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Abstract 

Single-cell RNA sequencing (scRNA-seq) has enabled researchers to study gene expression at            

a cellular resolution. However, noise due to amplification and dropout may obstruct analyses, so              

scalable denoising methods for increasingly large but sparse scRNAseq data are needed. We             

propose a deep count autoencoder network (DCA) to denoise scRNA-seq datasets. DCA takes             

the count distribution, overdispersion and sparsity of the data into account using a zero-inflated              

negative binomial noise model, and nonlinear gene-gene or gene-dispersion interactions are           

captured. Our method scales linearly with the number of cells and can therefore be applied to                

datasets of millions of cells. We demonstrate that DCA denoising improves a diverse set of               

typical scRNA-seq data analyses using simulated and real datasets. DCA outperforms existing            

methods for data imputation in quality and speed, enhancing biological discovery.  
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Background 

Advances in single-cell transcriptomics have enabled researchers to discover novel          

celltypes​1,2​, study complex differentiation and developmental trajectories​3–5 and improve         

understanding of human disease ​1,2,6​. 

Despite improvements in measuring technologies, various technical factors including         

amplification bias, cell cycle effects​7​, library size differences and especially low RNA capture             

rate lead to substantial noise in scRNA-seq experiments. The low RNA capture rate leads to               

failure of detection of an expressed gene resulting in a “false” zero count observation, defined               

as dropout event. Recent droplet-based scRNA-seq technologies, can profile up to millions of             

cells in a single experiment​8–10​. These technologies are particularly prone to dropout events due              

to relatively shallow sequencing ​11​. Overall, these technical factors introduce substantial noise,           

which may corrupt the underlying biological signal and obstruct analysis​12​. 

In statistics, imputation describes the process of substituting missing data values to            

improve statistical inference or modeling ​13​. However, not all zeros in scRNA-seq data represent             

missing values. Since not every gene is expected to be expressed in every cell, “true”               

celltype-specific zeros exist and make the definition of missing values challenging. Therefore,            

classical imputation methods with defined missing values are not suitable for scRNA-seq data.             

On the other hand, the concept of denoising, commonly used in image reconstruction ​14​, corrects              

all data entries without first defining a set of missing values.  

Current approaches for scRNA-seq specific imputation include scImpute ​15​, which defines          

likely dropout values using a mixture model and subsequently substitutes only the likely dropout              

values. MAGIC​16 and SAVER​17​, on the other hand, denoise single-cell gene expression data             

and generate a denoised output for each gene and cell entry. Despite these differences, all               

approaches rely on using the correlation structure of single-cell gene expression data to infer              
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“corrected” gene expression values by leveraging similarities between cells and/or genes. With            

the increasing size of scRNA-seq datasets​11​, methods need to scale to up to millions of cells.                

However, existing denoising methods are unable to process data sets of this magnitude.             

Second, linear methods such as scImpute may fail to capture underlying complexity of             

scRNA-seq. 

Therefore, we propose a so-called “deep count autoencoder” (DCA) for denoising           

scRNA-seq data. An autoencoder is an artificial neural network used for unsupervised learning             

of the data manifold thereby representing the high dimensional ambient data space in             

significantly lower dimensions​18​. Ideally, the manifold represents the underlying biological          

processes and/or cellular states. For example, in a dataset where snapshots of differentiating             

blood cells exist, the manifold view can show the continuum of differentiation phenotypes.             

Dimension reduction methods like principal component analysis (PCA), diffusion maps or           

t-distributed stochastic neighbor embedding (tSNE) are commonly used to visualize the           

manifold for gene expression data ​19,20​. A number of recent studies describe applications of             

autoencoders in genomics​21–25​. During denoising, the autoencoder learns the manifold and           

removes the noise by moving corrupted data points onto the manifold ​26 (Fig. 1A). For analogy,               

PCA can be interpreted as a linear autoencoder with a mean-squared error loss function where               

the eigenvectors represent the tied encoder and decoder weights. However, due to the             

complexity and count nature of scRNA-seq data, PCA cannot sufficiently learn the data manifold              

in many cases​23​. Using an autoencoder out of the box may fail, however, due to the noise model                  

not being adapted to typical scRNA-seq noise. Our DCA approach addresses the challenges             

underlying scRNA-seq data by 1) enabling non-linear embedding of cells and 2) using             

scRNA-seq data specific loss function based on negative binomial count distributions (Fig. 1B).             

