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Sensory cortices are active in the absence of external sensory stimuli. To understand the nature of this on-
going activity, we used two-photon calcium imaging to record from over 10,000 neurons in the visual cortex
of mice awake in darkness while monitoring their behavior videographically. Ongoing population activity was
multidimensional, exhibiting at least 100 significant dimensions, some of which were related to the sponta-
neous behaviors of the mice. The largest single dimension was correlated with the running speed and pupil
area, while a 16-dimensional summary of orofacial behaviors could predict ∼45% of the explainable neural vari-
ance. Electrophysiological recordings with 8 simultaneous Neuropixels probes revealed a similar encoding of
high-dimensional orofacial behaviors across multiple forebrain regions. Representation of motor variables
continued uninterrupted during visual stimulus presentation, occupying dimensions nearly orthogonal to the
stimulus responses. Our results show that a multidimensional representation of motor state is encoded across
the forebrain, and is integrated with visual input by neuronal populations in primary visual cortex.

Introduction

In the absence of sensory inputs, the brain produces struc-
tured patterns of activity, which can be as large or larger
than sensory driven activity (Ringach, 2009). Ongoing
activity exists even in primary sensory cortices, where
neuronal activity at any time reflects an interaction of
sensory-driven and ongoing components.

Several not mutually exclusive hypotheses exist for the
function of ongoing activity and its interaction with stim-
ulus responses. The first is that ongoing activity is sim-
ply correlated noise, for example produced by strong re-
current connectivity in neural circuits (Parga and Abbott,
2007; Stringer et al., 2016; van Vreeswijk and Sompolin-
sky, 1996). According to this view, ongoing activity is
not a feature but a bug: it impairs cortical representa-
tions of sensory stimuli by corrupting sensory responses
with noise of similar correlation structure (Averbeck et al.,
2006; Cohen and Kohn, 2011; Shadlen and Newsome,
1998). A second theory holds that spontaneous activity
patterns reflect recapitulation of previous sensory experi-
ences, or expectations of possible sensory events. This
hypothesis is supported by studies that found similari-
ties between sensory-driven and spontaneous firing events
(Berkes et al., 2011; Han et al., 2008; Hoffman and Mc-
Naughton, 2002; Kenet et al., 2003; Luczak et al., 2009).
A third possibility is that ongoing activity could be re-
lated to behavioral and cognitive states. The firing of vi-
sual cortical neurons correlates with behavioral variables

such as locomotion and pupil diameter (Dipoppa et al.,
2016; McGinley et al., 2015; Niell and Stryker, 2010;
Pakan et al., 2016; Polack et al., 2013; Reimer et al., 2016;
Saleem et al., 2013; Stringer et al., 2016; Vinck et al.,
2015), while in barrel cortex, whisking modulates neu-
ronal firing (Gentet et al., 2010, 2012; Peron et al., 2015).
These behaviorally-related changes in ongoing activity
may reflect a “gain modulation” that boosts the salience
of sensory modalities that are behaviorally relevant in that
context, while suppressing others (Fu et al., 2014; Schnei-
der and Mooney, 2015; Wimmer et al., 2015).

To try to distinguish between these possibilities and oth-
ers, we considered the dimensionality of the ongoing neu-
ral activity and its relation to sensory responses and be-
havior. If ongoing activity represents a recapitulation
of possible stimulus responses, it should be high dimen-
sional, and these dimensions should be similar to those
of sensory responses but unrelated to ongoing motor ac-
tions. If ongoing activity represents a single behavioral
state such as locomotion or arousal, it should be one di-
mensional. Alternatively, if a sensory area encodes a high-
dimensional representation of multiple motor variables,
this suggests the area is performing a more complex in-
tegration of sensory input with cognitive and behavioral
variables.

Here we investigate the statistical structure of ongoing
population activity, first in visual cortex, and then in mul-
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tiple areas of the forebrain. Because estimating dimen-
sionality requires recording from many neurons simulta-
neously (Gao et al., 2017), we made simultaneous record-
ings of over 10,000 cells in visual cortex using two photon
microscopy. We also recorded from over 2,000 neurons si-
multaneously in multiple cortical areas and deeper struc-
tures using high-density electrophysiology. We found that
ongoing activity is complex, spanning at least 100 linear
dimensions. These dimensions were represented by over-
lapping sets of neurons that did not have a spatial orga-
nization in the imaged tissue, and encoded multiple be-
havioral variables visible by videography of the whiskers,
snout and other facial features. The dimensions occupied
by ongoing activity were largely distinct from those en-
coding responses to visual stimuli.

Results

We monitored the activity of large populations of neurons
in awake head-fixed mice that were not engaged in a be-
havioral task but were free to run on an air-floating ball or
rotate a wheel with their front paws. Mice spontaneously
performed behaviors such as whisking, sniffing, and other
facial movements, which we monitored videographically
using an infrared camera. Six out of nine of the recordings
were performed in complete darkness. We did not observe
differences between recordings in darkness (shown in red
on all plots) and recordings with gray screen (yellow on
all plots).

We recorded from 11,262 ± 2,282 (mean ± s.d.) neurons
simultaneously in the visual cortex of six mice over nine
sessions, using 2-photon imaging of GCaMP6s, in an 11-
plane configuration with 2.5Hz scan rate (Pachitariu et al.,
2016b) (Figure 1A). We focused our analysis on excita-
tory neurons, identified by the expression of GCaMP6s in
transgenic mice with an excitatory promoter, or by expres-
sion of tdTomato under a Gad1 promoter, which allowed
us to identify and exclude inhibitory neurons from further
analysis.

The first dimension of ongoing activity is domi-
nated by arousal

Ongoing population activity in visual cortex was highly
structured. We computed pairwise correlations in 1.2 sec-
ond bins (3 neural frames). The mean correlation coeffi-
cient over cell pairs was small, but the distribution of cor-
relations was wide, with substantially more positive and
negative correlations than would be expected by chance
(Ecker et al., 2010; Renart et al., 2010) (Figure 1C,D).

Indeed, the correlation coefficients were highly reliable
(Figure 1D,E, mean r = 0.66 between correlations in first
and second half of recordings, Figure 1F, G).

The largest component of the variance in ongoing activ-
ity was related to arousal. We extracted this factor by
principal component analysis of ongoing population ac-
tivity. An approximately equal number of neurons were
correlated and anticorrelated with the first principal com-
ponent (57% ± 6.7% SE), indicating that two large sub-
populations of neurons alternate their activity in a push-
pull manner (Figure 1I). The alternation between the ac-
tivity of these two neuronal populations occurred over a
timescale of many seconds (Figure S1), and was coupled
to fluctuations in arousal levels, as indicated by standard
measures such as running, pupil area, and whisking (cor-
relations of r = 0.69, r = 0.46, and r = 0.75 respec-
tively) (Figure 1J).

The slowness of these fluctuations implies a different un-
derlying phenomenon to the “up and down states” pre-
viously studied in electrophysiological recordings (Con-
stantinople and Bruno, 2011; Crochet and Petersen, 2006;
Engel et al., 2016; Luczak et al., 2009; Okun and Lampl,
2008; Okun et al., 2015; Stringer et al., 2016; Vyazovskiy
et al., 2011). Up/down states alternate at a much faster
timescale (100-300 ms instead of 10-20 s), and a ma-
jority of neurons correlate with them positively, whereas
approximately equal numbers of neurons correlated posi-
tively and negatively with the slow fluctuations in arousal
described here. Indeed, up/down state changes could
not even have been detected in these recordings, which
scanned the cortex every 400 ms.

Across neuronal pairs, correlation in activity was only
weakly related to distance (Figure 1K). Furthermore, neu-
rons positively and negatively weighted on the first prin-
cipal component had only a weak tendency to cluster to-
gether on the cortical surface (Figure 1L,M; same- and
opposite-weighted neurons had a mean difference of 509
µm vs 526 µm, p=0.0025).

