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Abstract 

We compare two free energy functionals for active inference under Markov decision processes. One 

of these is a functional of beliefs about states and policies, but a function of observations, while the 

second is a functional of beliefs about all three. In the former (expected free energy), prior beliefs 

about outcomes are not part of the generative model (because they are absorbed into the prior over 

policies). Conversely, in the second (generalised free energy); priors over outcomes become an explicit 

component of the generative model. When using the free energy function, which is blind to 

counterfactual (i.e., future) observations, we equip the generative model with a prior over policies 

that ensure preferred (i.e., priors over) outcomes are realised. In other words, selected policies 

minimise uncertainty about future outcomes by minimising the free energy expected in the future. 

When using the free energy functional – that effectively treats counterfactual observations as hidden 

states – we show that policies are inferred or selected that realise prior preferences by minimising the 

free energy of future expectations. Interestingly, the form of posterior beliefs about policies (and 

associated belief updating) turns out to be identical under both formulations, but the quantities used 

to compute them are not. 

 

Keywords: Bayesian; Active inference; Free energy; Data selection; epistemic value; intrinsic 

motivation 

 

1. Introduction 

Over the past years, we have tried to establish active inference (a corollary of the free energy principle) 

as a relatively straightforward and principled explanation for action, perception and cognition. Active 
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inference can be summarised as self-evidencing (Hohwy 2016); in the sense that action and perception 

can be cast as maximising Bayesian model evidence, under generative models of the world. When this 

maximisation uses approximate Bayesian inference, this is equivalent to minimising variational free 

energy (Friston et al. 2006) – a form of bounded rational behaviour that minimises a variational bound 

on model evidence. Recently, we have migrated the basic idea from models that generate continuous 

sensations (like velocity and luminance contrast) (Brown and Friston 2012) to discrete state-space 

models; specifically Markov decision processes (Friston et al. 2017a). These models represent the 

world in terms of discrete states; like I am on this page and reading this word (Friston et al. 2017c). 

Discrete state-space models can be inferred using belief propagation (Yedidia et al. 2005) or 

variational message passing (Dauwels 2007; Winn 2004) schemes that have a degree of neuronal 

plausibility (Friston et al. 2017b). The resulting planning as inference scheme (Attias 2003; Baker et al. 

2009; Botvinick and Toussaint 2012; Verma and Rao 2006) has a pleasingly broad explanatory scope; 

accounting for a range of phenomena in cognitive neuroscience, active vision and motor control (see 

Table 1). In this paper, we revisit the role of (expected) free energy in active inference and offer an 

alternative, simpler and more general formulation. This formulation does not substantially change the 

message passing or belief updating; however, it provides an interesting perspective on planning as 

inference and the way that we may perceive the future. 

In current descriptions of active inference, the basic argument goes as follows: active inference is 

based upon the maximisation of model evidence or minimisation of variational free energy in two 

complementary ways. First, one can update one's beliefs about latent or hidden states of the world to 

make them consistent with observed evidence – or one can actively sample the world to make 

observations consistent with beliefs about states of the world. The important thing here is that both 

action and perception are in game of minimising the same quantity; namely, variational free energy. 

A key aspect of this formulation is that action (i.e., behaviour) is absorbed into inference, which means 

that agents have beliefs about what they are doing – and will do. This calls for prior beliefs about 

action or policies (i.e., sequences of actions). So where did these prior beliefs come from?  

The answer obtains from a reductio ad absurdum argument: if action realises prior beliefs and 

minimises free energy, then the only tenable prior beliefs are that action will minimise free energy. 

This leads to the prior belief that I will select policies that minimise the free energy expected under 

that policy. The endpoint of this argument is that action or policy selection becomes a form of Bayesian 

model selection, where the evidence for a particular policy becomes the free energy expected in the 

future. This expected free energy is a slightly unusual objective function because it scores the evidence 

for plausible policies based on outcomes that have yet to be observed. This means that the expected 

free energy becomes the variational free energy expected under (posterior predictive) beliefs about 

outcomes. These priors are usually informed by prior beliefs about outcomes that play the role of prior 

preferences or utility functions in reinforcement learning and economics.  

In summary, beliefs about states of the world and policies are continuously updated to minimise 

variational free energy, where posterior beliefs about policies (that prescribe action) are based upon 

expected free energy (that may or may not include prior preferences over future outcomes). This is 

the current story and leads to interesting issues that rest on the fact that expected free energy can be 

decomposed into epistemic and pragmatic parts (Friston et al. 2015). This decomposition provides a 

principled explanation for the epistemics of planning and inference that underwrite the exploitation 
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and exploration dilemma, novelty, salience and so on. However, there is another way of telling this 

story that leads to a conceptually different sort of interpretation. 