We extensively evaluated our approach with competing methods using simulated and real            
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datasets. As expected, we observe increased gene-gene correlation after denoising; while in            

our examples this enriched for desired regulatory dependencies, this may also lead to             

overimputation in case of inadequate parameter choices such as too low-dimensional bottleneck            

layer and hence data manifold. This is a general issue of imputation methods and we propose a                 

hyperparameter search in critical situations. Altogether, we demonstrate that DCA shows high            

scalability and DCA denoising enhances biological discovery.  
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Figure 1. DCA denoises scRNA-seq data by learning the data manifold using an autoencoder              

framework. Panel A depicts a schematic of the denoising process adapted from Goodfellow et al.​26 ​. Red                

arrows illustrate how a corruption process, i.e. measurement noise from dropout events, moves data              

points away from the data manifold (black line). The autoencoder is trained to denoise the data by                  

mapping corrupted data points back onto the data manifold (green arrows). Filled blue dots represent                

corrupted data points. Empty blue points represent the data points without noise. Panel B shows the                

autoencoder with a ZINB loss function. Input is the original count matrix (pink rectangle; gene by cells                 

matrix, with dark blue indicating zero counts) and the mean matrix of the negative binomial component                

represents the denoised output (blue rectangle). Input counts, mean, dispersion and dropout probabilities             

are denoted as x, ​μ, θ and π.​ respectively.  
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Results 

Count based loss function is necessary to recover celltypes in simulated scRNA-seq data 

Cluster analysis is commonly used in scRNA-seq data to identify celltypes but may be              

hindered by noise and outliers. To evaluate our method DCA we simulated scRNA-seq datasets              

including dropout events using Splatter​27​. Both count data with and without dropout are             

available, which allows quantification of denoising using ground truth. We generated two            

simulation datasets with 200 genes and 1) two celltypes (2000 cells in total) and 2) six celltypes                 

(2000 cells in total) (see methods for detailed description of simulation parameters). For the two               

and six celltype simulations 90% and 40% of data values were set to zero, respectively. Dropout                

simulation probabilities are conditioned on mean gene expression, such that lowly expressed            

genes have a higher likelihood of dropout compared to highly expressed genes. 

Our simulation results show that dropout adds substantial noise, obscuring celltype           

identities. Expectedly, after denoising using DCA the original celltypes can be recovered (Fig.             

2A). To test whether a ZINB loss function is necessary, we compared DCA to a classical                

autoencoder with mean squared error (MSE) loss function using log transformed count data.             

The MSE based autoencoder was unable to recover the celltypes, indicating that the specialized              

ZINB loss function is necessary for scRNA-seq data. 
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Figure 2. Count based loss function is necessary to identify celltypes in simulated data with high 

levels of dropout noise. Panel A depicts plots of principal components 1 and 2 derived from simulated 

data without dropout, with dropout, denoised using DCA and MSE based autoencoder from left to right. 

Panel B shows heatmaps of the underlying gene expression data. Grey color indicates zero value entries. 

Panel C illustrates tSNE visualization of simulated scRNA-seq data with six celltypes. Cells are colored by 

celltype.  
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Denoising methods bear the risk of introducing spurious correlations, falsely generating           

correlations between genes. Simulations provide the advantage of defining two sets of genes             

which 1) show differential expression (DE) between celltypes, i.e. marker genes, and 2) which              

show no differential expression, i.e. housekeeper genes. Introduction of spurious correlations by            

denoising could falsely change housekeeper genes into marker genes. To assess whether            

spurious correlations are introduced by DCA, we performed PCA on the denoised data using              

the subset of non-DE genes (housekeepers) as input. If denoising introduces spurious            

gene-gene correlations between marker and housekeeping genes, we expect that PCA on            

housekeeping genes shows marker gene cluster structure. After DCA denoising, celltype           

identities were not recovered, indicating that the denoising process did not introduce spurious             

correlations (Supplementary Fig. 1). 

DCA captures cell population structure in real data 

Complex scRNA-seq data sets, such as those generated from a whole tissue, may show              

large cellular heterogeneity. Celltype marker genes are highly expressed in a celltype-specific            

manner, leading to “true” celltype-specific zero counts. These are biologically meaningful and            

need to be distinguished from technical zeros, such as dropout. Therefore, denoising methods             

must be able to capture the cell population structure and use cell population specific parameters               

for the denoising process. To test whether DCA was able to capture cell population structure in                

real data we denoised scRNA-seq data of 68,579 peripheral blood mononuclear cells​10 and             

1,000 highly variable genes (92% zeros) (Fig. 3A). For this analysis only, we restricted the               

autoencoder bottleneck layer to two neurons and visualized the activations of these two neurons              

for each cell in a two-dimensional scatter plot (Fig. 3B). When overlaying the original celltype               

information ​10​, celltype-specific clustering was observed. Furthermore, known celltype marker         
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genes showed cluster-specific expression in the two-dimensional bottle neck visualization (Fig.           