Predicting neural activity from one-dimensional
measures of behavior

Having found that the top principal component was highly
correlated with arousal, we asked whether further varia-
tions in the precise ongoing behavior of the mice might
differentially relate to additional dimensions of neural ac-
tivation. Indeed, the behaviors of the animals during the
experiment exhibited transitions between multiple mo-
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Figure 1. Structured ongoing population ac-
tivity in visual cortex. (A) Two-photon cal-
cium imaging of ∼10,000 neurons in visual cor-
tex using multi-plane resonant scanning of 11
planes spaced at 35 µm apart. (B) Randomly-
pseudocolored cells detected in an example
imaging plane. (C) Distribution of pairwise cor-
relations in ongoing activity (yellow). Gray:
distribution of correlations after randomly time-
shifting each cell’s activity. (D) Bars showing of
distribution of pairwise correlation coefficients
for each recording (dot: mean; bar, range be-
tween 5th and 95th percentile). (E,F) Pseudo-
color representation of correlation matrices for
a subset of cells, computed independently from
two halves of recording. (G) Scatter plot of cor-
relations for each cell pair, computed from inde-
pendent halves. (H) Histogram showing Pearson
correlation coefficient of of pairwise correlations
(as in G), across recordings. (I) Top: raster rep-
resentation of ongoing population activity, with
neurons arranged vertically sorted by weights
onto the 1st principal component. Bottom: Time
course of top three principal components of pop-
ulation activity. Green: running speed. (J) Cor-
relation of first principal component with behav-
ioral measures: running speed, pupil area and
whisking. The mean and standard error across
recordings is plotted. (K) Mean correlation over
cell pairs, as a function of distance on the cor-
tical surface. (L) Spatial distribution in tissue of
neurons with positive and negative weights, in an
example imaging plane. (M) Mean distance in
tissue between neurons with same- or opposite-
signed weights onto 1st PC.
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tor states such as whisking, grooming, sniffing, running,
chewing, sitting, or combinations of these.

We focused first on running (measured by the motion
of the air floating ball), whisking (measured by summed
videographic motion energy within the whisker region),
and pupil area. These three behavioral variables were cor-
related, but not identical (Figure 2A,B). Based on previ-
ous studies, we expected that these variables might dif-
ferentially affect neural activity (McGinley et al., 2015;
Reimer et al., 2016; Vinck et al., 2015).

Prediction from all three arousal-related variables ex-
plained more neural variance than the prediction from
any one alone (Figure 2C; p<0.05, Wilcoxon rank-sum
test). Each of the three variables contained unique infor-
mation about the neural activity (Figure 2D). This im-
proved prediction did not simply reflect the increased
accuracy of averaging three noisy measures of a one-
dimensional quantity. To show this, we found the single
combination of weights that best predicted the activity of
all neurons in a population, using reduced-rank regression
(see Methods) (Figure 2E). This one-dimensional predic-
tion weighted all three regressors positively (Figure 2F).
The one-dimensional model yielded a poorer prediction
than allowing each neuron to be predicted from a unique
weight combination (Figure 2G). It follows that differ-
ent neurons were best predicted by differently-weighted
combinations of the 3 behavioral variables. This shows
that a single linear combination of running, whisking and
pupil area cannot account for the full diversity of patterns
seen in ongoing activity, suggesting that the influence
of behavioral states on neural activity is at least three-
dimensional. Also, this multidimensional influence was
spread throughout cortical layers: the neurons most cor-
related with different behavioral variables were not local-
ized in depth (Figure 2H).

Multidimensional neural activity

Ongoing population activity showed a complex and high-
dimensional structure, beyond the single arousal-related
dimension revealed by the first principal component, and
beyond the three-dimensional structure highlighted in the
previous analysis. This higher-dimensional activity could
be visualized by replotting the raster diagram after ver-
tically sorting neurons along a continuum so that nearby
neurons showed strong correlations (Figure 3A, see Meth-
ods; see Figure S2 for all recordings). This sorting re-
vealed a more complex and higher-dimensional structure
than could be seen when sorting neurons by their weights

on the first principal component (c.f. Figure 1H). Ac-
tivity patterns changed smoothly along this continuum,
and there were no hard boundaries identifying separate
clusters of neurons. Nonetheless, activity patterns varied
markedly between neurons that were distant in this con-
tinuum, and to analyze the data further, we divided the
neurons into 30 groups along the sorting dimension, with
neurons within a group showing stronger correlations than
across groups. Most of the resulting groups exhibited pe-
riods of high activity, intermingled with periods of near-
complete silence, but these switches occurred at different
times for different groups. Neurons assigned to the same
group were spatially distributed: the average within clus-
ter distance was only 13% smaller than out-of-cluster dis-
tance (Figure 3B-D) (453 µm in-cluster distance versus
522 µm out-of-cluster distance, p<0.001).

To quantify the apparent multidimensional structure of
population activity, we used a technique of "peer predic-
tion" (Harris et al., 2003; Pillow et al., 2008). This method
attempts to predict the activity of a target neuron from
its simultaneously-recorded peers. Each neuron took a
turn as target, and we summarized the activity of the re-
maining population (the target cell’s “peers”) by principal
component analysis, excluding cells with somas located
physically close to the target cell (within a 3d distance
of 70 µm; see Methods). We predicted the target cell’s
activity from the top N principal components, and deter-
mined how prediction quality varied as a function of N
using cross-validation (Figure 3H). We observed a peak
in predictability at N=213+/-23 components (Figure 3I),
confirming that ongoing activity was indeed multidimen-
sional. This analysis represents a lower bound on the
true dimensionality of the data: because the analysis is
cross-validated, genuine dimensions of smaller variance
may not be detected with the quantity of training data
we have (see Methods). This method was on average
able to explain 18.6% of the neuronal variance using an
optimal multidimensional predictor; in contrast, one di-
mension alone explained 3.7% variance (Figure 3F). The
predictability using this method was markedly better than
the three-dimensional model of neural activity obtained
from whisking, running and pupil area (Figure 2), which
explained on average ∼4% of the neural variance. The
remaining variance that is not predicted by peer neurons
may be unpredictable due to Poisson-like neural spiking
and the noise added by the two-photon recording method.

4

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 22, 2018. ; https://doi.org/10.1101/306019doi: bioRxiv preprint 

https://doi.org/10.1101/306019
http://creativecommons.org/licenses/by-nc/4.0/


0 20 40 60 80 100 120 140 160
time (s)

whisking

running
pupil area

ru
n-

pu
pil

ru
n-

whis
k

pu
pil

-w
his

k
0

0.2

0.4

0.6

0.8

co
rr

el
at

io
n

ru
nn

ing

pu
pil

 a
re

a

whis
kin

g
all

 3
0

0.02

0.04

0.06

va
ria

nc
e 

ex
pl

ai
ne

d
(t

es
t s

et
)

ru
nn

ing

pu
pil

 a
re

a

whis
kin

g
0

0.02

0.04

0.06

va
ria

nc
e 

ex
pl

ai
ne

d
(u

ni
qu

e,
 te

st
 s

et
)

running

pupil area

whisking

 30 s

behaviors

best 1D
weighted
average

r2=0.73

r2=0.02

r2=0.01

r2=-0.00

neural PCs neurons

ru
nn

ing

pu
pil

 a
re

a

whis
kin

g

0

0.5

1

w
ei

gh
ts

0 0.02 0.04 0.06
best 1D model

0

0.02

0.04

0.06

fu
ll 

3D
 m

od
el

variance explained
(test set)

ru
nn

ing
 +

pu
pil

 a
re

a 
+

whis
kin

g 
+

ru
nn

ing
 -

pu
pil

 a
re

a 
-

whis
kin

g 
-

300

400

500

de
pt

h 
(

m
)

A

B C D

E

F G H

Figure 2. Predicting population activity
from running, whisking and pupil area. (A)
Time courses of running speed, pupil area, and
whisker motion energy, for an example experi-
ment. Y-axis scale: scaled units. (B) Correlation
coefficients for each pair of these three behav-
ioral traces. Each line denotes an individual ex-
periment, black denotes average. (C) Mean frac-
tion of single neuron variance predicted by each
behavioral variable individually, or combined.
(D) Unique contribution of each behavioral vari-
able to prediction of single-neuron activity, de-
fined as difference between full model and model
excluding that predictor. (E) Schematic of re-
duced rank regression, which finds the single
weighted average of running, pupil area and
whisking that best predicts all neurons in a
recording. (F) Weights of each predictor found
by reduced rank regression. (G) Prediction qual-
ity for best 1D weighted average model, where
all neurons are predicted by the same predic-
tor combination, against prediction quality full
model where different neurons are predicted by
different combinations. Each point represents
the mean predictablilty of all neurons recording
in an experiment. (H) Distribution across depth
in tissue of six non-overlapping groups of neu-
rons with different behavioral correlates. Neu-
rons were grouped according which behavioral
variable they best correlated with, and the sign
of this correlation.

