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Abstract 

Mendelian Randomisation (MR) is a powerful tool in epidemiology which can be used to 

estimate the causal effect of an exposure on an outcome in the presence of unobserved 

confounding, by utilising genetic variants that are instrumental variables (IVs) for the 

exposure. This can be extended to Multivariable MR (MVMR) to estimate the effect of two or 

more exposures on an outcome. We use simulations and theoretical arguments to clarify the 

interpretation of estimated effects in a MVMR analysis under a range of underlying 

scenarios, where a secondary exposure acts variously as a confounder, a pleiotropic 

pathway, a mediator and a collider. We then describe how instrument strength and validity 

can be assessed for an MVMR analysis in the single sample setting, and how such tests can 

be extrapolated to the popular two-sample summary data setting.  We illustrate our methods 

using data from UK biobank to estimate the effect of education and cognitive ability on body 

mass index. We show that MVMR analysis consistently estimates the effect of an exposure, 

or exposures, of interest and provides a powerful tool for determining causal effects in a 

wide range of scenarios with either individual or summary level data. 

 

Introduction 

In many scenarios where we wish to estimate the causal effect of an exposure X on an 

outcome Y, a conventional regression analysis can be misleading, as the observational 

association between the two variables could easily be affected by unobserved confounding.  

If genetic variants – usually single nucleotide polymorphisms (SNPs) - are available which 

reliably predict the exposure variable but do not have an effect on the outcome through any 

other pathway, then they are valid instrumental variables (IVs) and can be used in a 

Mendelian randomization (MR) analysis 1,2 to test whether the exposure causally affects the 

outcome, as illustrated in Figure 1. 
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Figure 1: Hypothesised relationship between genetic variant	��, modifiable exposure X and outcome Y in the 

presence of unobserved confounder, denoted by U. Dashed lines represent violations of the instrumental variable 

assumptions. 

 

To state the IV assumptions more formally with reference to Figure 1: For a single SNP �� to 

be a valid IV it must be: associated with 	�	(IV1); independent of all confounders of � and	�, 

as represented by U (IV2); and (IV3) independent of � given � and �. These assumptions 

are encoded by the solid arrows in Figure 1. If IV1-IV3 are satisfied for a single SNP ��, or 

more generally a set of SNPs � � ��	, … , ��, then traditional IV methods can be employed 

to reliably test for a causal effect of � on � using G, � and � alone, without any attempt to 

adjust for � at all. For example, suppose the variables �, �, � and � are linked via the 

following models: 

																																																					� � 	�� � �� � � �	��																																																		�1  

	 																																																				� � �� � �� � � �	��																																																				�2  

Here �� and �� represent independent error terms, � represents the parameter 

vector	�	, … , ��, and � is the true causal effect of � on � we wish to estimate. We will 

assume throughout this paper that ��	, … , ��	are mutually uncorrelated (by design). A naïve 

regression of � on � will not yield a consistent estimate for �  because the explanatory 

variable in the regression, �, is correlated with	�. However, regressing � instead on �� - the 

predicted value of � from a regression of � on �	– will yield a consistent estimate for	�, 

because �� is independent of	�. This procedure is referred to as two-stage least squares 

(TSLS).3 

TSLS relies on individual level data, but the sharing of such data is often impractical. In 

recent years it has become much more common to attempt MR analyses using summary 

data estimates of SNP-exposure and SNP-outcome associations gleaned from two 
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independent but homogeneous study populations.4 The SNPs in question are usually 

identified as genome-wide significant `hits' in distinct genomic regions via a genome wide 

association study (GWAS) for the exposure. This is referred to as `two-sample summary 

data MR’. 

Let �� and Γ� represent the true association for SNP �� in � with the exposure and the 

outcome respectively. From models (1) and (2) we can link the �’th SNP outcome 

association to the �’th SNP exposure association via the model 

																																																					Γ� � 	��� � ���																																																								�3  

It follows that the ratio estimator ��� � �� 
!"   , is a consistent estimate for � also.  When the 

SNPs are uncorrelated, taking an inverse variance weighted (IVW) average of the ratio 

estimates will yield an overall estimate for �, ��#$%, that closely approximates the TSLS 

estimate that would have been obtained if individual level data were available.5 

Detecting `weak’ instruments and `invalid’ instruments in MR 

If assumptions IV1 – IV3 are fulfilled for all SNPs in	�, and linear models (1)-(2) hold, then 

either a TSLS or IVW analysis (with uncorrelated SNPs) will consistently estimate the causal 

effect. In order to satisfy IV1, the SNPs in � should strongly predict the exposure	�. This can 

be quantified using the F-statistic from the first stage regression of � on �. Using 

instruments that are only weakly associated with the exposure (i.e. which have a small F-

statistic) will result in weak instrument bias.  

Secondly, SNPs should not exert a direct effect on	�, i.e. they should not affect � other than 

through	�. Horizontal pleiotropy could easily be responsible for such a violation in the MR 

setting.5 This would represent a violation of IV2 and/or IV3.  Any such  violation is likely to 

lead to bias and potentially erroneous conclusions in both the TSLS and IVW estimates.3 

This can be evaluated using the Sargan test6 using individual level data and Cochran’s Q 

statistic7,8,9 using summary data, which will be discussed in more detail in later sections. 