3 C-F), demonstrating that DCA captures cell population structure in real data. These results              

prove that DCA can derive cell population specific denoising parameters.  
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Figure 3. DCA captures population structure in 68,579 peripheral blood mononuclear cells. Panel             

A shows the tSNE visualization reproduced from Zheng et al.​10 ​. Panel B illustrates the activations from the                 

two-dimensional bottleneck layer of the DCA. Colors represent celltype assignment from Zheng et al.​10              

where CD4+ and CD8+ cells are combined into coarse groups. Silhouette coefficients are -0.01 and 0.07                

for tSNE and DCA visualizations. Panels C-F show two-dimensional bottleneck layer colored by the              

log-transformed expression of cell type marker genes CD8A (CD8+ T cells), CD14 (CD14+ Monocytes),              

NKG7 (CD56+ natural killer cells) and FCER1A (dendritic cells), respectively.  
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Denoising recovers time-course expression patterns after in silico addition of          

single-cell specific noise  

Next, we evaluated DCA by performing systematic comparison with MAGIC​16​, SAVER​17           

and scImpute ​15 (Supplementary Table 1). We adapted the evaluation approach from van Dijk et              

al.​16 and analyzed real bulk transcriptomics data from a developmental C. elegans time course              

experiment​28 after simulating single-cell specific noise. Bulk contains less noise than single-cell            

transcriptomics data ​29 and can thus aid the evaluation of single-cell denoising methods by             

providing a good ground truth model. Gene expression was measured from 206            

developmentally synchronized young adults over a twelve-hour period (Fig. 4A). Single-cell           

specific noise was added ​in silico by gene-wise subtracting values drawn from the exponential              

distribution such that 80% of values were zeros​16 (Fig. 4B). DCA denoising recovered original              

time course gene expression pattern while removing single-cell specific noise (Fig. 4C). To             

systematically evaluate the four methods, we tested which method would best recover the top              

500 genes most strongly associated with development in the original data without noise. DCA              

demonstrated strongest recovery of these genes, outperforming the other methods (Fig. 4D).            

Gene-level expression without, with noise and after DCA denoising for key developmental            

genes ​tbx-36 ​and ​his-8 is depicted in panels E, F, G, respectively. Expression data derived from                

denoising using MAGIC, SAVER and scImpute for these two genes is displayed in             

Supplementary Fig. 2. ​tbx-36 ​and ​his-8 represent transcription factor and histone gene classes,             

respectively, which are known to show opposing expression patterns during C.elegans           

development​30​.  
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Figure 4. DCA recovers gene expression trajectories in C.elegans time course experiments with             

simulated dropout. Heatmaps show top 100 genes with positive and negative association with time course               

using expression data without noise (Panel A), with noise (Panel B) and after DCA denoising (Panel C).                 

Yellow and blue colors represent relative high and low expression levels, respectively. Zero values are               

colored grey. Distribution of Pearson correlation coefficients across the 500 most highly correlated genes              

before noise addition for the various expression matrices are depicted in Panel D. The box represents the                 

interquartile range, the horizontal line in the box is the median, and the whiskers represent 1.5 times the                  
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interquartile range. Panels E, F and G illustrate gene expression trajectory for exemplary anti-correlated              

gene pair ​tbx-36​ and ​his-8​ over time for data without, with noise and after denoising using DCA. 
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Denoising increases correspondence between bulk and single-cell differential expression 

Motivated by the scRNA-seq denoising evaluation metrics proposed by Li et al.​15​, we             

compared differential expression analysis results between bulk and scRNA-seq data from the            

same experiment. Chu et al.​31 generated bulk and scRNA-seq data from H1 human embryonic              

stem cells (H1) differentiated into definitive endoderm cells (DEC). We performed differential            

expression analysis comparing H1 to DEC of the bulk and scRNA-seq data independently using              

DESeq2, which models gene expression based on the negative binomial distribution without            

zero inflation ​32​. DCA slightly increased the Spearman correlation coefficient of the estimated fold             

changes between bulk and single-cell data from 0.68 to 0.76 (Fig. 5A & B). However, it is                 

important to note that 24 outlier genes (Fig. 5A, red dots), showing high discrepancy between               

bulk and single-cell derived fold changes, are corrected in the denoised data. ​SOX17 ​is a key                

transcription factor in the development of the endoderm​33 and shows high expression in DEC              

compared to H1 in the bulk data (Fig. C). After DCA denoising, the median expression level of                 

SOX17 in DEC is shifted higher, more closely reflecting the observation in the bulk data (Fig.                

5D-E).  