5

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 22, 2018. ; https://doi.org/10.1101/306019doi: bioRxiv preprint 

https://doi.org/10.1101/306019
http://creativecommons.org/licenses/by-nc/4.0/


  1
00

0 
ne

ur
on

s

running pupil area whisking

  1 min

500 m
in-group out-of-group

0

200

400

pa
irw

is
e 

di
st

an
ce

 (
m

)

in-group out-of-group
0

200

400

pa
irw

is
e 

di
st

an
ce

 (
m

) peers
neural PCs single neuron

activity

1 16 256
dimensions

0

0.1

0.2

0.3

va
ria

nc
e 

ex
pl

ai
ne

d
(t

es
t s

et
)

A

B C Per group D Averaged E Peer prediction F

Figure 3. Multi-dimensional ongoing neural activity. (A) Raster representation of ongoing population activity, with neurons arranged vertically
on a continuum such that nearby neurons had similar activity patterns. (B) Neurons were split into 30 groups along their position in the continuum.
Spatial distribution of the 30 clusters (represented by pseudocolor), in a single example imaging plane. (C) Three-dimensional distances between
neurons in the same or different clusters, for one experiment. Each line represents a cluster. (D) Average of (F) over all clusters. Each line represents
an experiment. (E) “Peer prediction” method for estimating dimensionality of neural activity. Each neuron takes a turn as target cell, and principal
component analysis is applied to the activity of its simultaneously recorded “peers”, excluding spatially neighboring neurons. The activity of the
target cell is predicted from these principal components, and prediction quality is assessed via cross-validation. (F) Average single neuron variance
explained by peer prediction as a function of the number of principal components, for each experiment.
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Spontaneous orofacial behaviors predict neural
activity

The above analysis demonstrated that ongoing activity
in visual cortex is high dimensional and behaviorally-
correlated, but that only a small fraction of its structure
can be explained by combinations of three readily defin-
able behavioral variables (whisking, running and pupil
area). To ask whether population activity in visual cor-
tex encodes more behavioral information, we developed
a method of unsupervised video analysis, and applied it
to movies of the mouse face taken during the recordings
(Figure 4A) (Powell et al., 2015). The method worked
by computing the spatial distribution of facial motion en-
ergy at each moment in time (Figure 4B), and applying
principal component analysis to it (Figure 4C). Using this
method, we extracted a 1,000-dimensional summary of
the motor actions visible on the mouse’s face. Because
these dimensions are orthogonal to each other, they need
not necessarily correspond to individual motor actions
(e.g. twitching of the nose, whisking, grooming, sniffing,
chewing, wincing, etc), but are rather an abstract repre-
sentation of such actions. Nevertheless, examining spatial
maps of the PC weightings showed that the first PC corre-
sponds to global facial motion, the second corresponds to
motion of the whisker pad (contrasted with the rest of the
face) and the third PC corresponds to nose movements,
such as during sniffing (Figure 4C). Higher PCs generally
did not have simple interpretations.

The video analysis method revealed that ongoing activity
in visual cortex encodes at least 16 dimensions of motor-
related information. To show this, we predicted neural
activity from the motion energy PCs using reduced rank
regression (Figure 4D); to avoid overfitting, we first pre-
dicted the top 128 neural principal components, and only
through them predicted the neural activity (Figure 4D).
A one-dimensional predictor extracted from facial mo-
tion using this unsupervised method captured the same
amount of variance as the best one-dimensional combi-
nation of the explicitly-computed predictors considered
above (whisking, running, pupil area), suggesting that
both methods had independently found a similar 1D pre-
dictor of neural activity related to arousal (Figure 4E).
However, prediction quality continued to increase up to
16 dimensions of videographic information (and in some
recordings beyond), suggesting that at least 16 dimensions
of motor information are encoded visual cortex (Figure
4F).

To visualize how the mouse’s face predicts ongoing pop-
ulation activity, we again sorted the neurons by their em-

beddings in the 1D continuum (like in Figure 3A), and
compared the raw neural activity with the model’s predic-
tion based on unsupervised videography (Figure 4G, see
Figure S2 for all recordings). The model captured changes
in the neural activity over a range of timescales (subsec-
ond to tens of seconds), and accurately predicted multiple
types of patterns in the population activity.

The prediction from orofacial behavior accounted for
45.6%± 6% SE of the neural variance that could be ex-
plained by peer prediction (Figure 4H), substantially more
than the three-dimensional model of neural activity using
running, pupil area and whisking (Figure 4I). The infor-
mation available in the explicitly-computed running, pupil
area and whisking signals was redundant with that ob-
tained by unsupervised videography: adding these pre-
dictors only increased the explained variance by less than
1% (Figure 4J). The timescale with which neural activ-
ity could be predicted from facial motor behavior was of
the order 1s (Figure 4K), but even with a time delay of ±
2.44 seconds it was possible to explain half the variance
that could be explained by instantaneous prediction (half-
width at half-max). Prediction of neural activity from mo-
tor behaviors was optimal with a 1-frame time delay (400
ms), however, this was likely due to the dynamics of the
calcium sensor (see electrophysiology results below).

Neurons in a majority of brain areas can be pre-
dicted from orofacial behaviors

Ongoing activity was predictable from orofacial move-
ments uniformly throughout visual cortex (Figure S3).
The lack of spatial localization raised a question: how
far outside of our recording volume can neural activity
be predicted from multidimensional orofacial behaviors?
There are reports of running, whisking and pupil area
modulating other cortical areas (Gentet et al., 2010; Peron
et al., 2015; Schneider et al., 2014; Shimaoka et al., 2018),
as well as thalamus (Erisken et al., 2014; Williamson
et al., 2015) and superior colliculus (Ito and Feldheim,
2018), so these areas are also good candidates to be pre-
dicted by orofacial behaviors.

To record neurons in a large number of brain regions,
we performed large-scale electrophysiological recordings,
using 8 Neuropixels probes simultaneously. Neuropix-
els electrodes allow recording from 374 sites densely
spaced across a depth of ∼4 mm (Jun et al., 2017). The
probes were positioned to record from areas of neocor-
tex, hippocampus, striatum, thalamus, midbrain, and vari-
ous other nuclei (Figure 5A,B). We obtained such record-
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Figure 4. Multi-dimensional behavior pre-
dicts neural activity. (A) Consecutive frames
from a video recording of a mouse’s face. (B)
Motion energy, computed as the absolute value
of the difference of consecutive frames. (C) Spa-
tial masks corresponding to the top three prin-
cipal components (PCs) of the motion energy
movie. (D) Schematic of reduced rank regres-
sion technique used to predict neural activity
from the time traces of the motion energy PCs.
(E) Prediction quality for the best single 1D com-
bination of face PCs, plotted against best single
combination of running, pupil area and whisking
(c.f. Figure 2F). (F) Prediction quality as a func-
tion of the number of dimensions of facial in-
formation used by reduced rank regression. (G)
Top: raster representation of ongoing neural ac-
tivity in an example experiment, with neurons ar-
ranged vertically so that correlated cells are close
together. Bottom: prediction of this activity from
facial videography. (H) Prediction quality from
multidimensional facial information, compared
to peer prediction from other neurons. (I) Predic-
tion quality of multidimensional facial informa-
tion, plotted against against prediction from run-
ning pupil, and whisker. (J) Adding explicit run-
ning pupil and whisker information to facial fea-
tures provides little improvement in neural pre-
diction quality. (K) Prediction quality as a func-
tion of time lag used to predict neural activity
from behavioral traces.

8

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 22, 2018. ; https://doi.org/10.1101/306019doi: bioRxiv preprint 

https://doi.org/10.1101/306019
http://creativecommons.org/licenses/by-nc/4.0/


ings from three mice, and spike sorted the data using
a modified version of Kilosort (Pachitariu et al., 2016a)
that tracks changes in neuronal waveforms. In the three
recordings, we were able to extract 2998, 2768 and 1958
units that were stable across ∼1 hour of ongoing activ-
ity, spread out over many different brain areas: cortex (vi-
sual: 628, sensorimotor: 475, frontal: 664, retrosplenial:
161), hippocampal formation (1371), striatum (353), tha-
lamus (2882), midbrain (885) (Figure 5C). Neurons were
on average more strongly correlated with neurons in the
same area, but substantial inter-area correlations also ex-
isted suggesting non-localized patterns of neural activity
(Figure 5D).