Multivariable Mendelian randomization 

MR can be extended to estimate the effect of multiple exposure variables on an outcome10 

and is particularly useful in cases where a standard MR analysis would fail due to violation of 

assumptions IV2-3. It is also useful in cases where two or more correlated exposures are of 

interest11 and may help to understand if both exposures exert a causal effect on the 

outcome, or if one in fact mediates the effect of the other on the outcome12,13. `Multivariable 

MR’ (MVMR) requires a set of SNPs, �, which are associated with the exposure variables 

but do not affect the outcome other than through these variables.  In the same way as 
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standard (single variable) MR, these SNPs can be used to predict each of the exposure 

variables in the model and these predicted values can be used to estimate the effect of the 

exposures on the outcome in a multivariable regression analysis. The setup for MVMR is 

illustrated for an MVMR analysis involving two exposure variables (�	 and �&) in Figure 2.  

The arrows linking �	 with �&, and �& with � have been left bi-directional (and coloured red), 

to acknowledge the fact that many underlying causal relationships are possible. That is, they 

could point in either direction or be completely absent. Indeed, many of these options will be 

subsequently explored. 

 

 

Figure 2: Hypothesised relationship between genetic variant(s) G, modifiable exposures,  �	, �& and outcome 

Y in the presence of unobserved confounder U. Bi-directional arrows represent possible violations of the IV 

assumptions induced by �& that are explored in this paper. 

Although it is the simplest possible MVMR setting, two exposures suffice to illustrate all the 

scenarios and ideas described in this paper.  From Figure 2, we can write the following 

general model linking �, �	, �& and �: 

																														� � 	�� � �	�	 � �&�& � � �	��																															�4  

For example, suppose that   �	 and �& are in fact independent given G (so there is no arrow 

in Figure 2 between �	 and �&)  and �& affects � independently of �	 (so that there is a 

direct arrow from �& to �). If true, then models (5) and (6) for �	 and �& would, jointly with 

(4), describe the data: 

																																							�	 �	�	� � � � ��(																																											�5  

																																						�& �	�&� � � � ��*																																											�6  

The purpose of an MVMR analysis is to determine the direct causal effect of both  �	  and �& 

on the outcome	�, when conditioned on one another. Without loss of generality we will focus 

primarily on the effect of �		(and the parameter �	 with the direct effect of �& on � denoted 

by �&	being of secondary importance.   
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With individual level data, regressing each exposure on the full set of SNPs would yield 

genetically predicted estimates for �	 and �&. The outcome Y would then be regressed on 

these predicted estimates for �	 and �& jointly to obtain a consistent estimate of 	�	and �&. 

This can be conducted by simply using the ivreg2 command in Stata or ivpack in R.  

In the two sample summary data setting, MVMR can still be implemented using summary 

data estimates of the association between SNP � (out of ,) and: the outcome, 	Γ��; exposure 

�	,  �-	�;  and exposure �&, �-&�, by fitting the following model:                                                              

																																										Γ�. � β	�-	,. �	β&�-&,. � �0.																																									�7  

This is a straightforward generalization of the IVW estimation framework, as first described 

by Burgess and colleagues.10 

Important considerations 

To conduct an MVMR analysis it is necessary to have at least as many genetic instruments 

as there are exposures to be instrumented in the model, this is true regardless of whether 

single sample or two sample summary data are used.3 It is possible to include genetic 

instruments that are associated with more than one exposure variable, providing all of those 

exposure variables are included in the estimation. Instruments must not, however, exert a 

direct effect on the outcome, except through the included exposures.  There is no benefit to 

excluding instruments that are only associated with one exposure, as this will lead to a loss 

of precision in the estimates obtained. This also avoids any potential bias that could arise 

due to selecting instruments based on their strength.14 

What quantity do MR and MVMR estimate and when does this 

differ?  

MR and MVMR target different causal effects of the exposure on the outcome. In general, 

MR estimates the total effect of the exposure on the outcome, whereas MVMR estimates the 

direct effect of each exposure on the outcome.  

For example, if Figure 3 describes the truth, the total effect of exposure �	 on the outcome is 

the effect of �	 on the outcome � directly plus the effect of �	 on � via	�&, and is equal to 

�	 � 2�&. The direct effect of the exposure �	on the outcome �	is the effect �	 has on � not 

via any other exposure variables included, and so is equal to �	. Whether or not these 

effects differ in general depends on the underlying relationship between the exposures and 

between each exposure and the outcome. If there is no effect of �	 on �& or of �& on	�, i.e. 

either 2 or �& is equal to zero, these effects will be the same. 
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Figure 3. Illustration of the direct effect and total effect of �	 on the outcome	�. 

To highlight the potential differences between MR and MVMR, and the potential benefits of 

MVMR, we now consider the application of MVMR to four different scenarios which are 

commonly encountered, or at least suspected, in epidemiological studies.  

In the first scenario �& is a confounder of the relationship between �	 and �. That is, there 

is a direct causal path from �& to �	 and from �& to �. Along with model (4), model (6) above 

and (8) below underlie the individual level data: 

																																		�	 �	�	� � �	�& � � �	��( 																																									�8  

In the second scenario �& is a collider of the relationship between �	 and �. That is, there is 

a direct causal path from �	 to �& and from � to �&. When an exposure and outcome both 

influence another variable controlling for that variable in in conventional analysis will 

introduce collier bias into the observed association between the exposure and the 

outcome.15 Along with model (4) (with �& set to 0), model (5) above and (9) below are used 

to generate the individual level data:        

																														�& �	�&� � �	�	 � ��� � � �	��* 																															�9  

In the third scenario �& is an independent pleiotropic pathway from � to �. This 

corresponds to the scenario first described in the previous section. Along with model (4), 

model (5) and (6) above are used to generate the individual level data.  