Next, we systematically compared the four denoising methods for robustness using a            

bootstrapping approach. 20 random cells were sampled from H1 and DEC populations one             

hundred times and differential expression analysis using DESeq2 performed. When comparing           

the estimated fold changes across all bootstrap iterations, DCA showed highest           

correspondence with bulk fold changes (Fig. 5F).  
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Figure 5. DCA increases correspondence between single cell and bulk differential expression            

analysis. Scatterplots depict the estimated fold changes for each gene derived from differential             

expression analysis using bulk and original scRNA-seq count matrix (A), DCA denoised count matrix (B).               

Grey horizontal and vertical lines indicate zero fold change. Black line indicates identify line. Points are                

colored by the absolute difference between fold changes from bulk and single-cell data with red colors                

indicating relative high differences. Panels C, D and E depict differential expression of an exemplary gene                

SOX17 ​between H1 and DEC for the bulk, original and DCA denoised data, respectively. Panel F                

illustrates boxplots of the distribution of Pearson correlation coefficients from bootstrapping differential            

expression analysis using 20 randomly selected cells from the H1 and DEC populations for all denoising                

methods. 
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Denoising increases protein and RNA co-expression 

CITE-seq enables simultaneous measurement of protein and RNA levels at cellular           

resolution. Per-cell protein levels are higher than mRNA levels for the corresponding genes and              

therefore less prone to dropout events​34​. Therefore, by using cell surface marker protein             

expressions as ‘ground truth’, denoising of mRNA levels can be evaluated. Stoeckius et al. used               

this CITE-seq method to profile cord blood mononuclear cells and identified major            

immunological celltypes (Fig. 6A). The original RNA count data was denoised using all four              

methods and evaluated. Fig. 6B shows tSNE visualization of the data colored by the expression               

levels of proteins CD3, CD11c, CD56 and corresponding RNAs ​CD3E​, ​ITGAX ​, NCAM1 ​by             

column, respectively. The rows correspond to the protein expression levels, RNA expression            

levels derived from the original and DCA denoised data. Visualizations for additional            

protein-mRNA pairs and other methods can be found in Supplementary Fig. 3 and 4,              

respectively. For example, the CD3 protein is expressed in 99.9% of T cells. The corresponding               

RNA ​CD3E, ​however, is only detected in 80% of T cells in the original count data. After                 

denoising using DCA, ​CD3E ​is expressed in 99.9% of all T cells (Fig. 6C). Some slight                

discrepancies between the protein and denoised expression can be observed. For example, in             

the denoised data ​ITGAX shows expression in the natural killer cells (NK) cell cluster while the                

corresponding CD11c protein levels are very low. Data from the Immunological Genome project             

(immgen.com), confirmed expression of ​ITGAX in NK cells (data not shown), indicating that the              

denoised data for this gene reflects better agreement with known biology which may be              

obscured in the CITE-seq protein data due to some unknown technical reasons. To statistically              

evaluate the denoising methods we performed co-expression analysis using Spearman          
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correlation for all eight available protein-mRNA pairs across all cells. DCA showed highest             

median correlation coefficient, indicating that denoising increases protein and RNA          

co-expression (Fig. 6D). 
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Figure 6. DCA increases protein and RNA co-expression. Panel A depicts tSNE            

visualization of transcriptomic profiles of cord blood mononuclear cells from Stoeckius et al. Cells              

are colored by major immunological celltypes. Panel B contains tSNE visualizations colored by             

protein expression (first row), RNA expression derived from original (second row) and DCA             

denoised data (third row). Columns correspond to CD3 (first column), CD11c (second column),             

CD56 (third column) proteins and corresponding RNAs ​CD3E​, ​ITGAX and ​NCAM1​. Panel C             

shows the distribution of expression values for CD3 protein (blue), original (green) and DCA              

denoised (pink) ​CD3E RNA in T cells. Spearman correlation coefficients for the eight protein-RNA              

pairs across all cells for the original and denoised data are plotted panel D. 
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DCA runtime scales linearly with the number of cells 

As the number of cells profiled in a single experiment is increasing, it is essential that 

scRNA-seq methods show good scalability. To assess the scalability of the four methods, we 

analyzed the currently largest scRNA-seq data set, consisting of 1.3 million mouse brain cells, 

from 10X Genomics. The 1.3 million cell data matrix was downsampled to 100, 1,000, 2,000, 

5,000, 10,000 and 100,000 cells and 1000 highly variable genes. Each subsampled matrix was 

denoised and the runtime measured (Fig. 7). The runtime of DCA scaled linearly with the 

number of cells. While it took DCA minutes to denoise 100,000 cells, the other methods took 

hours. Therefore, DCA possesses a considerable speed advantage over the competing 

methods.  
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Figure 7. DCA scales linearly with the number of cells. Plot shows the runtimes for denoising of                 

various matrices with different numbers of cells down-sampled from 1.3 million mouse brain cells​35 ​. Colors               

indicate different methods. 
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Denoising by DCA enables discovery of subtle cellular phenotypes 