To investigate whether the behavioral modulation we ob-
served in V1 could be seen throughout the brain, we ap-
plied the same analysis methods, after binning the spikes
in overlapping bins of 1.2 seconds. The top principal com-
ponent of forebrain-wide population activity again tracked
a measure of arousal computed from the facial move-
ments. All areas contained neurons positively and neg-
atively correlated with this measure, however there were
tendencies for some brain areas (such as thalamus) to con-
tain a larger fraction of arousal-preferring neurons (Figure
5E).

As in visual cortex, ongoing population activity was high-
dimensional. To visualize its structure, we again sorted
the neurons along a 1D continuum so that nearby cells
were more correlated (Figure 5F, same method as shown
in Figure 3A). All brain areas contained a sampling of
neurons from the entire continuum, suggesting that a mul-
tidimensional structure of ongoing activity is distributed
throughout the brain, despite the fact that local correla-
tions were stronger on average (Figure 5D). Applying a
peer prediction analysis suggested that spontaneous activ-
ity was at least 128 dimensional, with 35% of the variance
of individual neurons predictable from peer activity, and
with modest variations between brain areas (Figure 5G).

To ask whether neurons across the forebrain encoded mo-
tor activity, we again extracted orofacial behavioral traces
from video recordings of the mouse face, and used these
to predict the neural activity through a low-dimensional
bottleneck. As in V1, we found that 16 dimensions of oro-
facial behaviors predicted on average 43% of the variance
explainable by peer prediction in these neurons (15.6% of
the total variance) (Figure 5H). Predictability had a slight
dependence on brain area: neurons in motor-related areas
and thalamus were predicted best (19% of total variance,
49.3% of variance explainable by peer prediction), while

neurons in visual and retrosplenial cortex were predicted
least well (10.2% of total variance, 30.3% of variance ex-
plainable by peer prediction).

Neural activity was best predicted from video 44±20ms
SE after the behavior, but the predicted variance again
decayed slowly over time lags of multiple seconds (half
width at half max of 2.95 s, Figure 5I). Taking advantage
of the high temporal resolution of electrophysiological
recordings, we reduced the analysis bin size from 1.2 sec-
onds to 200 ms. The timescale of the prediction became
substantially shorter, showing that the model can capture
events on the order of 1 s (half width at half max of 1.07
s, Figure 5J). In addition, the prediction at 0 ms time lag
was higher dimensional than the prediction at±5 s. These
results suggest that predictability at long timescales (1-10
s) is dominated by the relatively slowly-changing arousal
state, while at shorter timescales (<1 s) the prediction can
take advantage of higher dimensions of behavioral activ-
ity.

Our results in visual cortex therefore largely extend to
the rest of the forebrain. Motor-related information was
spread across brain areas, including hippocampus, thala-
mus and striatum. Ongoing population activity was high
dimensional, and a considerable fraction of this activ-
ity (43% of the variance explainable by peer prediction)
could be predicted from the videographic monitoring of
the faces of the mice.

Ongoing activity continues uninterrupted
throughout sensory stimulation

We next asked how ongoing, behaviorally-related activity
interacts with responses to sensory stimuli. For this analy-
sis, we returned to imaging population activity in primary
visual cortex, recording blocks of ongoing activity where
a gray screen was shown constantly, interspersed with
blocks of visual stimulation with flashed natural images,
taken from the ImageNet database (Deng et al., 2009) and
presented at an average rate of 1 image per second. The
∼1mm2 areas of visual cortex we recorded from were
chosen to be at retinotopic locations matched to the lo-
cations of the stimulus-display screens.

During stimulus presentation, the mice continued to ex-
hibit the same spontaneous behaviors as in darkness: run-
ning, whisking, grooming, etc. The face motion energy
traces continued unperturbed throughout the visual stim-
ulus presentations (Figure 6A), with a similar distribution
of power across the top videographic principal compo-
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Figure 5. Behaviorally-related activity across the forebrain in recordings with 8 Neuropixels probes. (A) Example histology slice showing
orthogonal penetrations of 8 electrode tracks through a calbindin-counterstained horizontal section. (B) Reconstructed probe locations of recordings
in three mice. (C) Number of neurons recorded in each area, as determined by alignment to the Allen common coordinate framework. (D) Mean
correlation between cells in the same area, or between an area and the rest of the recorded areas. X-axis represents average correlation coefficient
over all pairs of cells in a given area, from all recordings; color code as in panel C. Y-axis represents average correlation of pairs with one cell in
that area and all the other cells in different areas. (E) Distribution of correlations with first videographic principal component (arousal measure),
for each brain region. (F) Neurons were arranged along a vertical continuum such that nearby neurons have correlated ongoing activity. Left
panel shows position on continuum (y-axis) vs. recording depth (x-axis), with neurons color coded by brain location as in C. Right panel shows
raster representation of ongoing population activity for an example experiment. (G) Peer prediction of single neurons from all other neurons in
the recording as a function of the number of principal components (test data). Each curve shows the average prediction quality for neurons in a
particular brain area, color coded as in C. (H) Prediction quality of from orofacial behaviors as a function of dimensions of reduced rank regression.
Each curve shows average prediction quality for neurons in a particular brain area. (I) Explained variance as a function of time lag between neural
activity and behavioral traces. Each curve shows average for a particular brain area. (J) Same as I in 200ms bins, and averaged over all neurons.
Each curve shows prediction for a different number of dimensions in the reduced rank regression.
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nents during gray screen and stimulus presentation (Fig-
ure 6B). This lack of a behavioral response was despite
the fact that the stimuli drove strong, robust responses in
visual cortex (Figure 6A,C).

Stimuli and behavior were represented together in V1 as a
mixed representation: there were not separate sets of neu-
rons encoding stimuli and behavioral variables, but each
neuron multiplexed a unique combination of sensory and
behavioral information. To show this, we first computed
the fraction of each neuron’s variance explained by stimuli
and by behavior and observed only a slightly negative re-
lationship between the two (Figure 6D; r = -0.18, p<0.01
Spearman’s rank correlation). We then sorted the neurons
according to their response patterns, separately for sen-
sory responses and behavioral responses, and found no
relation between the ranks of the neurons in the two order-
ings (Figure 6E,F). There was no correlation between the
pairwise distances of neurons in the two orderings (Figure
6E; r = 0.003, p > 0.05). In other words, neurons with sim-
ilar stimulus responses did not tend to have more similar
responses to behaviors.

Although representations of sensory and behavioral in-
formation were mixed together in the same cell popu-
lation, the coding subspaces corresponding to these two
types of information were largely orthogonal. We de-
veloped a method to estimate the activity each stimu-
lus caused, over and above ongoing activity, in an unbi-
ased way by analyzing responses to multiple repeats of
the same stimuli (see Methods). This method revealed
that the amount of stimulus-related variance was 7.7%
in single cells on single trials, comparable to the size
of the ongoing variance, measured by peer prediction
at 11.0%. However, only 11% of this stimulus-related
variance lay in the neural subspace predictable from be-
havior, with the remaining 89% being orthogonal to the
behaviorally-related dimensions. Furthermore, the over-
lap of the stimulus-related and behavior-related subspaces
was largely one-dimensional: 93% of the variance of
the overlap was contained in a single dimension (Figure
6G). The one-dimensional subspace shared between the
stimulus- and behavioral-related dimensions had largely
positive weights onto all neurons (85% positive weights,
Figure 6H). We obtained similar results for the relation of
sensory activity to ongoing activity, defined by the top 32
principal components of the spontaneous firing without
regard to its behavioral correlate: the space of ongoing
activity contained 18% of the total stimulus-related vari-
ance, 92% of which was contained in one-dimension that
again was positively weighted on nearly all neurons (89%

positive weights). Thus, the similarity between popula-
tion responses to visual stimuli and ongoing/behavioral
activity reflects primarily the fact that both can cause in-
creased activity of all cells together.

To visualize how the V1 population integrated sensory
and behavior-related activity, we examined the projection
of this activity onto three orthogonal subspaces: a mul-
tidimensional subspace modulated by only sensory infor-
mation; a multidimensional subspace modulated by only
behavioral information; and the one-dimensional sub-
space modulated by both (Figure 6I, J, and zoomed in
Supplementary Figure S4). During gray-screen periods
there was no activity in the stimulus-only subspace, but
when the stimuli appeared this space became very ac-
tive. Conversely, activity in the behavior-only subspace
was present prior to stimulus presentation, and contin-
ued unchanged when the stimulus appeared. The one-
dimensional subspace modulated by both stimulus and be-
havioral information showed an intermediate pattern: ac-
tivity in this subspace was visible prior to stimulus onset,
but increased when stimuli were presented.