In the fourth scenario �& is a mediator of the relationship between �	 and �.  Along with 

model (4), model (5) above and (10) below are used to generate the individual level data: 

																																			�& �	�&� � �	�	 � � �	��* 																																						�10  

Each of these scenarios are shown in Figure. 5. Datasets of 10,000 individuals are simulated 

under all four scenarios discussed using , � 30 genetic variants. The variants are assumed 
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to be uncorrelated but, for added realism and complexity, are further subdivided into three 

categories: 

 10 SNPs that only predict �	: �	 (with a non-zero �	 element but zero �& element); 

 10 SNPs that only predict �&: �& (with a non-zero �& element but zero �	 element); 

 10 SNPs that predict �	 and �&: �	& (with non-zero �	 and �& elements). 

� therefore represents the complete vector��	, �&, �	&. For each scenario the causal 

parameter of interest, �	, is set to 1.  

 

Figure 4: Causal diagrams for scenarios 1-4. 

For each scenario, we estimate the causal effect of �	 and �& on �, (�	 and �&) using a 

range of estimation methods. With single sample individual level data, we implemented: 

 OLS, both for �		and �& individually (i.e. univariate regressions) and together (i.e. a 

multivariable regression);  

 MR for �	 and �& individually, each time using all the available SNPs as instruments,  

 Multivariable MR including both �	 and �& in the same analysis.  

 MR using for	�	 and �& individually only the SNPs truly associated with each 

exposure included in the estimation. 
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With two sample summary level data, we implemented: 

 MR for �	 and �& individually using all of the instruments available; 

 MVMR including both �	 and �&; 

 MR �	 and �& individually using only the SNPs truly associated with each exposure 

included in the estimation. 

All estimation methods are described in Table A.1 in the appendix. In all of the scenarios 

considered the exposure variables are strongly predicted by the instruments and the 

instruments have no additional pleiotropic effects on the outcome, other than through the 

exposures included in the model.  

Results 

Focusing our attention on exposure 1, the results from these simulations show that MVMR 

always gives an unbiased estimate of the direct effect of X1 on the outcome.  In the 

hypothetical case where only the SNPs truly associated with X1 (G1) are used as instruments 

in a single variable MR the estimated effect of X1 on Y is the total effect of a change in X1 on 

the outcome. Whether the direct or total effect is of more interest to practitioners will depend 

on the particular situation being considered. In many of the scenarios explored the direct 

effect equals the total causal effect, however when �& is a mediator of the relationship 

between �	 and the outcome, the direct and total effects of �	 may be substantially different. 

The results from the simulations are given in Table A.2 in the appendix and a summary table 

of what is estimated by each method in each scenario is given in Table 1.  

Table 1 – Summary of estimated effects for 78 

 Scenario/which estimand is targeted? 

Method I 2 3 4 

Individual level data     

OLS x x x x 

Univariate MR x Direct/total x x 

MVMR Direct/total Direct/total Direct/total Direct 

Univariate MR – subset of SNPS Direct/total Direct/total Direct/total Total 

Two-sample summary data analysis     

Univariate MR x Direct/total x x 

MVMR Direct/total Direct/total Direct/total Direct 

Univariate MR – subset of SNPS Direct/total Direct/total Direct/total Total 
When each method of estimation estimates the direct and total effects for �	 in each of the scenarios considered. 

An ‘x’ represents a biased method of estimation 

When conducting the univariate MR estimation with a subset of SNPs we have, for 

illustration, assumed `oracle’ knowledge on which SNPs truly predict which exposure. This 

will, of course, not be possible in practice.  Table 1 shows that when all SNPs in G are used 

for a univariate MR analysis, it will deliver a biased estimate of the total causal effect in 

scenarios 1, 3 and 4. MVMR will then provide a consistent estimator of the direct effect of 
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the exposure on the outcome.  These simulation results also highlight that MVMR does not 

introduce collider bias to the results when �& is a collider of the relationship between �	 

and	�. This is because the predicted value of	�& ,	��&, is instead used in the analysis. This is 

an important benefit of MVMR.  

Testing the assumptions of MVMR. 

In the simulations above we assumed, for clarity, that the instruments were both strong and 

valid for the purposes of an MVMR analysis.  However, violation of these assumptions can 

give misleading results in practice, so it is necessary to test these assumptions. We now 

describe how instrument strength and validity can be scrutinised for an MVMR analysis in 

the individual and two sample summary data settings. 

The Individual level data MVMR setting. 

Instrument strength 

In any MR analysis the set of genetic instruments G must be strong in order to avoid weak 

instrument bias (assumption IV1). However, the assessment of instrument strength is more 

complicated in the multivariate setting. It is necessary for G to strongly predict both �	 and 

�& (as quantified by strong F-statistics), but not sufficient. In addition, G must also jointly 

predict both �	 and	�&.  That is, once the secondary exposure �&	has been predicted using 

�, � must still be able to predict the primary exposure �	. Figure 5 illustrates three scenarios 

(A – C) where this may not be the case even when both exposures appear to be strongly 

predicted individually by � and a fourth scenario (D) where both exposures are strongly 

predicted.   
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Figure 5 – Potential setups of instruments and exposures. In A – B the exposures are individually strongly 
predicted but are not jointly predicted. In C the exposures are individually strongly predicted but weakly predicted 
in a joint sense. . In D; the exposures are individually and jointly strongly predicted. Specifically: A: G predicts �	 

which is a predictor of	�&. B:  G predicts �& which is a predictor of	�	. C: G predicts �	 and �& which are highly 

correlated. D: G predicts �	 and �& which are uncorrelated (given G). 
 