After having evaluated DCA against competing methods, we tested if DCA denoising            

could enhance biological discovery which is impossible or more challenging to obtain without             

denoising. Stoeckius et al.​34 highlight the potential for integrated and multimodal analyses to             

enhance discovery of cellular phenotypes, particularly when differentiating between cell          

populations with subtle transcriptomic differences. The authors observed an opposing gradient           

of CD56 and CD16 protein levels within the transcriptomically derived NK cell cluster (Fig. 8 A &                 

B). Indeed, unsupervised clustering using Gaussian mixture model on the CD16 and CD56             

protein expression levels revealed two sub-populations of cells (Fig. 8C). The corresponding            

RNAs ​NCAM1 and ​FCGR3A​, however, contained high levels of dropout obscuring the            

sub-population structure (Fig. 8D). After denoising, the two sub-populations of NK cells become             

evident solely based on DCA denoised ​NCAM1 and ​FCGR3A RNA expression levels.            

Therefore, DCA denoising enabled the extraction of information which was exclusively           

contained in the CITE-seq proteins, demonstrating the ability to enable discovery of subtle             

cellular phenotypes (Fig. 8E).  
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Figure 8. Denoising enhances discovery of cellular phenotypes. tSNE visualization of           

transcriptomically derived NK cell cluster colored by CD56 (panels A) and CD16 (panel B) protein               

expression levels. Grey and blue indicate relative low and high expression, respectively. Panel C shows               

CD56 and CD16 protein expression across NK cells, revealing two distinct sub-populations defined as              

CD56dim (red) and CD56bright (bright). Panels D and E depict expression of corresponding RNAs              

NCAM1 and ​FCGR3A using the original count data and DCA denoised data, respectively. Cells are               

colored by protein expression derived assignment to CD56bright (black) and CD56dim (red) NK cell              

sub-populations. 
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Denoising by DCA increases correlation structure of key regulatory genes 

Next, we tested if denoising enhances discovery of regulatory relationships for           

well-known transcription factors in blood development. In Paul et al.​36 the authors describe the              

transcriptional differentiation landscape of blood development into megakaryocyte–erythroid        

progenitors (MEP) and granulocyte-macrophage progenitors (GMP) (Fig. 9A-B). After denoising,          

a set of well-known MEP and GMP regulators​37 show enhanced regulatory correlations (Fig.             

9C-D), for example, the anticorrelation between ​Pu.1 and ​Gata1 increases (Fig. 9E-F). These             

two transcription factors are important regulators in blood development and known to inhibit             

each other​38​. This regulatory relationship is identified in denoised data also in cells with zero               

expression for either gene in the original data, demonstrating the ability of DCA to extract               

meaningful information from otherwise non-informative zero count values (Supplementary Fig.          

5). Overall these results demonstrate that DCA enhances modeling of gene regulatory            

correlations, and we expect future network inference methods to use denoising as a first              

preprocessing step. 
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Figure 9. Denoising by DCA increases correlation structure of key regulatory genes. Panels A 

and B display diffusion maps of blood development into GMP and MEP colored by developmental 

trajectory and celltype, respectively. Abbreviations Ery, Mk, DC, Baso, Mo, Neu, Eos, Lymph correspond 
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to erythrocytes, megakaryocytes, dendritic cells, basophils, monocytes, neutrophils, eosinophils and 

lymphoid cells, respectively. Panels C and D display heatmaps of correlation coefficients for well-known 

blood regulators taken from Krumsiek et al.​37 ​. Highlighted areas show ​Pu.1 - Gata1​ correlation in the 

heatmap. Panels E and F show anti-correlated gene expression patterns of ​Gata1​ and ​Pu.1​ transcription 

factors colored by pseudotime, respectively.  
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Discussion 

One of the fundamental challenges in scRNA-seq analysis is technical variation. Recent            

research has shown that accounting for technical variation improves downstream analysis​7,39–41           

such as uncovering the cell differentiation structure, identification of highly variable genes, and             

clustering. Furthermore, some denoising/imputation methods have been implemented in         

scRNA-seq workbenches such as Granatum​42​, indicating that it is an important, frequently used             

processing or smoothing step e.g. for visualization.  

Here, we introduce a robust and fast autoencoder-based denoising method tailored to            

scRNA-seq datasets. We demonstrate that denoising scRNA-seq data can remove technical           

variation improving five possible downstream analyses, namely clustering, time course          

modeling, differential expression, protein-RNA co-expression and pseudotime analyses.  