These analyses indicate that the relation between behav-
ioral tuning and sensory responses is largely restricted to
a single dimension corresponding to an overall increase
in population rate. Except for this one dimension, the on-
going behavior-related patterns of neural activity contin-
ued unperturbed throughout sensory stimulation. Further-
more, neurons were selective to all combinations of stim-
ulus and behavioral tuning.

Discussion

By imaging the ongoing activity of ∼10,000 neurons in
visual cortex we discovered that this activity is high-
dimensional, encompassing at least 100 linear dimen-
sions, and possibly many more. The largest dimension
was related to arousal, and it modulated about half of the
neurons positively and half negatively. Further dimen-
sions, at least 16 of them, were related to motor informa-
tion visible by facial videography. Together, these dimen-
sions accounted for approximately 45% of the explainable
variance in the ongoing activity of visual cortex. The di-
mensions encoding motor variables were largely orthogo-
nal to those encoding visual stimuli, overlapping primar-
ily along a single dimension, which coherently increased
or decreased the activity of the entire population. Beyond
this one dimension, the ongoing behavior-related patterns
of neural activity continued unperturbed regardless of sen-
sory stimulation.
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Figure 6. Behaviorally-related activity continues uninterrupted during the presentation of visual stimuli. (A) Principal components of facial
motion energy (top) and firing of ten example V1 neurons (bottom), before, during and after a period of visual stimulus presentation. (B) Compari-
son of the variances of the PCs of motion energy with and without visual stimulation. Each point represents one principal component; data from all
experiments shown as separate points of the same color. (C) Distribution of signal-to-noise ratio (SNR) of neural tuning to repeats of the 32 visual
stimuli (see Methods). Each curve represents the SNR distribution of all cells in an experiment; arrows represent the mean for each experiment. (D)
Comparison of explained variance from stimuli and from behavior videography for single neurons. X- and y-coordinates represent each neuron’s
rank order from least to most predictable by stimulus and behavior. (E) Comparison of tuning to behavior and stimuli. Each point is a neuron, and
the x- and y-coordinates represent its rank in two separate 1D embeddings computed from stimulus responses, and from behavioral coefficients
of the face prediction model (16D), respectively. (F) Pairwise comparison of visual-tuning similarity (x- axis) and behavioral-tuning similarity (y-
axis). Each point represents a pair of cells; tuning similarities are defined as the pairwise distance in the 1D embeddings from E. (G) The distri-
bution of stimulus variance in the neural space defined by the face prediction PCs from Figure 4. X-axis represents principal component number
(specifically for stimulus-related activity within the space defined by face prediction); y-axis represents fraction of stimulus-related variance in this
dimension. (H) Distribution of cells’ weights on the single dimension of overlap between stimulus-related and face-related subspaces. Each curve
represents the distribution of weights over all cells in an experiment. (I) Illustration of three sets of orthogonal dimensions in the space of firing
patterns. Activity in multiple dimensions is driven by visual stimuli but not behavior (shades of magenta); multiple other dimensions are driven
by behavior but not by stimuli (shades of cyan); a single dimension (gray; characterized in panels G,H) is driven by both. (J) Example of neural
population activity projected onto these three sets of dimensions. Top: shades of magenta, projection onto stimulus-related dimensions. Middle:
gray, projection onto single dimension related to both stimuli and behavior; black, projection onto dimensions related to behavior alone. Bottom:
similar analysis for all ongoing dimensions, even if unrelated to facial behavior.
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These results are not specific to visual cortex: we made
similar observations in thousands of neurons recorded
from multiple brain regions, ranging from visual, sen-
sorimotor, frontal, and retrosplenial cortex to hippocam-
pus, to striatum, thalamus, midbrain and various other nu-
clei. The resulting population activity showed many of
the same features as those that we had observed in visual
cortex: modulation by arousal and by many additional
higher dimensions, many of them related to motor vari-
ables. The encoding of these motor variables in ongoing
activity, therefore, was not restricted to visual cortex, but
was seen across wide regions of the forebrain.

Our data are consistent with previous reports describing
one-dimensional correlates of locomotion and arousal in
visual cortex (Dipoppa et al., 2016; McGinley et al., 2015;
Niell and Stryker, 2010; Pakan et al., 2016; Polack et al.,
2013; Reimer et al., 2016; Saleem et al., 2013; Stringer
et al., 2016; Vinck et al., 2015), but suggest these results
were just glimpses of a much larger set of motor variables
encoded by ongoing activity patterns. In fact, the 16 di-
mensions of motor activity we report may be a substantial
underestimate. Our statistical analyses are conservative:
because they are cross-validated, any dimensions below
the noise floor would not be detected. Furthermore, our
methods would fail to detect motor-related dimensions
that are not visible on the face, or visible but not encoded
linearly in the spatiotemporal patterns of the face motion
energy.

A limitation of our approach is that it rests on an abstract
description of motor actions: quantifying behaviors that
are easily describable (whisking, running, pupil dilation)
led to substantially poorer prediction of neural popula-
tion activity than unsupervised videographic analysis. It
is possible that more advanced methods of video analy-
sis might produce both good predictions and interpretable
predictors (Brown et al., 2013; Machado et al., 2015; Ro-
bie et al., 2017; Wiltschko et al., 2015). Indeed, an un-
derstanding of the function of sensory cortex will likely
be impossible without measuring and understanding its
relation to ongoing behavior, beyond easily-characterized
measures such as running and pupil dilation.

Our finding that the dimensions of face-related and
visually-evoked activity are largely orthogonal at first ap-
pears to contradict previous reports showing similarity
of sensory responses to ongoing activity (Berkes et al.,
2011; Han et al., 2008; Hoffman and McNaughton, 2002;
Kenet et al., 2003; Luczak et al., 2009). We suggest three
non-exclusive explanations for this apparent discrepancy.

The first is that the experiments here looked at a slower
timescale than most of these previous studies. Specifi-
cally, we binned the data into 1.2 s bins, while previous
studies binned at 100 ms (Luczak et al., 2009), or even
2 ms (Berkes et al., 2011). The similarities between sen-
sory responses and ongoing activity found by these stud-
ies at faster timescales could become very weak in our
large time bins. The second explanation concerns the one
dimension common to the spaces of ongoing and evoked
activity, corresponding to a general increase in popula-
tion firing. Some previous analyses showing similarity
of spontaneous and evoked activity may have simply re-
flected the existence of this one dimension (Okun et al.,
2012). The final explanation regards the approximately
additive interaction of non-sensory variables with sen-
sory responses. Because non-sensory variables account
for around half the variance of population activity, the fir-
ing patterns recorded during stimulation will indeed show
substantial similarity to ongoing activity. However, this
would not imply that ongoing activity is a recapitulation
of sensory events, just that it encodes nonsensory vari-
ables constantly throughout stimulation.

We observed that sensory and nonsensory variables are
integrated in visual cortex in the form of a mixed repre-
sentation. Rather than some neurons encoding sensory
variables and others encoding nonsensory variables, al-
most every neuron represents both types of information,
in different combinations. The brainwide representation
of behavioral variables that we found suggests that infor-
mation coding nearly anywhere in the forebrain is likely to
be combined with behavioral state variables into a similar
mixed representation. What benefit could this ubiquitous
mixing of sensory and motor information provide? The
most appropriate behavior for an animal to perform at any
moment depends on the combination of available sensory
data, ongoing motor actions, and purely internal variables
such as motivational drives. An integration of sensory in-
puts with motor actions must therefore occur somewhere
in the nervous system. Our data suggest that this integra-
tion happens as early as primary sensory cortex. While
this may challenge the textbook view, it is not incompat-
ible with neuroanatomy: primary sensory cortex receives
not only innervation from neuromodulatory systems that
carry state information, but also receives substantial in-
puts from higher-order cortices, which have been shown
to encode fine-grained behavioral variables, at least in
S1 (Petreanu et al., 2012). Beyond sensory cortex, there
are indiscriminate connections between most brain areas
(Gămănuţ et al., 2018; Harris et al., 2018), with most re-
constructed single neurons extending axons at long range
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throughout the brain (Economo et al., 2016), and with a
high diversity of single neuron projections from the same
area (Chen et al., 2018; Han et al., 2018). This pervasive
whole-brain connectivity may form the mechanistic basis
for the whole-brain coordinated activity we have reported
here.
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Experimental methods

All experimental procedures were conducted according to
the UK Animals Scientific Procedures Act (1986). Ex-
periments were performed at University College London
under personal and project licenses released by the Home
Office following appropriate ethics review.