Joint strength can be assessed using the Sanderson-Windmeijer conditional F statistic16,	9:, 
that is available as part of ivreg2 in Stata. 	9: is calculated in the following manner: 
 

 �& is regressed on the full set of genetic instruments (and any control variables 

included in the estimation) and the predicted value of �&, ��& is calculated; 

  �	 is then regressed on ��& (and any control variables) to yield the TSLS estimate 

;�and the residual error terms  �	 −	;��&  are saved;  

 The errors are then regressed on the full set of instruments (and any control 

variables). The conditional F statistic is obtained as the F statistic for the effect of the 

instruments in this regression; 

 The conditional F statistic must be adjusted for a degrees of freedom correction, and 

can be compared to the conventional weak instrument critical values.17 

If the conditional F statistic for all of the exposure variables is sufficiently large then the 

instruments can be considered strong for the purposes of MVMR.  

Instrument validity 

If no pleiotropy exists amongst the genetic variants then each one should identify the same 

causal parameter. This can be evaluated using the Sargan test.6 Specifically, it tests whether 

the instruments can explain any of the variation in the outcomes that has not been explained 

by the value of the exposure variables. It is calculated by the following steps; 

 Regress the outcome Y on the exposures using TSLS to yield causal estimates ��	 

and ��&   

 Calculate the residual error term � −	���	�	 �	��&�&	  and then regress the residuals 

on the full set of instruments. The Sargan test is then the sample size times the R2 

of this regression. 

 Evaluating with the Sargan statistic with respect to a =& distribution with degrees of 

freedom equal to the number of instruments minus the number of predicted 

exposure variables  (i.e. the null hypothesis that all of the instruments are valid).3  

This test is again available as part of the ivreg2 command in Stata, and the ivpack package 

in R.  In order to conduct this test the model must be over-identified, i.e. there must be more 

instruments than exposure variables (so that the degrees of freedom of the =&	test is 

positive).18  This `global’ test does not give any indication as to which of the genetic 

instruments are invalid if the test rejects the null.  
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The two-sample summary data setting 

Assessment of instrument validity and strength has, to the best of our knowledge, yet to be 

described in the two sample summary data setting that is relevant to the majority of 

contemporary Mendelian randomization studies, and consequently it is not implemented in 

any standard software. We therefore describe the necessary procedures in fine detail so that 

it can be confidently implemented by others. 

Assessing instrument strength: heterogeneity is `good’ 

Suppose that all of the genetic instruments predict both exposure variables, so that models 

(4), (5) and (6) hold, but there are at least two elements of �	and �& in (5) and (6) which 

differ. If true, then the model will be at least exactly identified. That is, there will be at least as 

many independent genetic instruments (i.e. 2) as there are exposure variables to be 

instrumented. This implies that model (11): 

																																																										�	 � ;�& � >																																																				�11  

�& �	�&� � >&, 

must be over-identified (or equivalently miss-specified), because �&  cannot then be simply a 

scalar multiple, ;,  of �	  . Therefore, we can test for under-identification in our estimation 

model by testing for over-identification in model (11)  using the Sargan test as described 

above. The equivalence of this test with the Sanderson-Windmeijer approach has been 

shown formally elsewhere20.  The null of this Sargan test is that of underidentification. 

Extending this to two-sample analysis; 	�-	,� �	 	;�-&,� � 	� is   analogous to equation (11) 

estimated by IV using individual level data with 	��& predicted using G, therefore it should be 

possible to test for under-identification in two-sample MVMR estimation by testing for 

overidentification in the model 	�-	,� �	 	;�-&,� � 	�.  We recommend that this test is conducted 

using a modified version of Cochran’s Q statistic, as shown in equation (12) below: 

?�( � ∑ A 	
BC( * D E�-	� − ;��-&�F&��G	 .                                                      (12) 

The variance term for ?�(, H�	�& �	H	�& �	;�&H&�& − 	2;�H	&�,  where H	�&   is the variance of �-	,� , 
H&�& 	is the variance of �-&,�, H	&� is the covariance of �-	,� and 	�-&,�, and ;� is an efficient 

estimator for ;  Estimation of the H�	�& terms in practice depends on the type of model used to 

obtain �-	,� and	�" &,�. When each exposure is regressed on the entire set of SNPs 

simultaneously (i.e. via multivariate regressions without an intercept):  
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I���J	
K L�-	M& 	

N
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I���J	
K L�-&M& , and		H	&� �	 ��

I���J	
K L�-	M	�-&M	

N

MG	

N

MG	
 

Where K is the number of subjects, and ��-	M, �-&M are the estimated residuals from these 

regressions. If �-	� and �-&� are obtained separately (i.e. via univariate regressions without an 

intercept), then the error terms are obtained from the equivalent expressions: 

H	�& �	E��
I��FJ	
K L�-	M�& 	

N

MG	
, H&�& �	E��

I��FJ	
K L�-&M�& , and		H	&� �	E��

I��FJ	
K L�-	M�	�-&M�	

N

MG	

N

MG	
 

Respectively, �-	M� and �-&M�  are the estimated residuals from the j’th regression. 

Under the null hypothesis the instruments do not contain enough information to predict both 

exposure variables, ?�( will be asymptotically =�J	&  distributed when ; is estimated using an 

asymptotically efficient estimator, where , is the number of instruments. Rejection of the null 

hypothesis (i.e. detection of `heterogeneity’) indicates that the model we wish to estimate is 

identified for �	 .   