In what follows, we show that the same Bayesian policy (model) selection obtains from minimising 

variational free energy when future outcomes are treated as hidden or latent states of the world. In 

other words, we can regard active inference as minimising a generalised free energy under generative 

models that entertain the consequences of (policy-dependent) hidden states of the world in the 

future. This simple generalisation induces posterior beliefs over future outcomes that now play the 

role of counterfactual, latent or hidden states. In this setting, the future is treated in exactly the same 

way as the hidden or unobservable states of the world generating observations in the past. On this 

view, one gets the expected free energy for free, because the variational free energy involves an 

expectation under posterior beliefs over future outcomes. In turn, this means that beliefs about states 

and policies can be simply and uniformly treated as minimising the same (generalised) free energy, 

without having to invoke any free energy minimising priors over policies.  

Technically, this leads to the same form of belief updating and (Bayesian) policy selection but provides 

a different perspective on the free energy principle per se. This perspective says that self-evidencing 

and active inference both have one underlying imperative; namely, to minimise generalised free 

energy or uncertainty. When this uncertainty is evaluated under models that generate outcomes in 

the future, future outcomes become hidden states that are only revealed by the passage of time. 

Formally, the ensuing generalised free energy is a Hamiltonian Action, because it is a path or time 

integral of free energy at each time point. In other words, active inference is just a statement of 

Hamilton's Principle of Stationary Action. In this context, outcomes in the past become observations 

in standard variational inference, while outcomes in the future become posterior beliefs about latent 

observations that have yet to disclose themselves. In this way, the generalised free energy can be seen 

as comprising variational free energy contributions from the past and future. 

The current paper provides the formal basis for the above arguments. In brief, we will see that both 

the expected and generalised free energy formulations lead to the same update equations. However, 

there is a subtle difference. In the expected free energy formalism, prior preferences or beliefs about 

outcomes are used to specify the prior over policies. In the generalised formulation, prior beliefs about 

outcomes in the future inform posterior beliefs about the hidden states that cause them. Because of 

the implicit forward and backward message passing in the belief propagation scheme, these prior 

beliefs or preferences act to distort expected trajectories (into the future) towards preferences in an 

optimistic way (Sharot et al. 2012). Intuitively, the expected free energy contribution to generalised 

free energy evaluates the (complexity) cost of this distortion; thereby favouring policies that lead 

naturally to preferred outcomes – without violating beliefs about state transitions and the (likelihood) 

mapping between states and outcomes. The implicit coupling between beliefs about the future and 

current actions means that, in one sense, the future can cause the past. 

This paper comprises three sections. In the first, we outline the approach we have used to date (i.e., 

minimising the variational free energy under prior beliefs that policies with a low expected free energy 

are more probable). In the second, we introduce a generalisation of the variational free energy that 

incorporates beliefs about counterfactual outcomes. The third section compares these two 

approaches conceptually and through illustrative simulations. 
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Table 1: applications of active inference for Markov decision processes 

Application Comment References 

Decision making under uncertainty Initial formulation of active inference 

for Markov decision processes and 

sequential policy optimisation  

(Friston et al. 2012c) 

Optimal control (the mountain car 

problem) 

Illustration of risk sensitive or KL control 

in an engineering benchmark 

(Friston et al. 2012a) 

Evidence accumulation: Urns task Demonstration of how beliefs states 

are absorbed into a generative model 

(FitzGerald et al. 

2015b; FitzGerald et 

al. 2015c) 

Addiction Application to psychopathology (Schwartenbeck et 

al. 2015c) 

Dopaminergic responses Associating dopamine with the 

encoding of (expected) precision 

provides a plausible account of 

dopaminergic discharges 

(FitzGerald et al. 

2015a; Friston et al. 

2014) 

Computational fMRI Using Bayes optimal precision to 

predict activity in dopaminergic areas 

(Schwartenbeck et 

al. 2015a) 

Choice preferences and epistemics Empirical testing of the hypothesis that 

people prefer to keep options open 

(Schwartenbeck et 

al. 2015b) 

Behavioural economics and trust games  Examining the effects of prior beliefs 

about self and others 

(Moutoussis et al. 

2014) 

Foraging and two step mazes; 

navigation in deep mazes 

Formulation of epistemic and 

pragmatic value in terms of expected 

free energy 

(Friston et al. 2015) 

Habit learning, reversal learning and 

devaluation 

Learning as minimising variational free 

energy with respect to model 

parameters – and action selection as 

Bayesian model averaging 

(FitzGerald et al. 

2014; Friston et al. 

2016) 

Saccadic searches and scene 

construction 

Mean field approximation for 

multifactorial hidden states, enabling 

high dimensional beliefs and outcomes: 

c.f., functional segregation 

(Friston and Buzsaki 

2016; Mirza et al. 

