendrites and spines through glucocorticoid 

binding to Nr3c1 in layer 1 (Brown et al., 2005), which induces a ligand-dependent 

transcription factor activity of Nr3c1 that is NeuroD2-dependent. Indeed, a recent study 

showed that NeuroD2 acts as a critical cofactor for Nr3c1 transactivation at least in vitro (van 

Weert et al., 2017). Together with our novel finding that NeuroD2 is also a transcriptional 

inducer of Nr3c1 expression, these evidences suggest that NeuroD2 is a critical regulator of 

stress-induced synaptic integration and possibly plasticity in layer 5 cortical neurons. This 

hypothesis is corroborated by the reported fearless behavior of NeuroD2 KO mice (Lin et al., 

2005) and by their reduced cortical-dependent conflict anxiety shown here.  

Concerning locomotor hyperactivity and spontaneous epilepsy in NeuroD2 KO mice, best 

candidates to be found among the 13 differentially expressed voltage-gated ion channels are 

the layer 5 enriched potassium channel Kcnq5 (Molyneaux et al., 2015; Lehman et al., 2017) 

(Allen Brain Atlas) and the Scn8a sodium channel that regulates dendritic excitability in 

cortical PNs (Lorincz and Nusser, 2010).  

The increased mIPSC amplitude in NeuroD2 KO neurons primarily suggests increased post-

synaptic expression or trafficking of GABA-A receptors; however we could not find any 

obvious differentially expressed gene that could account for this phenotype. Alternatively, the 

increased mIPSC amplitude might be a consequence of the changes in electrotonic, passive 

membrane properties due to reduced dendritic complexity and associated increased input 

resistance rather than to a genuine change in inhibitory synaptic transmission.   
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Concerning increased Ih current in NeuroD2 KO neurons, downregulation of Trip8b, a critical 

regulator of the membrane localization and expression of HCN1 channels (Santoro et al., 

2009; Piskorowski et al., 2011) is a likely candidate. Independently of its mechanism, 

increased Ih currents tend to decrease intrinsic neuronal excitability, suggesting that this 

phenotype is not part of initial defects but instead might represent a compensatory 

mechanism to reduce neuronal hyperexcitability (Benarroch, 2013). 

 

Relevance for psychiatric disorders (ASD/ SCZ)  

NeuroD2 locus has been associated with SCZ and ASD in humans. Indeed, a recent study 

has demonstrated an association between rare polymorphisms in NeuroD2 and SCZ 

(Spellmann et al., 2017). Furthermore, NeuroD2 mRNA contains a high-confidence target 

site for the well-described SCZ-related microRNA miR-137 (Cross-Disorder Group of the 

Psychiatric Genomics, 2013; Ripke et al., 2013) according to miRNA prediction programs 

(TargetScan, miRanda). Third, the main transcriptional cofactor of NeuroD2 is the 

schizophrenia gene TCF4 (Amiel et al., 2007; Brockschmidt et al., 2007; Zweier et al., 2007; 

Ravanpay and Olson, 2008). Together, these evidences reinforce the hypothesis that 

NeuroD2 might be involved in SCZ in humans. It is also interesting to note that copy number 

variations encompassing the NeuroD2 locus have been associated with ASD (DECIPHER, 

https://decipher.sanger.ac.uk/). Moreover, a machine-learning based approach that 

compares candidate gene co-expression and co-function with already-known ASD genes to 

find new ASD genes ranked NeuroD2 98th out of 25,825 genes (Krishnan et al., 2016) (Fig. 

S9) as a good candidate for ASD. Comforting these results, for the first time we show 

compelling evidence that NeuroD2 is necessary for the development of normal social 

behavior in mice. Although the behavioral alterations we observed in NeuroD2 KO mice are 

not necessarily related to ASD or SCZ, the strong disruption of social interest and memory, 

the latter being also true for heterozygote mice, supports the involvement of NeuroD2 in 

neuropsychiatric disorders. Interestingly, social memory impairment (Piskorowski et al., 
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2016) and hyperactivity (van den Buuse, 2010) are typical features of SCZ and SCZ mouse 

models. 