All the above can be repeated for �& by swapping the roles of 	�-	and 	�-&	 and calculating an 

equivalent ? statistic for �&,  ?�* 	say.  If ?�( 	and ?�* 	are larger than the chosen critical value 

then the null hypothesis of under-identification can be rejected and the test suggests that the 

instruments can predict variation in both exposures. Table 2 shows the distribution of 

?�( 	and ?�*for four different scenarios with two exposure variables and  , � 30 SNPs. �	 

and �& are both functions of a set of SNPs and independent confounding variables. In the 

first simulation the model has been set up as given in Scenario 3 in Figure 4 and in Figure 

5D with each of the exposure variables predicted by a set of SNPs and a common 

confounding variable. This model is identified as both exposure variables can be predicted 

by the set of instruments. In the second and third simulations the model has been set up in 

the same way but with no effect of the SNPs on either �	 or �& respectively. That is, the 

model is under identified with one of the exposure variables not being predicted by the 

instruments in each case. In the final simulation the model has been set up with the effect of 

the SNPs on the exposures as given in Figure. 5A and a common confounder. This setup 

leads to neither exposure being predicted by the SNPs when they are both included in an 

MVMR estimation as the SNPs in the model cannot predict both of the exposure variables 

jointly.    The results from these simulations show that this test has the required distribution 

under the null hypothesis.  
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Table 2 - The distribution of the modified Q statistic as a test for under-identification 

 QS( QS* 
 Mea

n 
Std. 
dev 

Rej. Rate 
(%) 

Mean Std. 
dev 

Rej. Rate 
(%) 

x	 strongly identified 
x& strongly identified 

588
11.5 

132
59.4 

100 58790.
6 

13573
.5 

100 

x	 unidentified 
x& strongly identified 

30.0 7.9 6.3 58154.
2 

93864
.4 

100 

x	 strongly identified 

x& unidentified 

597
78.8 

956
31.8 

100 30.2 7.3 5.7 

x	 strongly identified 

x& strongly identified 
Jointly unidentified 
x	 � δx&,  δ � 1 

29.7 7.7 4.8 29.7 7.7 4.8 

N = 5,000. Repetitions = 1000, 30 SNPs as instruments. Rejection rates give the proportion of times each Q 
statistic is larger than the 95

th
 percentile of a Chi-squared distribution on 29 degrees of freedom (42.56). 

 

Testing instrument validity: heterogeneity is `bad’  

Cochran’s Q statistic for the regression of interest has been proposed as a method for 

identifying invalid instruments (e.g. due to horizontal pleiotropy) in two-sample summary data 

MR analysis, with a single exposure.9 Specifically, if all instruments are valid IVs, and the 

modelling assumptions necessary for two-sample MR are satisfied, then each genetic 

instrument should give the same estimate of the effect of the exposure on the outcome. 

Excessive heterogeneity in the causal effect estimates obtained by each SNP individually 

now becomes an indicator of invalid instruments. We propose testing for invalidity in two 

sample summary data MVMR using an adjusted version of the Cochran Q statistic given by: 

?V � ∑ A 	
BW *

D X	Γ�� − E��	�-	� �	��&�-&�FY
& .��G	                                          (13) 

Where HV�& 	� 	H��& � ��	&	H	�& �	��&&	H&�& � 2��	��&H	&�. To clarify,  H��&  is the variance of		Γ�� , and ��	 

and ��& are efficient estimates of �	 and �& (for example as obtained from fitting model (7)). 

Under the null hypothesis that the genetic instruments do not have pleiotropic effects on the 

outcome, ?V	is asymptotically =& distributed with �, − 2 degrees of freedom. The standard 

implementation of Cochran’s Q would merely have a weighting of	H��& , and is not therefore 

asymptotically =& distributed. It is a straightforward generalisation of the adjusted Q statistic 

recently proposed by Bowden et al in the univariate MR setting.8 Excessive heterogeneity in 

?V therefore brings assumptions IV2 and IV3 into doubt. 

Figure 6 shows the distribution of ?V compared to the standard Q statistic and a =& 

distribution with 98 degrees of freedom for a model with 2 exposure variables and 100 

genetic instruments. For simplicity the estimated effects of the SNPs on the exposures each 
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have a common variance of 0.02 and have a common covariance of 0. ?V is seen to have 

the correct distribution under the null hypothesis of no pleiotropy in the model.  

 

Figure 6: The distribution of the adjusted and standard Q statistics under the null hypothesis of no heterogeneity. 

5000 repetitions, 100 SNPs. Here �	 � 	�& � 1. H	�& � 	H&�& � 	0.02 , H	&� � 0 for all j. 

Approximating Z[8,Z[\ and Z] with incomplete information 

The covariance vector H	&�  that is necessary for correct specification of ?�	,?�& and ?V can 

only be calculated from the individual participant data. If this information is not available, one 

solution would be to ensure that H	&� is zero, by estimating the genetic associations with 

each exposure and the outcome in separate samples. This would correspond to a `three-

sample’ summary data MR-analysis when two exposures constitute the MVMR analysis.  

Another pragmatic solution would be to assume that each H	&� term is zero. This will give a 

good approximation for ?�		and ?�& whenever ;H	&� is small and for ?V	whenever  ��	��&H	&� 
is small.  

Application to education, cognitive ability and Body Mass Index 

In this section we apply all of the methods discussed above to investigate whether there is 

evidence for a causal effect of education and cognitive ability on body mass index (BMI) 

using data from UK biobank. Education and cognitive ability have both been previously 

associated with BMI, with higher levels of education and cognitive ability being associated 

with lower levels of BMI However, there is also a high level of correlation observed between 
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completed education and measured cognitive ability, therefore it is not clear whether, once 

this correlation has been controlled for, both education and cognitive ability have a causal 

effect on BMI.  

Data 

UK biobank recruited 502,641 individuals aged 37-73 years between 2006 and 2010 from 

across the UK. Individuals where invited to a clinic where they answered a questionnaire and 

interview about a range of health topics and provided anthropomorphic measurements and 

gave samples of blood, urine and saliva. This study has been described in full previously.20 

Individuals in UK biobank were asked to report the highest educational qualification they had 

obtained. For each individual we assigned an age at which they left education based their 

reported qualification. A breakdown of educational qualifications and associated ages across 

the cohort is given in Table A.3.  