2016) 

Electrophysiological responses: place-

cell activity, omission related responses, 

mismatch negativity, P300, phase-

precession, theta-gamma coupling 

Simulating neuronal processing with a 

gradient descent on variational free 

energy; c.f., dynamic Bayesian belief 

propagation based on marginal free 

energy 

(Friston et al. 2017a) 

Structure learning, sleep and insight Inclusion of parameters into expected 

free energy to enable structure learning 

via Bayesian model reduction 

In press 

Narrative construction and reading Hierarchical generalisation of 

generative model with deep temporal 

structure 

(Friston et al. 2017c) 

 

2. Active inference and variational free energy 
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The free energy principle is motivated by the defining characteristic of living creatures; namely, that 

they persist in the face of a changing world. In other words, their states occupy a small proportion of 

all possible states with a high probability. Mathematically, this means that they show a form of self 

organised, non-equilibrium steady-state that maintains a low entropy probability distribution over 

their states. In information theory, self information or surprise (a.k.a. negative log model evidence) 

averaged over time is entropy. This means, at any given time, all biological systems are compelled to 

minimise their surprise. Although the computation of surprise is often intractable, an approximation 

is simple to calculate. This is variational free energy (Beal 2003; Dayan et al. 1995; Friston 2003) which, 

as Jensen’s inequality demonstrates, is an upper bound on surprise. 

( , , ) ( , , )
E ln ln E ln ( )

( , ) ( , )
Q Q

Free Energy
Surprise

Jensen's inequality

P o s P o s
F P o

Q s Q s

 

 

   
        

   
 

In the equation above, P  indicates a probability distribution over outcomes that are generated by 

hidden states of the world, which defines the system’s generative model. Q  is a probability 

distribution over unobservable (hidden) states that becomes an approximate posterior distribution as 

free energy is minimised. The minimisation of free energy over time ensures entropy does not 

increase, thereby enabling biological systems to resist the second law of thermodynamics and their 

implicit dissipation or decay. Active inference is the process of reducing free energy through action 

and perception.  

In the following, we begin by describing the form of the generative model we have used to date. We 

will then address the form of the approximate posterior distribution. To make inference tractable, this 

reform generally involves a mean-field approximation that factorises the approximate posterior 

distribution into independent factors or marginal distributions. 

The generative models used in this paper are subtly different for each free energy functional, but the 

variables themselves are the same. These are policies,  , and states at different times: 

1 2( , , , )Ts s s s , all of which are latent (unknown random) variables that have to be inferred. States 

evolve as a discrete Markov chain, where the transition probabilities are functions of the policy. 

Likelihood distributions probabilistically map hidden states to observations: 
1 2( , , , )To o o o . 

Figure 1 (left) shows these dependencies as a graphical Bayesian network. This type of generative 

model has been used extensively in simulations of active inference (FitzGerald et al. 2014; FitzGerald 

et al. 2015c; Friston et al. 2017a; Friston et al. 2015; Friston et al. 2017b; Friston et al. 2017c; 

Schwartenbeck et al. 2015a): please see Table 1.  

It is worth noting that the free energy is a functional of the distributions in the generative model, and 

of the approximate posterior beliefs, but a function of observations. Continuing with this free energy, 

we now consider the mean field approximation in current implementations of active inference, and 

its consequences for the variational free energy. 

 

 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 23, 2018. ; https://doi.org/10.1101/304782doi: bioRxiv preprint 

https://doi.org/10.1101/304782
http://creativecommons.org/licenses/by/4.0/


Deep inference 
 

6 
 

 

Figure 1 – Markov decision process This shows the basic structure of the discrete state space 

generative model used in this paper. The factor graph on the left is the generative model we have used 

in previous work. Importantly, the prior belief about observations only enters this graph through the 

expected free energy, G  (see main text), which enters the prior over policies. The right factor graph 

is the new version of the generative model considered in this paper. This generative model does not 

require an expected free energy, and the prior over outcomes enters the model directly as a constraint 

on outcomes. Please refer to the main text and Table 2 for a description of the variables. In the panels 

on the right, the definitions are given for each of the factors in blue squares. Here, Cat refers to the 

categorical distribution. 

 

2.1 Definition of the variational free energy 

To define the variational free energy for the above generative model, we first need to specify the form 

of the approximate posterior distribution, Q . We do this via a mean field approximation that treats 

the (policy dependent) state at each time step as approximately independent of the state at any other 

time step. We treat the distribution over the policy as a separate factor, which implies a set of models, 

 , over hidden variables s : 

 ( , ) ( ) ( | )Q s Q Q s


      

Substituting this in to the free energy definition above, we get the variational free energy: 

 

 
E [ ( )] [ ( ) || ( )]

( ) E [ln ( , | ) ln ( | )]

Q KL

Q

F F D Q P

F P o s Q s

  

  

 

  
  (1) 

In this form, the variational free energy is expressed in terms of policy dependent terms (second 

equality) that bound the (negative log) evidence for each policy and a complexity cost or KL divergence 

that scores the departure of the posterior beliefs over policies from the corresponding prior beliefs. 