Preparation for two-photon calcium imaging in
visual cortex

The imaging methods were similar to those described
elsewhere (Dipoppa et al., 2016). Briefly, surgeries were
performed in adult mice (P35–P125) in a stereotaxic
frame and under isoflurane anesthesia (5% for induction,
0.5-1% during the surgery). We used mice bred to ex-
press GCaMP6s in excitatory neurons (EMX-CRE x Ai94
GCaMP6s, CamKII x tetO GCaMP6s, and Rasgrf-CRE
x Ai94 GCaMP6s), or mice bred to express tdTomato in
GAD+ inhibitory neurons (GAD-Cre x tdTomato). Dur-
ing the surgery we implanted a head-plate for later head-
fixation, made a craniotomy of 3-4 mm in diameter with
a cranial window implant for optical access, and, in Gad-
Cre x tdTomato transgenics, performed virus injections
with a beveled micropipette using a Nanoject II injec-
tor (Drummond Scientific Company, Broomall, PA 1)
attached to a stereotaxic micromanipulator. We used
AAV2/1-hSyn-GCaMP6s, which was acquired from Uni-

versity of Pennsylvania Viral Vector Core. Injections
of 50-200 nl virus (1-3 x1012 GC/ml) were targeted to
monocular V1, 2.1-3.3 mm laterally and 3.5-4.0mm pos-
teriorly from Bregma. To obtain large fields of view for
imaging, we typically performed 4-8 injections at nearby
locations, at multiple depths (∼500 µm and ∼200 µm).

Data acquisition

We recorded optically the neural activity of head-fixed
awake mice implanted with 3-4 mm cranial windows cen-
tered over visual cortex. We obtained ∼10,000 neurons
in all recordings.The recordings were performed using
multi-plane acquisition controlled by a resonance scan-
ner, with planes spaced 30-35 µm apart in depth. 10 or 12
planes were acquired simultaneously at a scan rate of 3 or
2.5 Hz. The mice were free to run on an air-floating ball
and were surrounded by three computer monitors. We ei-
ther recorded in full darkness (monitors off), with a gray
background or presented visual stimuli on these monitors
arranged at 90o angles to the left, front and right of the an-
imal, so that the animal’s head was approximately in the
geometric center of the setup.

For each mouse imaged, we typically spent the first imag-
ing day finding a suitable recording location, where the
following three conditions held:

• the GCaMP signal was strong, in the sense that
clear transients could be observed in large numbers
of cells

• a large enough field of view could be obtained, to
result in 10,000 neuron recordings,

• the receptive fields of the neuropil were clearly spa-
tially localized on our three monitors.

In animals for which there was a choice over multiple
valid recording locations, we chose either: 1) a horizon-
tally and vertically central retinotopic location or 2) a lat-
eral retinotopic location, at 90o from the center, but still
centered vertically. We did not observe differences related
to retinotopic location (central or lateral), and thus pooled
data across recording locations. We also did not observe
significant differences between recordings obtained from
GCaMP transgenic animals, or from virus injections, nor
between recordings made in complete darkness or with a
gray screen. Thus, we pooled data over all conditions.
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Visual stimuli

We presented 96 repetitions of 32 flashed natural images,
covering all three screens. The images were manually se-
lected from the ImageNet database, from ethologically-
relevant categories: "birds", "cat", "flowers", "hamster",
"holes", "insects", "mice", "mushrooms", "nests", "pel-
lets", "snakes", "wildcat". We chose images if the sub-
jects tended to fill out the image (less than 50% of the
image was a uniform background), and if the images con-
tained a balanced mixture of low an high spatial frequen-
cies. The images were flashed for 0.5 sec with a random-
ized inter-stimulus interval between 0.3 sec and 1.1 sec,
during which a gray screen was presented.

Calcium imaging processing

The pre-processing of all raw calcium movie data was
done using a toolbox we developed called Suite2p,
using the default settings (Pachitariu et al., 2016b).
The software is available at www.github.com/
cortex-lab/Suite2P.

Briefly, Suite2p aligns all frames of a calcium movie us-
ing 2D rigid registration based on a regularized form of
phase correlation, subpixel interpolation and kriging. For
all recordings we validated the inferred X and Y offset
traces, to monitor any potential outlier frames that may
have been incorrectly aligned. In a very small percent-
age of all recordings, frames that had artifacts were re-
moved and the extracted traces were replaced with in-
terpolated values at those frames. In all recordings, the
registered movie appeared well-aligned by visual inspec-
tion. Next, Suite2p performs automated cell detection
and neuropil correction. To detect cells, Suite2p com-
putes a low-dimensional decomposition of the data, and
uses the decomposition to run a clustering algorithm that
finds regions of interest (ROIs) based on the correlation
of the pixels inside them. The extraction of ROIs stops
when the pixel correlations of new potential ROIs drops
below a certain value, which is set as a fraction of the
correlation in the high SNR ROIs; thus, it does not re-
quire the number of clusters to be set a priori. A further
step in the Suite2p GUI classifies these ROIs as somatic
or not, partially based on user input, which is used to
train a classifier. The classifier reaches 95% estimation
of somatic/non-somatic signals on this data (Pachitariu
et al., 2016b), thus allowing us to skip the manual step al-
together for most recordings. We note that the 5% errors
might either be attributable to human labelling error, or to
dendritic signals, which would nonetheless most likely re-
flect backpropagating APs, which primarily measures the

spiking signal for deeper cells. Thus, there is little risk of
ROIs potentially measuring non-somatic signals.

We took great care to compensate cellular fluorescence
traces for the surrounding neuropil signal (Chen et al.,
2013). This contamination is typically removed by sub-
tracting out from the ROI signal a scaled-down version
of the neuropil signal around the ROI; the scaling factor
was set to 0.7 for all neurons. Importantly, for computing
the neuropil signal, we excluded all pixels that Suite2p at-
tributed to an ROI, whether this was a somatic or dendritic
ROI. After neuropil subtraction, we further subtracted a
running baseline of the calcium traces with a sliding win-
dow of 60 seconds to remove long timescale additive
shifts in the signals. Spike deconvolution was then per-
formed on the baseline-subtracted traces. We performed
non-negative spike deconvolution with a fixed timescale
of calcium indicator decay of 2 seconds (Friedrich et al.,
2017; Pachitariu et al., 2017).

All of the processed deconvolved calcium traces are
available on figshare (https://figshare.com/
articles/Recordings_of_ten_thousand_
neurons_in_visual_cortex_during_
spontaneous_behaviors/6163622), together
with the behavioral traces described in computational
methods.

Recordings of face

Infrared LEDs (850nm) were pointed at the face of the
mouse to enable infrared video acquisition in darkness.
The videos were acquired at 30Hz using a camera with a
zoom lens with an infrared filter (850nm, 50nm cutoff).
The wavelength of 850nm was chosen so that it avoids
the 970nm of the laser, while remaining outside the visual
detection range of the mice.

8-probe Neuropixels recordings

Neuropixels electrode arrays (Jun et al 2017) were used
to record extracellularly from neurons in three mice. The
mice were: 73 days old, male, and Drd1a-Cre(-/-) (mouse
1); 113 days old, female, and TetO-GCaMP6s;Camk2a-
tTa (mouse 2); 99 days old, male, and Ai32;Pvalb-Cre
(mouse 3). In all cases, a brief (<1 hour) surgery to im-
plant a steel headplate and 3D-printed plastic recording
chamber (∼12mm diameter) was first performed. Fol-
lowing recovery, mice were acclimated to head-fixation
in the recording setup. During head-fixation, mice were
seated on a plastic apparatus with forepaws on a rotating
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rubber wheel. Three computer screens were positioned
around the mouse at right angles. On the day of record-
ing, mice were again briefly anesthetized with isoflurane
while eight small craniotomies were made with a dental
drill. After several hours of recovery, mice were head-
fixed in the setup. Probes had a silver wire soldered onto
the reference pad and shorted to ground; these reference
wires were connected to a Ag/AgCl wire positioned on the
skull. The craniotomies as well as the wire were covered
with saline-based agar. The agar was covered with sili-
cone oil to prevent drying. Probes were each mounted on
a rod held by an electronically position-able micromanip-
ulator (uMP-4, Sensapex Inc.) and were then advanced
through the agar and through the dura. Once electrodes
punctured dura, they were advanced slowly (∼10 µm/sec)
to their final depth (4 or 5 mm deep). Electrodes were al-
lowed to settle for approximately 15 minutes before start-
ing recording. Recordings were made in external refer-
ence mode with LFP gain=250 and AP gain=500, using
SpikeGLX software. The mice were in a light-isolated
enclosure and, during the part of the recording considered
here, the computer screens were black. Data were prepro-
cessed by re-referencing to the common median across all
channels (Ludwig et al., 2009).