The evaluation of denoising is difficult because the definition of a ground truth can be               

challenging for real data. We therefore described a diverse set of evaluation scenarios, which              

may allow systematic assessment of other denoising techniques in the future. Furthermore, in             

order to avoid bias in comparisons, we adapted evaluation approaches and used corresponding             

data from competing methods for evaluation.  

Note that in general it may be difficult to determine when denoising improves scRNA-seq              

data and careful estimation of overimputation may be necessary, for example by            

hyperparameter optimization or regularization. To alleviate overfitting and overimputation, a          

general and not yet extensively treated issue of imputation methods, we implemented a number              

of regularization methods, including dropout, encoder-specific and overall L1 and L2           

regularization. This is required especially when training on data sets with limited sample size.              

DCA also allows users to conduct a hyperparameter search to find the optimal set of               

parameters for denoising to avoid poor generalization due to overfitting. 
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The proposed method can be easily integrated into existing workflows; in particular it             

supports h5ad-formatted HDF5 files (​https://github.com/theislab/anndata ​) and the Python API is          

compatible with Scanpy​43 package. Furthermore, we show that DCA is highly scalable to data              

sets with up to millions of cells.  

 

Methods 

Architecture and training 

Zero-inflated negative binomial (ZINB) is a distribution used for modelling highly sparse            

and overdispersed count data. ZINB mixture model consists of two components, a point mass at               

zero which represents excess zeros in datasets and a negative binomial component            

representing the count process. For the scRNA-seq data, the point mass corresponds to             

dropout zeros whereas the negative binomial component represents the process that gives rise             

to the count data.  

ZINB is parameterized with mean and dispersion parameters of the negative binomial            

component (μ and θ) and the mixture coefficient that represents the weight of the point mass                

(π): 

 

A typical autoencoders compresses high dimensional data into lower dimensions in           

order to constrain the model and extract features that summarize the data well in the bottleneck                

layer. In scRNA-seq context, these features are ideally cell type specific. The hidden features              

are then used by the decoder to estimate the mean parameter of a normal distribution for each                 

feature i.e. each gene in scRNA-seq context. Therefore, there is a single output layer              
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representing the mean. Here, we use the autoencoder framework to estimate three parameters             

of ZINB distribution conditioned on the input data for each gene. Therefore, unlike traditional              

autoencoders, our model also estimates dropout (π) and dispersion (θ) parameters in addition             

to the mean (μ). Each module corresponds to a parameter of the ZINB distribution, given as μ,                 

θ and π. In binary classifiers, the output layer is interpreted as logistic regression using the                

features extracted from the previous layers. Similarly, the output layer in our approach can be               

interpreted as ZINB regression where predictors are new representations of cells. 

 The formulation of the architecture is given below: 

 

where ​E​, ​B and ​D represent encoder, bottleneck and decoder layers, respectively. In this              

formulation, represents library size, log and z-score normalized expression matrix where            

rows and columns correspond to cells and genes, respectively. Size factors for every cell, s​j ​, is                

calculated as total number of counts per cell divided by the median of total counts per cell. is                  

defined as: 

 

where ​X​ and ​zscore​ represent the raw count matrix and z-score normalization.  

Output activations are shown here in matrix form as , and 𝚷. Although the          Θ      

mini-batch stochastic gradient descent is used for optimization, for convenience here we depict             
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the entire matrices of size n x p where n and p represent number of cells and genes,                  

respectively.  

Note that in the architecture, the activation function of the mean and dispersion output              

layers is exponential, since the mean and dispersion parameters are always non-negative. The             

third output 𝚷 estimates the dropout probability for every element of the input. The activation               

function of this layer is sigmoid as 𝚷 values represent the dropout probabilities. The activation               

function of the three output layers is an inverse canonical link function of a ZINB regression                

model in the context of generalized linear models. 

The loss function that is likelihood of zero-inflated negative binomial distribution: 

 

where x​ij represents the elements in the raw count matrix ​X​. i and j represent cell and gene                  

indices and n and p represent the number of cells and genes. ​M represents the mean matrix                 

multiplied by the size factors that are calculated before the training: 

 

which keeps the hidden representation of cells and the optimization process independent of             

library size differences.  

Furthermore, our model contains a tunable zero-inflation regularization parameter that          

acts as a prior on the weight of the dropout process. This is achieved by the ridge prior over the                    

dropout probabilities and zero inflation (𝚷 parameter): 
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where NLL ​ZINB​ function represents the negative log likelihood of ZINB distribution. 