 

2.2 Past and Future 
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There is an important difference in how past and future outcomes are treated by the variational free 

energy. Note that – as a function of outcomes – the components of the free energy that depend on 

outcomes can only be evaluated for the past and present. Hidden states, on the other hand, enter the 

expression as beliefs about states. In other words, the free energy is a functional of distributions over 

states, rather than a function, as in the case of outcomes. This means that free energy evaluation takes 

account of future states. We can express this explicitly by writing the variational free energy as a sum 

over time, factorising the generative distribution according to the conditional independencies 

expressed in Figure 1 (left): 

  

 

 
1( | ) ( | ) 1

( ) ( , )

( , ) E [ ] ln ( | ) ln ( | , ) ln ( | )Q s Q s

F F

F t P o s P s s Q s
 



      

  

    
 



     


   

 

In the above, the Iverson (square) brackets return 1 if the expression is true, and 0 otherwise. It is this 

condition that differentiates contributions from the past from the future. This allows us to decompose 

the sum into past and future components: 

 

 1( ) ( , ) E [ [ ( | ) || ( | , )]]Q KL

t t

Complexity

F F D Q s P s s  
 

    

 

     (2)  

In this decomposition, the contribution of beliefs about future states reduces to a complexity cost 

that scores the KL divergence between approximate posterior beliefs about states in the future, 

relative to the prior beliefs based upon the (policy-specific) transition probabilities in the generative 

model. 

 

2.3 Policy posteriors and priors 

Using the full variational free energy (over all policies) from Equation 1, we can evaluate posterior 

beliefs about policies. The variational derivative of the free energy with respect to these beliefs is 

(where ( )   is a softmax function): 

 

( ) ln ( ) ln ( )
( )

0 ( ) (ln ( ) ( ))
( )

F
F P Q

Q

F
Q P F

Q


  

 


   

 

  

   

  

This, together with Equation 2, implies the belief prior to any observations (i.e., at 0  ), which is 

given by: 

  1( ) ln ( ) E [ ( | ) || ( | , )]o Q KLQ P D Q s P s s  
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This is an unsatisfying result, in that it fails to accommodate our prior knowledge that outcomes will 

become available in the future. In other words, the posterior at each time step is calculated under a 

different model (see Figure 2). 

 

2.4 Expected free energy 

To finesse this shortcoming we can assume agents select the policy that they expect will lead to the 

lowest free energy (summed over time). This is motivated by the reductio ad absurdum in the 

introduction, and is expressed mathematically as: 

 ( ) ln ( ) ( )oQ P G      

(We retain the notation (oQ   for the prior here to distinguish this from the fixed form prior ( )P  , 

which does not depend on the beliefs about states). ( )G  is the expected free energy, conditioned 

on a policy. It is defined as: 

 

( ) ( , )

( , ) E [ln ( , | ) ln ( | )]

t

Q

G G

G P o s Q s



  

  

   





  


  

There is an apparent problem with this quantity: the first term within the expectation is a function of 

outcomes that have yet to be observed. To take this into account, we have defined an (approximate) 

joint distribution over states and outcomes: ( , | ) ( | ) ( | )Q o s P o s Q s      , and take the 

expectation with respect to this. This means that we can express a (posterior predictive) belief about 

the observations in the future based on (posterior predictive) beliefs about hidden states. One can 

obtain a useful form of the expected free energy by rearranging the above: if we factorise the 

generative model, we obtain: 

 ( , ) E [ln ( | , ) ln ( | ) ln ( ) ]
Q

Epistemic value Extrinsic value

G P s o Q s P o            

This form shows that policies that have a low expected free energy are those that resolve uncertainty, 

and that fulfil prior beliefs about outcomes. It is the first of these terms that endorses the metaphor 

of the brain as a scientist, performing experiments to verify or refute hypotheses about the world 

(Friston et al. 2012b; Gregory 1980). The second term speaks to the notion of a ‘crooked scientist’ 

(Bruineberg et al. 2016), who designs experiments to confirm prior beliefs; i.e., preferred outcomes. 