Cognitive ability was measured among a subset of the UK biobank participants as the 

number of correct answers recorded in a series of 13 questions designed to measure 

cognitive ability that where completed as part of the initial clinic. The cognitive ability variable 

was then standardised to have mean zero and variance 1.  BMI was calculated based on the 

height and weight of the individuals in the sample. Throughout the analysis we analysed this 

variable on the natural log scale because of its skewed distribution.  

Analysis 

We first conducted MR analyses for the effect of education and cognitive ability on BMI 

separately using single variable MR.  A single composite instrument for education was 

created using the polygenic score of 74 SNPs from a recent GWAS of educational 

attainment.21 A single composite instrument for cognitive ability was created using the 

polygenic score of 18 SNPs from a recent GWAS of cognition.22 As this GWAS was 

conducted using the interim release of UK Biobank we restricted our analysis to individuals 

not included in the interim release.  

We then conducted a multivariable MR analysis of the effect of education and cognitive 

ability on BMI. This analysis included both the composite instruments for education and 

cognitive ability used in the single variable MR analyses.  

The results from this analyses, along with a multivariable OLS regression of BMI on 

education and cognitive ability, are given in Table 4. The OLS results show that each extra 

year of education is associated with a decrease in BMI MR and MVMR results suggests a 

causal effect in the same direction, but with a larger magnitude. The results for cognitive 

ability are more mixed with no association seen in the OLS results, a negative total effect of 
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cognitive ability on BMI in the MR analysis and potentially a positive direct effect of cognitive 

ability on BMI  observed in the MVMR analysis. Our empirical and theoretical investigation 

helps to clarify why the the high level of correlation between education and cognitive ability 

would lead to the conclusion that there is a negative effect of cognitive ability on BMI in MR 

analysis.  The MVMR results show that, if anything, the direct effect of increasing cogntive 

ability is to increase BMI.  These results highlight the potential benefits of MVMR. However, 

before giving much credence to this result it is necessary to assess the strength of our SNPs 

to jointly predict education and cognitive ability. 

Table 4 – The effect of education and cognitive ability on BMI 
  OLS Single variable MR Multivariable 

MR 

Age completed 
Education 

Effect -0.008 -0.028  -0.044 

 Std.Error (0.0003) 0.005  0.013 

 95% C.I. [-0.0085,  -
0.0074] 

[-.0391   -
.0179] 

 [-.0704   -.0187] 

 F-statistic  188.2  195.0 

 Partial 
F-statistic 

   35.7 

Standardised 
cognitive 
ability Score 

Effect 0.0001  -0.023 0.048 

 Std.Error (0.0007)  0.008 0.025 

 95% C.I. [-0.0013,   
0.0014] 

 [-.0380    
  -.0082] 

[-0.001    0.098] 
 

 F-statistic   542.2 309.7 

 Partial 
F-statistic 

   37.0 

Dependent variable is log(BMI). 
Estimates of the effect of education and cognitive ability on BMI from OLS, single variable MR and multivariable 
MR analysis of individual level data.  
All regressions also include a full set of control variables: age, gender, income and 10 genetic principal 
components 
Instruments are constructed from GWAS scores for education and cognitive ability. The regressions are weighted 
so that individuals who left school at 15 are given an 80% upweighting. All non-European and related individuals 
have been excluded from the analysis. Total sample size included in all regressions: 74,309. 
 

Testing the instrument strength in the single sample setting 

As a measure of the strength of the instruments we calculate the standard F-statistic for both 

education and cognitive ability and the Sanderson – Windmeijer partial F-statstic16 for the 

multivariable MR analysis. As all F-statistics are much larger than the rule-of-thumb cut off of 

10 we are reassured that the instruments are not individually weak. However, the partial F-

statistic for both education and cognitive ability is significantly lower, showing that the power 

of the instruments to predict both variables simultanously is greatly reduced.  
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The Sargan test for invalid instruments can only be calculated for estimation models with 

more instruments than exposure variables. In this estimation we have two exposure and two 

instruments and so it is not possible to calculate the Sargan statistic.  

Two-Sample Multivariable MR 

To illustrate two-sample MVMR we randomly divided the sample used for the individual 

analysis into three equal-sized groups. For each SNP used in the polygenic score, we then 

calculated its effect on log(BMI), education and cognitive ability using different parts of the 

sample., The results were then used to conduct a two-sample MVMR analysis. The results 

are given in Table A.4. They show that increased education has a direct effect which 

decreases BMI and cognitive ability has no direct effect on BMI. The results are in line with 

those obtained from the individual level analysis.  

Testing instrument strength in the two-sample setting 

To test for weak instruments in this analysis we have calculated the weak-instrument ? 

statistics for education and cognitive ability. The  ?^_` statistic for education is 1724.4. The  

?:ab statistic for cognitive ability is 1488.8. The critical value for a =& distribution with 88 

degrees of freedom at the 5% level is 110.9. Therefore we reject the null hypothesis that the 

SNPs do not explain any of the variation in the exposures education and cognitive ability in 

this two sample analysis and can conclude that these SNPs can predict both education and 

cognitive ability in the data.  

Testing for pleiotropy in the two-sample setting.  

To illustrate the two tests for pleiotropy discussed earlier we report the ?V statistic for 

MVMR. The value of ?V for this regression is 129.5. The critical value for a =& distribution 

with 87 degrees of freedom is 109.77. Therefore, the null hypothesis that there is no 

heterogeneity is rejected for this value of ?V.  