 

Conclusions and Perspectives  

Our findings of cerebral cortex-related synaptic, physiological and behavioral alterations in 

NeuroD2 KO mice, together with genetic associations with psychiatric disorders in humans, 

highlight the potential of NeuroD2 as a synaptopathy gene.  

There are evidences suggesting a link between NeuroD2 and neuronal activity. Indeed 

NeuroD2 transactivator activity is increased by neuronal depolarization (Ince-Dunn et al., 

2006), and NeuroD2 expression is regulated by NMDAR activation (Chen and Hall, 2017). In 

this context, it will be of great interest to test whether and how NeuroD2 can be involved in 

experience-dependent synaptic plasticity, and if yes how it relates to neuropsychiatric 

disorders in general.  
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Table 1: Gene ontology with DAVID.  

 Term Count PValue Benjamini FDR 

GLOBAL Voltage-gated ion channel activity 13 1.91E-06 0.002 0.003 

GLOBAL Signal transduction 30 7.34E-06 0.005 0.012 

GLOBAL Chemical synaptic transmission 11 3.06E-05 0.013 0.050 

GLOBAL Neuronal action potential 6 3.71E-05 0.012 0.061 

GLOBAL Intracellular signal transduction 18 5.25E-05 0.014 0.086 

GLOBAL Axon guidance 11 5.99E-05 0.013 0.098 

GLOBAL Regulation of membrane potential 8 2.13E-04 0.039 0.347 

GLOBAL Neuromuscular junction development 6 2.85E-04 0.045 0.464 

GLOBAL Adult walking behavior 6 3.29E-04 0.046 0.536 

GLOBAL Nervous system development 15 9.69E-04 0.118 1.570 

GLOBAL Long-term synaptic potentiation 6 9.99E-04 0.111 1.618 

DOWN Voltage-gated ion channel activity 11 4.27E-06 0.004 0.007 

DOWN Axon guidance 10 1.75E-05 0.008 0.027 

DOWN Neuronal action potential 5 1.40E-04 0.042 0.218 

DOWN Regulation of membrane potential 7 1.91E-04 0.043 0.298 

DOWN Ion transport 15 2.68E-04 0.048 0.419 

DOWN Nervous system development 13 3.19E-04 0.048 0.498 

DOWN Chemical synaptic transmission 8 4.53E-04 0.058 0.705 

DOWN Signal transduction 20 5.17E-04 0.058 0.805 

UP Regulation of cell growth 4 0.002 0.701 2.977 

UP Insulin secretion 3 0.006 0.851 9.085 

UP Signal transduction 10 0.010 0.858 13.619 

UP Cell adhesion 7 0.012 0.824 15.969 

UP Positive regulation of stress fiber assembly 3 0.016 0.848 20.979 
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Footnote: GLOBAL: all differentially expressed genes. DOWN: down-regulated genes. UP: 

up-regulated genes. FDR: False Discovery Rate. 

Most appropriate position for Table 1: after or in the middle of the Result paragraph 

subheaded “NeuroD2 target genes show a strong enrichment in voltage-sensitive ion 

channel activity, synapse modulation, ASD and SCZ”. 

 

Supplementary File 1: List of differentially expressed (DEX) genes as revealed by RNA-

seq.  
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Figure 1: Normal migration, laminar organization and axonal targeting of PNs in 

NeuroD2 KO mice. (a-c) Expression of NeuroD2 in PNs during cortical development. 