Through Bayes’ rule, 

 

( | , ) ( | , )

( | ) ( | )

P s o P o s

Q s Q o

   

 

 

 
  

 

and noting that ( | , ) ( | )P o s P o s     , we can also expresses expected free energy in terms of risk 

and ambiguity: 
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 ( , ) [ ( | ) || ( )] E [ [ln ( | )]]KL Q

Risk Ambiguity

G D Q o P o H P o s         

This means that the prior belief about outcomes enters the generative model through the KL-

Divergence between outcomes expected under any policy and prior preferences. This form also 

illustrates the correspondence between the expected free energy and the quantities ‘risk’ and 

‘ambiguity’ from behavioural economics (Ellsberg 1961; Ghirardato and Marinacci 2002). Risk 

quantifies the expected cost of a policy as a divergence from preferred outcomes and is sometimes 

referred to as Bayesian risk or regret (Huggins and Tenenbaum 2015); which underlies KL control and 

related Bayesian control rules (Kappen et al. 2012; Ortega and Braun 2010; Todorov 2008) and special 

cases that include Thompson sampling (Lloyd and Leslie 2013; Strens 2000). Ambiguous states are 

those that have an uncertain mapping to observations. The greater these quantities, the less likely it 

is that the associated policy will be chosen. 

 

2.5 Hidden state updates 

To complete our description of active inference, we derive the belief update equations for the hidden 

states: 

1 1

1 1

( )
ln ( | ) E [ln ( | , )] E [ln ( | , )] ln ( | )

( | )

( )
0 ( | ) (ln ( | ) E [ln ( | , )] E [ln ( | , )])

( | )

Q Q

Q Q

F
P o s P s s P s s Q s

Q s

F
Q s P o s P s s P s s

Q s
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Figure 2 – Temporal progression of MDP The upper graphs shows the structure of the generative 

model implied using the variational free energy, equipped with a prior that the expected free energy 

will be minimised by policy selection. Observations are added to the model as they occur. The lower 

graphs show the structure of the generative model that explicitly represents counterfactual outcomes, 

and minimises a generalised free energy through policy selection. As observations are made, the 

outcome variables collapse to delta functions. 

 

2.6 Summary 

In the above, we have provided an overview of our approach to date. This uses a variational free 

energy functional to derive belief updates, while policy selection is performed based on an expected 

free energy. The resulting update equations are shown in Figure 3 (blue panels). This formulation has 

been very successful in explaining a range of cognitive functions, as summarised in Table 1. In the 

following, we present an alternative line of reasoning. As indicated in Figure 2, there is more than one 

way to think about the data assimilation and evidence accumulation implicit in this formulation. So 

far, we have considered the addition of new observations as time progresses. We now consider the 
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case in which (counterfactual) outcomes are represented throughout time. This means that future or 

latent outcomes have the potential to influence beliefs about past states. 

 

3. Active inference and generalised free energy 

We define the generalised free energy as 

 

 

1

E [ ( )] [ ( ) || ( )]

( ) , )

( , ) E [ln ( , | , ) ln ( | ) ln ( | )]

Q KL

Q

Energy Entropy

D Q P

P o s s Q o Q s



    

  

  

    

 

 

   



F F

F F

F

  (3) 

Where, as above, the expectation is with respect to ( , | ) ( | ) ( | )Q o s Q o s Q s      . However, we 

now distinguish the past and the future through the following: 

 

 
( | ) :

|
( ) :

P o s t
Q o s

o t

 

 





 


 

  

 

In the generalised free energy, the marginals of the joint distribution over outcomes and states define 

the entropy but the expectation is over the joint distribution. It is important to note that 

( , | ) ( | ) ( | )Q o s Q o Q s      . It is this inequality that underlies the epistemic components of 

generalised free energy. Interestingly, if we assumed conditional independence between outcomes 

and hidden states, ( , | ) ( | ) ( | )Q o s Q o Q s      , the resulting belief update equations would 

correspond exactly to a variational message passing algorithm (Dauwels 2007) applied to a model with 

missing data. 

When the expectation is taken with respect to the approximate posteriors, the marginalisation implicit 

in this definition ensures that 

 

( , | )

,

E [ln ( | )] ( , | ) ln ( | ) ( | ) ln ( | ) [ ( | )]Q o s

o s o

Q o Q o s Q o Q o Q o H Q o
 

  

                   

If we write out the generative model in full, and substitute this (omitting constants) into Equation 3, 

we can use the same implicit marginalisation to write: 
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  (4) 

 

The implicit generative model now incorporates a prior over observations. This means that the 

generative model is replaced with that shown on the right of Figure 1: 
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Here, we have defined the distribution over states and observations in terms of two independent 

factors, a likelihood, and a prior over observations; i.e. preferred observations conditioned on the 

model. For simplicity, we will omit the explicit conditioning on m , so that ( | ) ( )P o m P o . For past 

states, this distribution is flat. Crucially, this means the generalised free energy reduces to the 

variational free energy for outcomes that had been observed in the past. Separating out contributions 

from the past and the future, we are left with the following: 

 

( ) ( , ) ( , )
t t

F
 

    
 

  F G  

Unlike G  (the expected free energy), G is the free energy of the expected future. We can rearrange 

Equation 4 (for future states) in several ways that offer some intuition for the properties of the 

generalised free energy. 