Spike sorting the Neuropixels data

We spike sorted the data using a modification of Kilo-
sort that tracks drifting clusters (Pachitariu et al., 2016a),
which we will refer to as Kilosort2. This modification was
necessary to obtain an automated algorithm, and the code
will be made publicly available at or before the time of
publication. Without the modifications, the original Kilo-
sort and similar algorithms can split clusters according to
drift of the electrode, which was a major confound for
our behavioral-related analyses. Kilosort2 in comparison
tracks neurons across drift levels and for longer periods of
time ( 1 hour in our case). To further mitigate the effect
of drift, we used a conservative threshold, excluding from
further analysis units for which the maximal firing rate
was more than twice their minimal firing rates, when the
binned spikes were smoothed with a Gaussian-window fil-
ter with a standard deviation of 500 seconds. This ex-
cluded 20% of the units on average.

Computational methods

Correlations

Correlations for the two-photon neural data were com-
puted in bins of 1.2-1.3 seconds (3 or 4 frames respec-

tively for 12 and 10 plane recordings). To compute a shuf-
fled distribution in Figure 1C, we circularly shifted each
neuron’s activity in time by a random number of bins (at
least ±1000), and correlated all the shifted traces with all
the original traces.

Sorting neurons by correlation

In many raster plots, neurons were sorted vertically along
a 1d continuum so that nearby neurons were most corre-
lated. To do this, the binned activity of each neuron was
z-scored, and for electrode data high-pass filtered by sub-
tracting the Gaussian-filtered traces with a standard de-
viation of 100 seconds. The algorithm sought to order
the neurons along a one-dimensional continuum accord-
ing to the their firing patterns, such that each neuron’s
activity is most similar to the average of all nearby neu-
rons’ activity. This was achieved with a generalization of
a scaled k-means clustering algorithm, where the clusters
are ordered along a 1D axis and constrained to have sim-
ilar means to their nearby clusters. For initialization, the
neurons were ordered based on their weights onto the first
principal component of the activity and then divided into
30 clusters of equal size along this ordering. We com-
puted the mean activity of each cluster and smoothed this
activity across clusters, with a Gaussian of standard devi-
ation of 3 clusters. Then the correlation of each neuron
with the smoothed activity of each cluster was computed.
Neurons were reassigned to the cluster to which they were
most correlated with. This process was then repeated for
75 iterations. The smoothing constant across clusters was
held at 3 for the first 25 iterations and then annealed to
1 over the following 50 iterations. On the final pass, we
upsampled the neurons’ correlations with each cluster by
a factor of 100 via kriging interpolation with a smoothing
constant of 1 cluster. This allowed us to determine sub-
integer assignments of neurons to clusters, resulting in a
continuous distribution of neurons along the 1D axis of
clustering algorithm.

Although the electrode data was high-pass filtered to com-
pute sorting, we display the original raw activity in Figure
5.

Peer prediction: predicting single neuron activ-
ity from simultaneously recorded neurons

We binned the neural activity in time in bins of 1.2-1.3 s,
and split the activity into two halves: a training half and
a test half. Each half contained many temporally contigu-
ous blocks of duration 72 s, and the blocks belonging to
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training and testing sets were temporally interspersed but
not overlapping. The neurons each took a turn as target
for prediction.

For each target neuron we defined its "peers" as all neu-
rons greater than 70 µm from the cell in 3D distance, in
order to avoid peers that may get optical contamination of
their signals from the target neuron. From these peers, we
first computed the singular value decomposition of their
neural activity from the training half, F1:

[U S V T ] = svd[F1].

We then predicted the target neuron activity from n sin-
gular value components on the training half using linear
regression (f1). The weights from the "peer" activity to
the single neuron activity f1 were

Wn =
[
(f1VnSn)((VnSn)T (VnSn))−1

]
UT
n

where Un, Vn, Sn are the top n singular vectors. Then the
prediction of the single neuron activity on the testing half
was

f̂n2 = WnF2.

The variance explained was

vnexp = 1−
var
[
f2 − f̂n2

]
var [f2]

.

We computed this variance explained for all target neu-
rons and for increasing numbers of dimensions n =
1, 2, 4, 8, 16, ..., 512, 1024. The variance explained was
averaged across all neurons predicted in Fig 2. Due to the
high computational cost of this procedure, we only pre-
dicted a random subset of 10% neurons.

FaceMap: automated extraction of orofacial be-
haviors of mice

We developed a toolbox for videographic processing
of orofacial movements of mice. The software is
termed FaceMap, and is available at www.github.
com/carsen-stringer/FaceMap. The processing
time taken by the software scales linearly with the num-
ber of frames, and runs 4x faster than real-time on 30
Hz videos. A screenshot of the graphical user interface
is shown below.

Motion processing of regions of interest

A graphical user interface allows for easily defining the
areas of the face to be processed. The user can choose any
region of the frame in which to compute the total motion
energy, the SVDs of the motion energy or the SVDs of the
raw frames. These regions of interest are assigned differ-
ent names, but the computations for each is the same. The
motion ROIs are called "groom", "whisker", "snout", and
"face", and can be manually moved to overlap any region
of the movie.

The motion energy GT is computed as the absolute value
of the difference between consecutive frames FT+1 and
FT , for all T :

GT = |FT+1 − FT |.

The full matrix G is thus number of pixels by timepoints
and our goal was to (approximately) obtain its singular
value decomposition. For the behavioral analyses de-
scribed in this paper, we processed the whole frame and
the whisker pad / eye area separately. The total motion
of the region is simply the sum of non-white pixels that
appear in the GUI panel on the right.

SVD processing of the movie and/or motion

In order to find the behavioral motifs in the data we
reduced the dimensionality of the motion movies using
SVD. The toolbox allows for computation of the SVD of
the movie F , the motion G, or both. The computation is
identical for F and G. We outline the procedure for G.

The matrices are too large to decompose in their raw form.
We therefore computed the SVD in two stages: first we
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computed the SVD of short temporal segments, then we
concatenated the SVDs from different segments, scaled
by the singular values, and recomputed their SVD. Each
segment of frames is a matrix Gi. Since the number of
pixels is very large (> 1 million), we avoid computing the
SVD of this matrix directly, and instead compute the time
by time covariance matrix GT

i Gi. We keep the top 200
eigenvectors Vi of this matrix, which are also the top 200
right singular vectors of Gi. We then compute the spatial
projections of these components Ui = GiVi. Notice that
Ui consists of the left singular vectors, scaled by the sin-
gular values. As such, the matrix Ui is a 200-dimensional
summary of the segment Gi.

We then concatenated Ui for all segments of the movie,
and re-computed the SVD:

[U S V T ] = svd([Û1...Ûn]).

We kept the top 1,000 components of this U matrix as the
spatial components of the face motion. We then projected
the raw movies onto these spatial components, to obtain
their temporal profiles:

Wmotion = UTG.

Pupil processing

FaceMap also computes the area and position of the pupil
in the region of interest that the user defines. The mini-
mum value in this region is subtracted from all pixels for
robustness across illumination changes. In this region of
interest, a user-adjusted threshold is used to keep only the
darkest pixels, which correspond to the pupil. We com-
pute the center of mass of these dark pixels as:

xCOM =
xTR(x)∑

xR(x)

where x is the two-dimensional pixel location and R is
the pixel’s darkness level.

We compute the covariance Σ of a 2D Gaussian fit to the
region of interest:

Σ = (x− xCOM )(x− xCOM )T .

We then iterate 4 more times between re-selecting only
pixels that are 2 standard deviations away from the center,

and recomputing the Gaussian covariance fit. We keep as
the outline of the pupil the ellipse that is 2 standard devi-
ations from the center of mass.

Predicting neural activity from one-dimensional
behavioral variables by standard linear regres-
sion

To predict neural activity from running, pupil diameter,
and whisker movement, we first binned the neural activity
and the behavior x in bins of 3 frames (1 or 1.2 seconds).
As with the peer prediction analysis, we split the neural
activity F and the behavior x into two halves in time, F1

and F2, x1 and x2. The behavioral variables x1,2 were
either single traces (running, whisking, pupil area), pair-
wise combinations of these, or all three traces together.
We predicted F1 from x1 by linear regression, obtaining
the weights a:

a =
(
x1 x

T
1

)−1 (
x1 F

T
1

)
.