Multivariable MR Egger regression  

An alternative procedure that has been recently proposed to adjust for pleiotropy beyond 

that explainable by genetically predictable exposures (e.g. �	 and �&) is a Multivariable MR 

Egger regression23 This is a natural extension of the original MR Egger approach24 and is 

calculated by fitting the two sample MVMR model with a constant included; 

Γ�� �	�� � �	�-	� � �&�-&� ���� �	���	 
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If the constant is different from zero this suggests that additional pleiotropy is meaningfully 

biasing the analysis. However a generalisation of the InSIDE assumption is required in order 

for it to deliver unbiased causal estimates. These are described in detail elsewhere.24 

The two sample results were used to fit multivariable MR Egger regression, the results of 

which are given in Table A.5.  Its constant intercept parameter is estimated to be small, and 

consequently the estimated effects of the exposures do not differ from those in the two-

sample MVMR estimation. This supports the suggestion that the SNPs do not exert a direct 

effect on BMI apart from through education or cognitive ability. As MR-Egger is dependent 

on the orientation of the SNP exposure associations, we repeated this analysis with the 

associations orientated so that the SNP education associations where all positive and then 

with the SNP cognitive ability associations all positive. These changes had no substantive 

effect on the results obtained.   

The difference between the Q-statistic and Multivariable MR Egger estimation suggest an 

inconsistency between these two tests however this may have arisen due to a high level of 

variation in the effect of the SNPs on each exposure leading to a higher Q statistic. This is 

supported by Figure. 7a and 7b which gives individual MR plots for each exposure, and 

shows that there is a large amount of variation of the SNPs on each of the exposures.   

Repeating this analysis with the outlying SNP excluded makes no substantive difference to 

the results obtained.   

The MVMR Egger analysis was repeated using the effect of each SNP on education, 

cognitive ability and BMI taken from GWAS estimates.21,22,25  The magnitude of the 

estimated effects differ in this analysis as the outcome variable is BMI rather than the natural 

log of BMI, however these results also show no pleiotropic effect of the SNPs on the 

outcome and a negative effect of higher education on BMI. Results from this analysis are 

given in Table A5.   
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Figure 7:  Left: MR Egger plot for the association between educational attainment and BMI. Right: MR Egger plot 

for the association between cognitive ability and BMI. All SNPs that affect either education or cognitive ability are 

included 

Discussion 

In this paper we have attempted to explain the principled application and interpretation of 

instrumental variable analysis to the epidemiological setting with multiple exposures. We first 

focused on the individual data setting, for which it is possible to borrow well-established 

methods (and related software) from the econometrics literature.  We then clarified how 

these methods can be faithfully transcribed to the two-sample summary data setting, with 

particular attention paid to assessing the validity and relevance of the genetic instruments. In 

particular, we propose 

 Modified Q statistics, (in our case ?�		, and ?�&	) that detect `good’ heterogeneity if a 

set of SNPs can jointly and reliably predict all intermediate exposures of interest; 

 A modified Q statistic, ?V	that detects `bad’ heterogeneity if a set of SNPs contains 

invalid instruments. 

We finally illustrated the application of MVMR using individual and summary level data to 

estimate the effect of education and cognitive ability on BMI. The results from this analysis 

show that increasing education leads to lower BMI and the size of this effect increases when 

cognitive ability is controlled for. Comparing the single exposure MR analysis results (with all 

SNPs that affect educational attainment excluded) to the MVMR results for cognitive ability 

shows a large change in the size and direction of the effect. This result suggests that 

education is a mediator of the relationship between cognitive ability and BMI and any direct 

effect of cognitive ability is minimal.   

Our applied results highlight that even when the instruments appear to be very strong for 

each of the exposures individually, this does not guarantee that they will be equally as strong 

for the exposures when estimated jointly in a MVMR model.  For example, the F-statistics 

decrease from 195 and 310 to 36 and 37 for educational attainment and cognitive ability 

respectively.  
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Table A.1 – Methods of estimation used in the simulations. 

OLS estimation 

Single variable 
regression 

c � 2 � �	d	 c � 2 � �&d&  

Multivariable 
regression 

c � 2 � �	d	 �	�&d&  

Single sample methods of estimation 

1. Single variable 
MR 

c � 2 �	�		d-	 � > 
d	 � �	 �	�	� � �	 

 
 

c � 2 �	�&	d-& � > 
d& � �	 �	�&� � �& 

Individual single 
variable Mendelian 
Randomisation for 
each exposure 
variable, each 
predicted using all of 
the genetic variants 
available.  

2. Multivariable 
MR 

c � 2 �	�		d-	 �	�&	d-& � >	 
d	 � �	 �	�	� � �	 
d& � �& �	�&� � �& 

Multivariable 
Mendelian 
Randomisation with 
both the exposures 
included and predicted 
using all of the genetic 
variants available. 

3. Single variable 
MR Using a 
subset of the 
SNPs available. 

c � 2 �	�		d-	 � > 

d	 � �	 �	�	�	 � �	 
 

c � 2 �	�		d-	 � > 

d	 � �	 �	�	�& � �	 

Individual single 
variable Mendelian 
Randomisation for 
each exposure 
variable, each 
predicted using only 
the SNPs known to be 
associated with only 
that exposure. 

Two-sample methods of estimation 

4. Single variable 
MR 

Γ� � 	�		�-	 � > 
c � 	Γ��� �	e� 

d	 �	�	,��� � �	,� 
 

Γ� � 	�&	�-& � > 
c � 	Γ��� �	e� 

d& �	�&,��� � �&,� 
 

Individual single 
variable Mendelian 
Randomisation for 
each exposure 
variable, each 
predicted using all of 
the genetic variants 
available. 