NeuroD2 protein was detected in the intermediate zone and cortical plate at E16.5 (a), and in 

cortical layers 2 to 6 at P28 (b). (c) NeuroD2 protein co-localized with the layer 5 marker 

Ctip2 but not with Gad67-GFP. (d,e) Cortical and callosal widths were unaltered in NeuroD2 

KO mice. (f-i) Density and laminar distribution of Tbr1+ (g), Ctip2+ (h), Satb2+ (i) and Cux1+ 

cells (j) in a column of the motor cortex were unaltered in NeuroD2 KO mice.(j-l) Migration of 

pyramidal neuron precursors is unaffected in NeuroD2 KO mice. RFP was electroporated in 

layer 5 motor cortex neurons and laminar distribution of RFP+ cells analyzed at E18.5 (j). (k) 

Representative images of RFP+ cells in WT and KO. (l) Quantification revealed an unaltered 

laminar distribution in KO mice. (m-p) Axonal targeting of pyramidal neuron subtypes. 

Fluorescent retrograde cholera toxin beta striatal (n), thalamic (o) and contralateral M1 

including layer 2/3 and 5 cells injections led to similar distribution of retrogradely labeled 

somata in the ipsilateral motor cortex. CP, cortical plate;, IZ, intermediate zone; MZ, marginal 

zone; M1, primary motor cortex; S1, primary somatosensory cortex. Scale bars: a, 200 µm; 

b, 250 µm; c, 10 µm; f, g, h, i, 200 µm ;k, 100 µm; m, 100 µm. Data are means ± SEM. 

Number of animals or slices/ animals [for (n) and (o)] analyzed are shown in bars or 

parentheses. Statistical significance was evaluated by two-tailed Student’s t test [bar graphs 

in (d)-(i)] or two-way repeated measure ANOVA [(l), (n) and (o)]. 

 

Figure 2: Dendritic and spine phenotypes in layer 5 PNs of NeuroD2 KO mice. (a,b) 

Sholl analysis of basal (a) and apical (b) dendrites demonstrated a slightly reduced 

complexity in NeuroD2 KO neurons. (c-f) Spine density reduction in NeuroD2 KO mice. (c,d) 

Spine density was reduced in basal dendrites. (c) Representative photomicrographs of basal 

dendritic branches in WT and KO mice, (d) quantification of spine density. (e,f) Reduced 

spine density in apical tuft dendrites. (e) Images and (f) histogram of quantification. (g,h) 

Spine subtypes density in basal and apical compartments. (g) Thin spine were reduced in 

basal dendrites. (h) Stubby spines exhibited reduced density in apical tuft dendrites. Scale 
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bars: a, ; c,e, . Data are means ± SEM. Number of dendrites/ animals analyzed are shown in 

bars or parentheses. Statistical significance was evaluated by two-tailed Student’s t test [(d), 

(f), (g) and (h)] or two-way repeated measure ANOVA followed by Bonferroni’s post hoc test 

[(a) and (b)]. 

 

Figure 3: Electrophysiological phenotypes in layer 5 PNs of NeuroD2 KO mice. We 

recorded GFP+ neurons in motor area. (a-c) Miniature excitatory post-synaptic currents 

(mEPSC). (a) Representative traces, (b) frequency and (c) amplitude are shown. (d,e)  

Miniature excitatory post-synaptic currents (mIPSC), with representative traces (d), mean 

frequency (e) and amplitude (f). (g,h) Input resistance was increased (g) and capacitance 

decreased (h), indicating reduction of cell size. (i,j) Increased cell intrinsic excitability. (i) 

Example firing responses to +80 pA current steps in a WT (top) and a KO (down) cell. (j) 

NeuroD2 KO neurons reached action potential (AP) firing threshold earlier than matching WT 

neurons and exhibit a steeper input-output relationship, as assessed by the number of APs 

elicited by increasing current injections (from +40 to +100 pA, 20-pA increments) during 

current-clamp recordings. (k) After-hyperpolarization (AHP) was normal in NeuroD2 KO 

mice. (l,m) NeuroD2 KO neurons exhibit increased Ih-current amplitudes compared with 

matching WT neurons (current/voltage relation of Ih currents). Data are means ± SEM. 