 

1

1

( , ) [ ( | ) || E [ ( | , )]] [ ( | ) || ( )] E [ [ ( | )]]
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KL Q KL Q

RiskComplexity Ambiguity

KL Q KL

Complexity

D Q s P s s D Q o P o H P o s

D Q s P s s D Q o s

      

    

    

  





  

 

G

( | ) ( | )] E [ln ( )]Q

Epistemic value (Mutual information) Extrinsic value

Q s Q o P o    
  

To obtain the mutual information term, we have used the relationship

ln ( | ) ln ( | ) ln ( , | ) ln ( | )P o s Q o s Q o s Q s          . The imperative to maximise the mutual 

information (Barlow 1961; Barlow 1974; Linsker 1990; Optican and Richmond 1987) can be 

interpreted as an epistemic drive (Denzler and Brown 2002). This is because policies that (are believed 

to) result in observations that are highly informative about the hidden states are associated with a 

lower generalised free energy. As a KL-Divergence is always greater than or equal to zero, the second 

equality indicates that the free energy of the expected future is an upper bound on expected surprise. 
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To find the belief update equations for the policies, we take the variational derivative of the 

generalised free energy with respect to the posterior over policies, and set the result to zero in the 

usual way: 

 

( ) ln ( ) ln ( )
( )

0 ( ) (ln ( ) ( ))
( )

P Q
Q

Q P
Q


  

 


   

 

  

   

F
F

F
F

   

At time 0  , no observations have been made, and the distribution above becomes a prior. When 

this is the case, ( ) ( ) F G , so the prior over policies is: 

 
0( ) (ln ( ) ( )) (ln ( ) ( ))oQ P P         F G    

If we take the variational derivative of Equation 4 with respect to the hidden states: 

 

 

 

1 1

1

( | ) ( | ) 1 ( | ) 1

( | )

( | ) ( | ) 1

( )
ln ( | ) E [ln ( | )] E [ln ( | , )] E [ln ( | , )]

( | )

E [ln | ln ( )]

( )
0

( | )

| (E [ln ( | )] E [ln ( | , )] E

P o s Q s Q s

P o s

P o s Q s

Q s P o s P s s P s s
Q s

Q o P o

Q s

Q s P o s P s s

   

 

  

        



 



     

 
  

 



 

 

  

 



 



   

 

 

  

F

F

 
1( | ) 1

( | )

[ln ( | , )]

E [ln | ln ( )])

Q s

P o s

P s s

Q o P o



 

  

 





 

 

 

  

The derivative of ( | )[ln ( | )]Q o Q o
     is a little complicated, so this is presented step by step in 

Appendix B. The hidden state update has a different interpretation in the past compared to the future: 
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The final term for future beliefs implies that future states are considered more probable if they are 

expected to be similar to those that generate preferred outcomes. In other words, there is an 

optimistic distortion of beliefs about the trajectory into the future.  

 

Summary 
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We have introduced a generalised free energy functional that is expressed as a functional of beliefs 

about data. The variational free energy can be seen as a special case of this generalised functional, 

when beliefs about outcomes collapse to delta functions. When we derive update equations (Figure 

3, pink panels) under this functional, the updates look very similar to those based on the variational 

free energy approach. An important difference between the two approaches is that we have now 

included the prior probability of outcomes in the generative model. This has no influence over beliefs 

about the past, but distorts beliefs about the future in an optimistic fashion. This formulation 

generalises not only the standard active inference formalism, but also active data selection or sensing 

approaches in machine learning (MacKay 1992) and computational neuroscience (Yang et al. 2016b). 

See Appendix A for a discussion of the relationship between these. 

 

 

Figure 3 – Belief update equations The blue panels show the update equations using the standard 

variational approach. The pink panels show the update equations when the generalised free energy is 

used. The dotted outline indicates the correspondence between the generalised free energy and the 

sum of the variational and expected free energies, and therefore the equivalence of the form of the 

posteriors over policies. However, it should be remembered that the variables within these equations 

are not identical, as the update equations demonstrate. See Table 2 for the definitions of the variables 

as they appear here. The equations used here are discrete updates. A more biologically plausible 

(gradient ascent) scheme is used in the simulations. These simply replace the updates with differential 

equations that have stationary points corresponding to the variational solutions above. 
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4. Comparison of active inference under expected and generalised free energy 

The generalised free energy has the appeal that belief updating and policy selection both minimise 

the same objective function. The temporal symmetry of this free energy ensures that it is a path 

integral through time. The use of this integral to evaluate the probability of a set of plausible 

trajectories resembles the use of Lagrangians in physics, under Hamilton’s principle of stationary 

action. In contrast, formulations of active inference to date have required two different quantities (the 

variational free energy and the expected free energy respectively) to derive these processes. Although 

the form of belief updating is the same, the belief updates resulting from the use of a generalised free 

energy are different in subtle ways. In this section, we will explore these differences, and show how 

generalised active inference reproduces the behaviours illustrated in our earlier papers. 