To increase flexibility we provide implementations of a negative binomial loss function with             

(ZINB) and without zero-inflation (NB). Hyperparameter search allows users to find optimal λ             

value for given dataset. Furthermore, users are also allowed to choose whether the dispersion              

parameter is conditioned on the input. While n x p dispersion matrix is estimated from the data                 

in the conditional dispersion (default option), the alternative option estimates a scalar dispersion             

parameter per gene. 

 

Denoising 

The denoised matrix is generated by replacing the original count values with the mean of the                

negative binomial component ( matrix in Equation 1) as predicted in the output layer. This               

matrix represents the denoised and library size normalized expression matrix, the final outcome             

of the method. Intuitively, our approach can be interpreted as a two-step process. First, the data                

is summarized by extracting lower dimensional hidden features that are useful for denoising the              

data as well as identifying and correcting dropout zeros. Then, a ZINB regression is fitted using                

these new hidden features. However, these two steps are performed simultaneously during the             

training.  

 

Implementation 
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DCA is implemented in Python 3 using Keras​44 and its TensorFlow​45 backend. We used              

RMSProp for optimization with learning rate 0.001. Learning rate is multiplied by 0.1 if validation               

loss does not improve for 20 epochs. The training stops after no improvement in validation loss                

for 25 epochs. Gradient values are clipped to 5 and the batch size is set to 32 for all datasets.                    

All hidden layers except for the bottleneck consist of 64 neurons. Bottleneck has 32 neurons.               

Training on CPU and GPU is supported thanks to Keras and TensorFlow.  

Hyperparameter search is implemented using hyperopt​46 and kopt Python packages          

(​https://github.com/Avsecz/kopt​). One thousand hyperparameter configurations such as different        

number of layers, number of neurons, L1/L2 coefficients are trained for 100 epochs using the               

Tree-structured Parzen Estimator (TPE)​46 method implemented in hyperopt. Model with lowest           

validation error is reported. 

 

Simulated scRNA-seq data 

Simulated data sets were generated using the Splatter R package ​27​. For the two group              

simulation the following parameters were used in the ​splatSimulate() R function groupCells = 2,              

nGenes = 200, dropout.present = TRUE, dropout.shape -1, dropout.mid = 5. For the six group               

simulation the following parameters were used in the ​splatSimulate() R function groupCells = 6,              

nGenes = 200, dropout.present = TRUE, dropout.shape -1, dropout.mid = 1. 

 

68k peripheral blood mononuclear cell experiment 

Single cell gene expression count matrix and celltype labels from Zheng et al. were downloaded               

from ​http://www.github.com/10XGenomics/single-cell-3prime-paper​. Since CD4+ and CD8+      

subtype clusters are highly overlapping, they are combined into coarse groups. tSNE            
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coordinates were obtained by reproducing the code from single-cell-3prime-paper repository.          

DCA was run using the following parameter: -s 16,2,16. 

 

MAGIC 

MAGIC was downloaded from ​https://github.com/KrishnaswamyLab/magic​. MAGIC was run        

using default parameters specified as 20 for the numbers of principal components, 6 for the               

parameter t for the power of the markov affinity matrix, 30 the number of nearest neighbors, 10                 

the autotune parameter and 99th percentile to use for scaling. 

 

scImpute 

scImpute (version 0.0.5) was downloaded from ​https://github.com/Vivianstats/scImpute ​. For the         

comparison the following parameters were used kCluster = 2. For the CITE-seq cord blood              

mononuclear cells experiment and the scalability analysis, kCluster = 13 and kCluster = 2              

parameters are used, respectively.  

 

SAVER 

SAVER (version 0.3.0) was downloaded from https://github.com/mohuangx/SAVER. SAVER        

was run using default parameters specified as 300 for the maximum number of genes used in                

the prediction, 50 for the number of lambda to calculate in cross validation and 5 for the number                  

of folds used in cross validation. For the scalability analysis, SAVER was run using the R                

package ​doParallel​ with 24 cores. 

 

DCA 
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For the two group simulation data the following parameters were used ​--type zinb-cond​. For the               

six group simulation data the following parameters were used ​--type zinb​. For the C. elegans               

development experiment the following parameters were used -​-type zinb​. For the Chu et al.              

definitive endoderm differentiation experiment the following parameters were used -​-type nb​.           

For the CITE-seq cord blood mononuclear cells experiment, the following parameters were used             

-​-type nb​. 

 

C. elegans development experiment 

Bulk microarray gene expression of developing C.elegans embryos was downloaded the           

supplementary material of Francesconi et al.​28​. This data set contained 206 samples covering a              

12-hour time-course. Similar to the evaluation proposed van Dijk et al., expression values were              

exponentiated to create a count distribution and subsequently single-cell noise was added ​in             

silico by subtracting gene-specific artificial noise from each gene. Gene-specific artificial noise            

was generated using the exponential function where the mean was calculated as the gene              

expression median multiplied by five. Any negative values were set to zero so that on average                

80% of the values were zero. Pearson correlation was calculated between the expression level              

of each gene and time course to identify top 500 development genes.  