Number of cells/ animals analyzed are shown in bars or parentheses. Statistical significance 

was evaluated by unpaired t-test for samples with normal distributions [bar graphs in (b), (c), 

and (f)], by Mann-Whitney test for non-normal samples [bar graph in (e)], and by two-way 

repeated measure ANOVA [(a), (b), (j) and (o)] followed by Bonferroni’s post hoc test (*P 

<0.05; **P <0.01; ***P <0.001). 

 

Figure 4: Behavioral phenotypes in NeuroD2 KO and heterozygous mice. (a-c) In the 

novel object recognition test (a), NeuroD2 KO and heterozygous mice displayed unaltered 

total investigation time (b) and discrimination index between the familiar and the novel object 

(c). (d-f) During social interaction in the three-chamber test (d), all genotypes displayed 
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unaltered total social investigation time (e). In contrast, while WT and heterozygous mice 

spent twice more time investigating the mouse than the empty quadrant, NeuroD2 KO mice 

spent equivalent times investigating mouse and empty quadrants (f). (g-i) Social memory/ 

interest test. When familiar and novel mice were placed in each quadrant, all genotypes 

spent similar times having social interactions (h), but only WT mice spent significantly more 

time investigating the novel mouse, indicating altered social memory in heterozygous and KO 

mice (i). (j) Rearing (left graph) and circling (right graph) behaviors in the 3 genotypes. (k) 

Hyperactivity in NeuroD2 KO mice. The graph depicts the distance traveled in 1 minute-

intervals during 10 minutes in the open field. (l) Spontaneous seizures were observed in a 

third of NeuroD2 KO mice and in one heterozygous mouse during the course of the 

behavioral experiments, but never in WT littermates. (m, n) Time spent in the large center of 

the open field (red square in representative examples in m) was significantly increased in 

both heterozygous and KO mice (n). N= 16 WT, 15 heterozygous and 15 KO mice aged 8-14 

weeks depending on the test. Data are means ± SEM. Statistical significance was evaluated 

by one-way ANOVA [(b), (c), (e), (h), (j) and (n)] or two-way ANOVA followed by Bonferroni’s 

post hoc test [(f) and (i)] (n.s., not significant; *P<0.05; **P<0.01; ***P < 0.001).  

 

Fig. 5: Characterization of NeuroD2 KO differentially expressed genes by RNA-seq. (a) 

Areas encompassing motor and somatosensory cortices were microdissected from coronal 

brain sections. (b) Number of differentially expressed genes associated with layer 2/3 (L2/3), 

L5 and L6, and overlaps between these groups. (c) ClueGO analysis of gene ontology 

indicates strongest enrichment in three biological processes: voltage-gated ion channel 

activity, chemical synaptic transmission and cell projection morphogenesis. (d,e) Fold 

change expressions (FC; log2 scale) of differentially expressed genes belonging to voltage-

dependant ion channels (d) and synaptome (e) genes. In these histograms genes are ranked 

by expression change significance based on P-values (left: the most significantly differentially 

expressed). (f-h) Differentially expressed genes and neuropsychiatric disorders. (f) Heatmap 

showing synaptome and neuropsychiatric disorder-related genes differentially expressed in 
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NeuroD2 KO compared to WT mice. In red, genes with higher expression; in blue, genes 

with lower expression. (g) Overlaps between differentially expressed genes and gene sets of 

interest: synaptome, ASD, FMRP and ID. Number of genes for each gene sets are indicated. 

The table below shows overlap P-values for each gene set using binomial test. N=3 animals 

per genotype. (h) Fold change expressions (FC; log2 scale) of differentially expressed genes 

related to ASD, ordered by rank. Colors correspond to syndromes associated with selected 

genes. 