The notable differences between the updates are found in the policy prior, the treatment of 

outcomes, and the future hidden state updates. The prior over policies is very similar in both 

formulations. The expected and generalised free energy (at 0  ) differ only in that there is an 

additional complexity term in the latter. This has a negligible influence on behaviour, as the first action 

is performed after observations have been made at the first time step. At this point, the posterior 

belief about policies is identical; as the variational free energy supplies the missing complexity term. 

Although the priors are different, both in form and motivation, the posterior beliefs turn out to be 

computed identically. Any difference in these can be attributed to the quantities used to calculate 

them; namely, the outcomes and the hidden states. 

Outcomes in the generalised formulation are represented explicitly as beliefs. This means that the 

prior over outcomes is incorporated explicitly in the generative model. There are two important 

consequences of this. The first is that the posterior beliefs about outcomes can be derived in a 

parsimonious way, without the need to define additional prior distributions. The second is that hidden 

state beliefs in the future are biased towards these preferred outcomes. A prior belief about an 

outcome at a particular time point thus distorts the trajectory of hidden states at each time point 

reaching back to the present. In addition to this, beliefs about hidden states in the future acquire an 

‘ambiguity’ term. This means that states associated with an imprecise mapping to sensory outcomes 

are believed less likely be inferred. In summary, not only are belief trajectories drawn in optimistic 

directions, they also tend towards states that offer informative observations.  
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Figure 4 – T-maze simulation The left part of this figure shows the structure of the generative model 

used to illustrate the behavioural consequences of each set of update equations. We have previously 

used this generative model to address exploration and exploitation in two-step tasks; further details 

of which can be found in Friston et al. (2015). In brief, an agent can find itself in one of four different 

locations, and can move among these locations. Locations 2 and 3 are absorbing states, so the agent 

is not able to leave these locations once the have been visited. The initial location is always 1. Policies 

define the possible sequences of movements the agent can take throughout the trial. For all 10 

available policies, after the second action, the agent stays where it is. There are two possible contexts: 

the unconditioned stimulus (US) may be in the left or right arm of the maze. The context and location 

together give rise to observable outcomes. The first of these is the location, which is obtained through 

an identity mapping from the hidden state representing location. The second outcome is the cue that 

is observed. In location 1, a conditioned stimulus (CS) is observed, but there is a 50% chance of 

observing blue or green, regardless of the context, so this is uninformative (and ambiguous). Location 

4 deterministically generates a CS based on the context, so visiting this location resolves uncertainty 

about the location of the US. The US observation is probabilistically dependent on the context. It is 

observed with a 90% chance in the left arm in context 1, and a 90% chance in the right arm in context 

2. The right part of this figure compares an agent that minimises its variational free energy (under the 

prior belief that it will select policies with a low expected free energy) with an agent that minimises 

its generalised free energy. The upper plots show the posterior beliefs about policies, where darker 

shades indicate more probable policies. Below these, the posterior beliefs about states (location and 

context) are shown, with blue dots superimposed to show the true states used to generate the data. 

The lower plots show the prior beliefs about outcomes (i.e., preferences), and the true outcomes (blue 

dots) the agent encountered. Note that a US is preferred to either CS, both of which are preferable to 

no stimulus (NS). 
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To make the abstract considerations above a little more concrete, we have employed an established 

generative model that has previously been used to demonstrate epistemic behaviours under active 

inference (Friston et al. 2015). This is a T-maze task (Figure 4), in which an agent decides between 

(temporally deep) policies. In one arm, there is an unconditioned (rewarding) stimulus. In another, 

there is no stimulus, and this condition is considered aversive. In the final arm, there is always an 

instructional or conditioned stimulus that indicates the arm that contains the reward. The starting 

location and the location of the conditioned stimulus are neither aversive nor rewarding.  