We used a to obtain the prediction on the second half of
the recording and computed how much variance this pre-
diction explained of the test data vexp:

F̂2 = aTx2

vexp = 1−
var
[
F2 − F̂2

]
var [F2]

.

Predicting neural activity from multi-dimensional
behavioral variables by reduced-rank regression

We predicted the neural activity F from W , where W is a
matrix of behavioral dimensions by time, using reduced-
rank regression. Reduced-rank regression is a form of reg-
ularized linear regression, with the prediction weights ma-
trix restricted to a specific rank (Izenman, 1975). Because
the rank of the regression matrix is restricted, the number
of parameters in the model is lower, making it more ro-
bust to overfitting. To further avoid overfitting, we first
reduced the dimensionality of the neural activity F using
PCA, and fit the reduced rank regression model to the top
PCs only:

[U S V T ] = svd[F ].

We kept 128 singular vectors of the singular value decom-
position of F , and set V = SV T . We split the recordings
in half in time into a training set and a test set, thus split-
ting F into F1 and F2, V into V1 and V2, and W into W1

and W2.
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We computed the reduced rank regression matrices An

and Bn with rank n that minimize the expression

min
An,Bn

∥∥AnB
T
nW1 − V1

∥∥2 .
This expression can be minimized analytically (Izenman,
1975). We then reconstructed F2 from the prediction
V̂2 = AnB

T
nW2:

F̂n
2 = UV̂2

= UAnB
T
nW2.

We then computed the variance explained vexp for each
rank n, up to 128 dimensions:

vnexp = 1−
var
[
F2 − F̂n

2

]
var [F2]

.

We also computed the variance explained for each of the
principal components of the neural activity:

vnexp = 1−
var
[
V2 − V̂ n

2

]
var [V2]

.

Stimulus variance computation

We consider the recorded neural response fk(n, i) of neu-
ron n to stimulus i on repetition k. This can be rewritten
as

fk(n, i) = µ(n, i) + εk(n, i)

where µ(n, i) is the trial-averaged response of neuron n
to stimulus i over an idealized, infinite number of repeti-
tions of stimulus i, while εk(n, i) is the trial-to-trial vari-
ability, or "noise". We would like to estimate the tuning
of µ(n, i) across stimuli i, and summarize this tuning by
a scalar quantity

Vn = Ei

[
(µ(n, i)− Ei[µ(n, i)])2

]
,

which we call the stimulus-driven variance. We use the
notation Ei[X] to denote the expectation of the quantity
X over an infinite number of stimuli i. By construction
Ei [fk(n, i)] = µ(n, i) and Ei [εk(n, i)] = 0.

Suppose we have at least two repetitions of the stimuli
for neuron n and all stimuli in set i. We assume that
εk(n, i) does not depend on the repetition number, i.e. for

all k, εk(n, i) are independent random samples from the
same distribution. This condition can be approximately
achieved in practice by separating the presentation of the
stimulus repeats by tens of minutes. This is necessary in
order to avoid temporally correlated noise. We thus as-
sume the variance of the noise vnoise is the same in both
repeats. We then subtract repeat 1 and 2:

f1(n, i)− f2(n, i) = µ(n, i) + ε1(n, i)− µ(n, i)− ε2(n, i)

= ε1(n, i)− ε2(n, i)

Then the variance of this quantity allows the derivation of
the noise variance:

var[f1(n, i)− f2(n, i)] = var[ε1(n, i)− ε2(n, i)]

= var[ε1(n, i)] + var[ε2(n, i)]

= 2vnoise

= var[f1(n, i)] + var[f2(n, i)]

⇒ vnoise =
1

2
(var[f1(n, i)] + var[f2(n, i)]).

And vsignal = var[µ(n, i)], and thus can also be derived:

var[f1(n, i)] = var[µ(n, i) + ε1(n, i)]

= var[µ(n, i)] + var[ε1(n, i)]

= vsignal + vnoise

⇒ vsignal = var[f1(n, i)]− vnoise.

We note that εk(n, i) could (and does) depend on the neu-
ron and stimulus. However our derivation makes no as-
sumptions on these dependencies.

To compute the tuning-related signal-to-noise ratio in our
recordings, we divided the 96 repeats of 32 stimuli into
two halves and computed the trial-averaged neural re-
sponse from the first half of stimulus repeats (f1(n, i)),
and the trial-averaged neural response across the second
half of stimulus repeats (f2(n, i)). The signal-to-noise
ratio is the ratio between vsignal and vnoise as computed
above. This signal-to-noise ratio is non-zero when a neu-
ron has responses to stimuli above its noise baseline.

We compute the signal variance of any set of traces in the
same manner, for example to define the amount of signal
variance in the neural subspace defined by behaviorally-
predictable responses.
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Stimulus versus ongoing activity analysis

Stimulus vectors

The trial-averaged stimulus responses were computed for
all stimuli. This produced a matrix of neurons by number
of stimuli (32). These trial-averaged stimulus components
were projected onto the neural activity across all time (in-
cluding the spontaneous activity). 8 traces (out of 32) are
shown in Figure 6J and Figure S4.

Behavioral vectors

Reduced-rank regression was performed from the face
motion energy PCs to the neural activity. The face com-
ponents were defined as the columns of the An matrix,
where n=32. These components were projected onto the
neural activity across all time (including the visual stimu-
lation periods). 8 traces are shown in Figure 6J and Figure
S4.

Shared stimulus-behavior subspace

To find the shared stimulus and behavior subspace, we an-
alyzed the covariance matrix between trial-averaged neu-
ral responses to stimuli, and the top behavioral compo-
nents identified in An. This covariance matrix had di-
mensions 32 stimuli by 32 behavioral components ma-
trix. We computed the singular value decomposition of
this matrix, and projected the components back into the
neural space to obtain the shared stimulus-behavior sub-
space. The weights of the first singular vector are plotted
in Fig 6G. This procedure was performed on one third of
the data, and the other two thirds were kept for quantify-
ing the stimulus-related variance of the shared subspace,
following the same procedure described above for single
neurons.

Analyses on the Neuropixels data

All analyses were matched as much as possible to the
corresponding analyses on the two-photon data described
above: bin sizes were kept similar (1.2 s), smoothing con-
stants were the same, the division of training and testing
data was done in similar size bins. For peer prediction,
we excluded neurons within plus minus 5 channels on the
probe, to make sure that errors in spike sorting do not
contribute to the predictability. For determining the top
principal component, we first weakly high-pass filtered
the data with a Gaussian windowed filter of standard de-
viation 100 seconds. We displayed the unfiltered binned

spike trains sorted by this top PC. Similarly we high-pass
filtered the data before running the manifold embedding
algorithm, but for displaying the raster we still show the
raw, unfiltered data.
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Figure S1. Temporal autocorrelation of ongoing neural activity. Each panel shows data for one recording; within each plot, each curve shows
the temporal autocorrelation of a single principal component of ongoing population activity (1.2 second bins; log x-scale). The first plot is for the
example recording shown in Figure 1.
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Figure S2. Nine additional examples of predictions of neural population activity from facial videography. For each panel, the top plot shows a
raster diagrams with neurons sorted to place correlated neurons together. Bottom plots show predictions from facial videography.
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Figure S3. Predictability of neural activity from facial motion is uniform across V1. (A) Fraction of variance explained by facial motion, averaged
over cells as a function of depth within cortex (16-dimensional reduced rank regression, cross-validated, 1.2 second bins). Each line represents a
different experiment. (B) Neurons were split into two groups: low variance explained (<0.03) and high variance explained (>0.10). The average
vertical distance between neurons in the same group ("same variance") was similar to the distance between neurons with different variance levels
("diff variance") (115 m vs 117 m). The lack of difference indicates that predictability from facial motion does not depend systematically on cortical
depth. (C) Fraction of variance explained as a function of XY position in V1, for an example recording plane. The size of the dot is proportional to
the explained variance, with crosses indicating negative test set variance. (D) Mean XYZ distance, for cells with similar vs. different fractions of
variance explained. The lack of difference (516 µm vs 525 µm) indicates that variance explained does not depend systematically on XY position.
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Figure S4. 10x zoom in at stimulus onset of Figure 6J. Projections of population activity along several types of dimensions: stimulus, stim-face,
face, stim-spont, spontaneous.
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