 

Figure S1: Developmental expression of NeuroD2 mRNA and protein in the mouse 

cerebral cortex. (a-e) NeuroD2 mRNA is expressed throughout cortical development as 

revealed by in situ hybridization (Allen Brain Atlas). (f) qRT-PCR analysis of NeuroD2 

expression during cerebral cortex development shows a peak of expression at E18.5 and a 

maintained expression postnatally. (g,h) NeuroD2 protein is expressed in the intermediate 

zone and cortical plate at E16.5 (g), and in layer 5 Ctip2+ PNs at P3 (h). (i) NeuroD2 protein 

never overlapped with Gad67-GFP, indicating absence of expression in inhibitory neurons. 

CP: cortical plate, IZ: intermediate zone, MZ: marginal zone, V/SVZ: 

ventricular/subventricolar zone. Sacle bars: g, ; h, ;i,. 

 

Figure S2: Laminar distribution and axonal targeting identity of PNs-complement to 

Figure 1. (a-d) Laminar organization of somatosensory cortex at P28 was unaltered in 

NeuroD2 KO mice. (e,f) L1 immunostaining showed unaltered corpus callosum and other 

cortico-cortical axonal tracts in NeuroD2 KO mice. Sacle bars: e, ; f,. 

 

Figure S3: Dendritic lengths in layer 5 PNs of NeuroD2 KO mice. (a,b) Total dendritic 

length (a) and dendritic length per level (b) in the basal compartment of WT (grey) and KO 

(red) mice. (c,d) Total dendritic length (c) and dendritic length per level (d) in the apical tuft 

compartment. 
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Figure S4: Spine subtypes in layer 5 PNs of NeuroD2 WT versus KO mice. (a,b) Density 

of spine subtypes in basal (a) and apical tuft (b) dendrites. (c) Neck diameter, head diameter 

and spine length were measured for thin, mushroom and stubby spines. 

 

Figure S5: Resting potential and action potential properties of layer 5 PNs. (a) Resting 

membrane potential (Vrest), (b) action potential threshold and (c) action potential amplitude 

of NeuroD2 WT and KO neurons. 

 

Figure S6: Behavioral phenotypes in NeuroD2 KO and heterozygous mice- 

complement to Figure 3. (a,b) Time in the mouse chamber (M), center chamber (C) and 

empty cage chamber (E) during the 10 minutes social interaction (a) and social memory (b) 

tests. (c) Distance traveled during 1 hour. (d,e) Resting time was decreased in both 

heterozygous and KO mice (d), but velocity (speed average when the animal is moving) was 

increased only in KO mice (e). (f,g) Detailed behavior during 10 minutes intervals over the 1 

hour open field assessment, including resting (f) and distance (g).  

 

Figure S7: Gene ontology with Cluego (Cytoscape). Pie charts representing main GO 

terms for all differentially-expressed genes (a), genes down-regulated in KO (b) and genes 

up-regulated in KO (c). 

 

Figure S8: Fold changes of differentially expressed genes belonging to different 

cortical layers. Fold changes (FC; log2 scale) are shown for L6/subplate genes (a), L5 

genes (b) and L2/3 genes (c). For each histogram genes were ranked for expression change 

significance based on P-values (left: the most significantly differentially expressed). 

 

Figure S9: Differential expression of Syne1 isoforms in WT versus KO mice. The 

histogram shows amount of each Syne1 isoform in fragments per kilobase million (FPKM). 
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Data are means ± SEM. Statistical significance was evaluated by unpaired t-test with Welch 

correction ( ***P < 0.001).  

 

Figure S10: Validation of RNA-seq data by qPCR and immunohistochemistry. (a) qPCR 

for  ion channel and/ or neuropsychiatric genes. (b) Immunohistochemistry against Cplx3 

protein on coronal brain sections at motor areal rostro-caudal level at 3 different ages (left), 

in WT versus KO conditions. Scale bar: . 
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