As Figure 4 shows, regardless of the active inference scheme we use, the agent first samples the 

unrewarding, but epistemically valuable, uncertainty resolving cue location. Having resolved 

uncertainty about the context of the maze, the agent proceeds to maximise its extrinsic reward by 

moving to the reward location. Although the most striking feature of these simulation results is their 

similarity, there are some interesting differences worth considering. These are primarily revealed by 

the beliefs about hidden states over time. Under each of the schemes presented here, there exist a 

set of (neuronal) units that encode beliefs about each possible state. For each state, there are units 

representing the configuration of that state in the past and future, in addition to the present. The 

activity in these units is shown in Figure 5. The differences here are more dramatic than in the 

subsequent behaviours illustrated in Figure 4. At the first time step (column 1), both agents infer that 

they will visit location 4 at the next time, resolving uncertainty about the context of the maze. From 

this future point onwards, however, the beliefs diverge. This can be seen clearly in the lower rows of 

column 1; the beliefs about the future at the first time step. The agent who employs expected free 

energy believes they will stay in the uncertainty resolving arm of the maze, while the generalised agent 

believes they will end up in one of the (potentially) rewarding arms. Despite a shared proximal belief 

trajectory, the distal elements of the two agents’ paths are pulled in opposite directions. As each 

future time point approaches, the beliefs about that time begin to converge – as observations become 

available. 

 

 

Figure 5 – Optimistic distortions of future beliefs These raster plots represent the (Bayesian model 

average of the) approximate posterior beliefs about states (specifically, those pertaining to location). 

At each time step t , there is a set of units encoding beliefs about every other time step   in the past 

and future. The evolution of these beliefs is reflected the evidence accumulation or belief updating of 

approximate posterior expectations, with lighter shades indicating more probable states. 
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5. Conclusion 

The generalised free energy introduced in this paper provides a new perspective on active inference. 

It unifies the imperatives to minimise variational free energy with respect to data, and expected free 

energy through model selection, under a single objective function. Like the expected free energy, this 

generalised free energy can be decomposed in several ways; giving rise to familiar information 

theoretic measures and objective functions in Bayesian reinforcement learning. Generalised free 

energy minimisation replicates the epistemic and reward seeking behaviours induced in earlier active 

inference schemes, but prior preferences now induce an optimistic distortion of belief trajectories into 

the future. This allows beliefs about outcomes in the distal future to influence beliefs about states in 

the proximal future and present. That these beliefs then drive policy selection suggests that, under 

the generalised free energy formulation, the future can indeed cause the past. 

 

 

Table 2: Variables in update equations 

Variable Definition 

( )F   Variational free energy 

( )G  Expected free energy 

( )F  Generalised free energy 

oπ , π  Policy prior and posterior 

s  State belief (for a given policy and time) 

o  Outcome belief (for a given policy and time) 

o  Outcome 

;A ( | )ij P o i s j   A   Likelihood matrix (mapping states to outcomes) 

1;B( ) ( | , )ij P s i s j    B  Transition matrix (mapping states to states) 

;C ( )i P o i  C  Outcome prior 

;E ( )i P i E  Fixed form policy prior 

;H ( | ) ln ( | )i

j

P o j s i P o j s i       H   Entropy of the likelihood mapping 

 

Appendix A – Active data selection 

Active data selection has been a topic of interest in both neuroscience and machine learning for a 

number of years (Krause 2008). Several different approaches have been taken to define the best data 

to sample (Settles 2010), and the optimal experiments to perform to do this (Daunizeau et al. 2011). 

This appendix addresses the relationship between the future components of the expected free energy 

and established methods. Writing in full, the (negative) free energy of the expected future is 
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1

1 32 4 5

( , ) [ ( | )] E [ln ( | , )] [ ( | )] E [ln ( )] E [ [ ( | )]]Q Q QH Q s P s s H Q o P o H P o s               G

Under active inference, the above functional is maximised. If we were to use only term 3, this 

maximisation reduces to ‘uncertainty sampling’ (Hwa 2004; Lewis and Gale 1994; Shewry and Wynn 

1987). This involves (as the name suggests) selecting the data points about which uncertainty is 

highest. A problem with this approach is that it may favour the sampling of ambiguous (uninformative) 

data. A more sophisticated objective function includes both 3 and 5 (Denzler and Brown 2002; Lindley 

1956; MacKay 1992; Yang et al. 2016a). This means that uncertain data points are more likely to be 

sampled, but only if there is an unambiguous mapping between the latent variable of interest and the 

data. Term 4 is a homologue of expected utility (reward) in reinforcement learning (Sutton and Barto 

1998), and is an important quantity in sequential statistical decision theory (El-Gamal 1991; Wald 

1947). Terms 1 and 2 together contribute to an ‘Occam factor’ (Rasmussen and Ghahramani 2001); a 

component of some previously used objective functions (MacKay 1992). 

All of these quantities are emergent properties of a system that minimises its expected free energy. 

In the schemes mentioned above, the quantities were pragmatically selected to sample data 

efficiently. Here, they can be seen as special cases of the free energy functional used to define the 

active inference or sensing that underwrites perception (Friston et al. 2012b; Gregory 1980). 

 

Appendix B – Variational derivative of expected marginal 

Below are the steps taken to obtain the variational derivative of an expected marginal. This is needed 

for the hidden state update equations under the generalised free energy. 
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In the update equations, we can omit the constant 1. 
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