 

Chu et al. definitive endoderm differentiation experiment 

Single-cell and bulk RNA-seq data were downloaded from the Gene Expression Omnibus            

(GEO) accession GSE75748. The gene expression data was restricted to single cells and bulk              

samples from H1 and DEC using the provided annotation. Differential expression analysis was             

performed using the R package DESeq2 (version 1.14.1). DESeq2 models gene expression            

based on a negative binomial distribution without zero-inflation. To retain count structure,            
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denoised data for all methods was rounded prior to analysis. Dispersion was estimated using              

“mean” for the ​fitType ​parameter. To assess robustness of the results, bootstrapping analysis             

was conducted. During each of 100 iterations, 20 cells from the H1 and DEC cells were                

randomly selected and differential expression analysis performed as described above. Next,           

concordance was evaluated using Pearson correlation between the estimated fold changes           

derived from the single-cell bootstrap and bulk data.  

 

CITE-seq cord blood mononuclear cells experiment 

Single cell protein and RNA raw count expression matrices were obtained from the GEO              

accession GSE100866. The Seurat R package was used to perform the analysis. Following the              

instructions of the authors​34 data was subset to 8,005 human cells by removing cells with less                

than 90% human UMI counts. Next, RNA data was normalized, highly variables genes were              

identified and expression data was scaled. First 13 principal components were calculated and             

used for clustering and tSNE visualization. A total of 13 clusters were identified. The ​genesCLR               

method was used for normalization of the protein data. For denoising, gene expression data              

was restricted to the top 5000 highly variable genes. Co-expression for eight known marker              

proteins (CD3, CD19, CD4, CD8, CD56, CD16, CD11c, CD14) and corresponding mRNAs            

(​CD3E, CD19, CD4, CD8A, NCAM1, FCGR3A, ITGAX, CD14​) was assessed using Spearman            

correlation on the scaled expression data across all 8,005 cells.  

 

NK subset analysis 

Stoeckius et al.​34 data was subset to 906 NK cells. Next, protein and RNA expression data were                 

scaled. Using CD16 and CD56 protein expression levels, cells were clustered with the ​Mclust()              

function from the R ​mclust ​package and two mixture components.  
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Blood regulator analysis 
 
Paul et al. blood differentiation data with 2730 cells and 3451 informative genes including the 

cell type annotations are obtained via “​scanpy.api.datasets.paul15()”​ function of Scanpy. After 

log transform with pseudo count of one, kNN graph is constructed with 

“​scanpy.api.pp.neighbors​” function. Diffusion map, diffusion pseudotime (DPT) and four 

diffusion pseudotime groups are computed with “​scanpy.api.tl.dpt(adata, n_branchings=1)​”. 

Pseudotime estimates of two DPT groups corresponding to MEP and GMP branches are scaled 

between [0, 1] and [0, -1] in order to show the branching more distinctly. DCA is run with default 

parameters and Pearson correlation coefficients between marker genes are calculated with 

“​numpy.corrcoef​” function. 

 
Scalability analysis 
 

1.3 million mouse brain cell data were downloaded from 

https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons​. First, 

cells and genes with zero expression are removed from the count matrix. Next, top one 

thousand highly variable genes are selected using “filter_genes_dispersion” function of Scanpy 

with n_top_genes=1000 argument. The 1.3 million cell data matrix was downsampled to 100, 

1,000, 2,000, 5,000, 10,000 and 100,000 cells and these 1000 highly variable genes. Each 

subsampled matrix was denoised with the four methods and the runtime measured. Scalability 

analysis was performed on a server with two Intel Xeon E5-2620 2.40GHz CPUs. 

 

Data Availability 

 

DCA, including usage tutorial, can be downloaded from ​https://github.com/theislab/dca ​. 
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List of abbreviations 

scRNA-seq: single-cell RNA sequencing; tSNE: t-distributed stochastic neighbor embedding, 

DCA: deep count autoencoder; AE: autoencoder, PCA: principal component analysis, H1: 

human embryonic stem cells; DEC: definitive endoderm cells; MEP: megakaryocyte–erythroid 

progenitors; GMP: granulocyte-macrophage progenitors; MSE: mean squared error; ZINB: 

zero-inflated negative binomial; CITE-seq: Cellular Indexing of Transcriptome and Epitopes by 

sequencing; NK: natural killer cells; DPT: diffusion pseudotime; ReLU: rectified linear unit. 
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