5. Multivariable 
MR 

Γ� � 	�		�-	 �		�&	�-& � > 
c � 	Γ��� �	e� 

d	 �	�	,��� � �	,� 
d& �	�&,��� � �&,� 

Multivariable 
Mendelian 
Randomisation with 
both exposure 
variables included and 
predicted using all of 
the genetic variants 
available. 

6. Single variable 
MR Using a 
subset of the 
SNPs available. 

Γ� � 	�		�-	 � > 
c � 	Γ��	,� �	e� 

d	 �	�	,��	,� � �	,� 
 

Γ� � 	�&	�-& � > 
c � 	Γ��&,� �	e� 

d& �	�&,��&,� � �&,� 
 

Individual single 
variable Mendelian 
Randomisation for 
each exposure 
variable, each 
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predicted using only 
the SNPs known to be 
associated with only 
that exposure.  
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Table A.2 –Simulation results 

Method of Estimation 7�8 std. error 7�8 7�\ std. error 7�\ 

Confounding Setup     

OLS estimation     

Single variable 1.88 0.046 2.31 0.067 

Multivariable 1.25 0.032 1.13 0.044 

Single Sample MR estimation     

1. Univariate MR 1.53 0.132 1.84 0.132 

2. MVMR 1.00 0.017 1.00 0.022 

3. Univariate MR – subset of SNPS 1.01 0.044 1.51 0.045 

Two Sample MR estimation     

4. Univariate MR 1.52 0.141 1.82 0.144 

5. MVMR 0.99 0.072 0.99 0.091 

6. Univariate MR – subset of SNPS 0.99 0.088 1.49 0.092 

Collider setup      

OLS estimation     

Single variable 1.36 0.031 0.71 0.019 

Multivariable 0.65 0.054 0.43 0.032 

Single Sample MR estimation     

1. Univariate MR 1.00 0.016 0.51 0.084 

2. MVMR 0.99 0.028 0.01 0.018 

3. Univariate MR – subset of SNPS 1.00 0.025 0.02 0.045 

Two Sample MR estimation     

4. Univariate MR 0.99 0.038 0.50 0.087 

5. MVMR 1.00 0. 066 0.00 0.040 

6. Univariate MR – subset of SNPS 0.99 0.055 0.00 0.045 

Pleiotropic setup     

OLS estimation     

Single variable 1.81 0.063 1.81 0.067 

Multivariable 1.25 0.032 1.25 0.033 

Single Sample MR estimation     

1. Univariate MR 1.34 0.129 1.34 0.133 

2. MVMR 1.00 0.018 1.00 0.018 

3. Univariate MR – subset of SNPS 1.00 0.045 1.01 0.045 

Two Sample MR estimation     

4. Univariate MR 1.32 0.137 1.33 0.138 

5. MVMR 0.99 0.060 0.99 0.060 

6. Univariate MR – subset of SNPS 0.99 0.072 0.99 0.073 

Mediation setup     

OLS estimation     

Single variable 2.31 0.063 1.88 0.048 

Multivariable 1.12 0.043 1.25 0.033 

Single Sample MR estimation     

1. Univariate MR 1.84 0.129 1.54 0.133 

2. MVMR 1.00 0.021 1.00 0.018 

3. Univariate MR – subset of SNPS 1.51 0.045 1.01 0.045 

Two Sample MR estimation     

4. Univariate MR 1.82 0.142 1.52 0.142 

5. MVMR 0.99 0.091 0.99 0.073 

6. Univariate MR – subset of SNPS 1.49 0.090 0.99 0.088 
n= 20,000. 1000 repetitions.  
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Table A.3 – Educational qualifications 
Highest Educational qualification Age completed education % of final sample 

None 15 12.29 

CSE’s/O levels/GCSEs 16 27.61 

NVQ/HND/HNC 18 6.41 

A levels 18 12.23 

Other professional qualification 
(e.g. Nursing/Teaching etc) 

20 4.98 

College or University degree 21 36.47 
The highest reported educational qualification and associated age for completing education  
for the individuals from UK biobank included in this analysis.  
 

Table A.4 – Two-sample Multivariable MR estimation 

 Effect Std. 

Error 

95% Confidence 

Interval 

P-

value 

Log BMI     

Age completed Education -

0.022 

0.006 [-0.034, -0.010] <0.001 

Standardised Cognitive ability 

score 

0.007 0.016 [-0.026, 0.039] 0.684 

Estimates of the effect of Education and cognitive ability on Log BMI from a two-sample analysis  
3 SNPs in the education GWAS which are in LD with SNPs from the cognitive ability GWAS have been excluded. 
Each sample includes on third of the observations in the total sample 
The effects of each SNP on log BMI, education, cognitive ability have each been calculated from one sub–
sample only.  
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Table A.5 - Multivariable MR Egger estimation 

 Effect Std. 

Error 

95% Confidence 

Interval 

P-

value 

Biobank data - Log BMI     

Age completed Education -0.022 0.006 [-0.033    -0.010] <0.001 

Standardised Cognitive ability 

score 

0.007 0.016 [-0.025    0.039] 0.667 

Constant -

0.0003 

0.0002 [-0.0008  0.0001] 0.166 

Summary GWAS data – BMI     

Age completed Education -0.345 0.098 [-0.542  -0.146] 0.001 

Standardised Cognitive ability 

score 

0.046 0.073 [-0.102   0.194] 0.532 

Constant -0.001 0.001 [-0.004  0.001] 0.254 

Multivariable MR Egger estimates for the effect of education and cognitive ability on BMI.  
The first section shows the estimated effects calculated using UK biobank. the estimation has been constructed 
in the same way as given in Table A.4. 
The second section shows the results calculated using summary GWAS data for education, cognitive ability and 
BMI 

37,38
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