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Abstract

There is demand from national health planners for forecasts of key metrics associated

with influenza-like-illness (ILI); near-term weekly incidence, week of season onset, week

of peak, and intensity of peak. Here, we describe our participation in a weekly

prospective ILI forecasting challenge for the United States for the 2016/17 season and a

subsequent evaluation of our performance.

We implemented a meta-population model framework with 32 specific model

variants. Model variants differed from each other in their assumptions about: the

force-of-infection (FOI); use of uninformative priors; the use of discounted historical data

for not-yet-observed time points; and the treatment of regions as either independent or

coupled. Outputs from model variants were chosen subjectively as the the basis for our

weekly forecasts. Coupled models were only available part way thought the season.

Most frequently, during the 2016-17 season, we chose; FOI variants with both school

vacations and humidity terms; uninformative priors; the inclusion of discounted

historical data for not-yet-observed time points; and coupled regions (when available).

Our near-term weekly forecasts substantially over-estimated early incidence when

coupled models were not available. However, our forecast accuracy improved

substantially once coupled solutions were available. We were able to forecast onset and
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peak timing and peak intensity with reasonable accuracy but without a long lead time.

When we conducted retrospective forecasts for six previous seasons for which data were

available, we found that the 2016/17 season was not typical: on average, coupled models

performed better when fit without historically augmented data.

We were able to substantially improve accuracy during a prospective forecasting

exercise by coupling dynamics between regions. Although the reduction of subjectivity

should be a long-term goal, some degree of human intervention is likely to improve

forecast accuracy in the medium-term.

Author summary

Influenza typically infects approximately 4 million people each year, resulting in 400,000 1

or more deaths. Influenza-like-Illness (ILI) is a practical way for health-care workers to 2

easily estimate likely influenza cases. The Centers for Disease Control (CDC) collects 3

and disseminates this information, and has, for the last several years, run a forecasting 4

challenge (the CDC Flu Challenge) for modelers to predict near-term weekly incidence, 5

week of season onset, week of peak, and intensity of peak. We have developed a 6

modeling framework that accounts for a range of mechanisms thought to be important 7

for influenza transmission, such as climatic conditions, school vacations, and coupling 8

between different regions. In this study we describe our forecast procedure for the 9

2016/2017 season and highlight which aspects resulted in better or worse forecasts. 10

Most notably, we found that when the dynamics of different regions are coupled 11

together, the forecast accuracy improves. We also found that the most accurate 12

forecasts required some level of forecaster interaction, that is, the procedure could not 13

be completely automated without a reduction in accuracy. 14

Introduction 15

Infectious pathogens with short generation times pose public health challenges because 16

they generate substantial near-term uncertainty in the risk of disease. This uncertainty 17

is most acute and shared globally during the initial stages of emergence of novel human 18

pathogens such as SARS [1], pandemic influenza [2], or Zika virus [3]. However, at 19
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national and sub-national levels, uncertainty arises frequently for epidemic pathogens 20

such as seasonal influenza, dengue, RSV and rotavirus; causing problems both for 21

health planners and at-risk individuals who may wish to change their behavior to 22

mitigate their risk during peak periods. 23

Seasonal influenza affects populations in all global regions and is forecast annually in 24

temperate populations, either implicitly or explicitly. Peak demand for both outpatient 25

and inpatient care is driven by peak incidence of influenza in many years [4]. Therefore, 26

the efficient provision of elective procedures and other non-seasonal health care can be 27

improved by accurate forecasts of seasonal influenza. Implicitly, most temperate health 28

systems use knowledge of historical scenarios with which to plan for their influenza 29

season. The current situation is then assessed against the deviation from the historical 30

averages and worst-cases as observed in their own surveillance system. 31

The United States Centers for Disease Control (CDC) has sought to formalize 32

regional and national forecasts by introducing an annual competition. Each week, 33

participating teams submit weekly estimates of incidence for the next four weeks, season 34

onset, and timing and intensity of the peak. Methods used by teams include purely 35

statistical models, mechanistic models, machine learning and hybrid approaches. 36

Expert-opinion surveys have also been used and performed well. Some teams augment 37

their forecasts of the official ILI data with the use of potentially faster or less-noisy 38

datasets such as google flu trends [5]. 39

Here we describe a our mechanistic-model-supported participation in the 2016/17 40

CDC influenza forecasting challenge, as an example of a disease forecasting process. We 41

emphasize a subjective human component of this process. We also describe a 42

retrospective evaluation of the models for the previous six seasons. All the models 43

described are implemented in the R package Dynamics of Interacting Community 44

Epidemics (DICE, https://github.com/predsci/DICE). 45
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Methods 46

Data 47

The CDC Influenza-like Illness Surveillance Network (ILINet) Human and Health 48

Services (HHS) region and national data were downloaded from the CDC-hosted web 49

application FluView [6] and used to create a historic database of ILI cases. Fig. 1 shows 50

which states are grouped into each HHS region. Because we require an absolute number 51

of cases per week, the CDC ILINet data is converted from percent ILI cases per patient 52

to ILI cases. We estimate the absolute number of weekly ILI cases by dividing the 53

weighted percent of ILI cases in the CDC data by 100 and multiplying it by the total 54

weekly number of patients. We assume two outpatient visits per person per year so that 55

the total weekly number of patients is estimated as: (total regional population)*(2 56

outpatient visits per person per year)*(1 year/52 weeks). 57

Fig 1. A map of the continental US colored by the ten HHS regions. The green circle
in each HHS region denotes the population density weighted location of the centroid of
the region, and the radius of each circle is proportional to the weight of the region
which is determined by its relative population. Regions are sometimes referred to by the
city in which their HHS office is located: 1, Boston; 2, New York; 3, Philadelphia; 4,
Atlanta; 5, Chicago; 6, Dallas; 7, Kansas City; 8, Denver; 9, San Fransisco; 10, Seattle.

Specific humidity (SH) is included in the DICE for this time period and uses Phase-2 58

of the North American Land Data Assimilation System (NLDAS-2) data base provided 59

by NASA [7–9]. The NLDAS-2 data base provides hourly specific humidity (measured 60

2-meters above the ground) for the continental US at a spatial grid of 0.125◦ which we 61

average to daily and weekly values. The weekly data is then spatially-averaged for the 62

states and CDC regions. For the three states outside the continental US (Alaska, 63

Hawaii, and Puerto Rico), and all other countries, we obtain the SH data from NOAA’s 64
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NCEP-NCAR Reanalysis project [10] (see for example [11]) which provides daily (again 65

2-meter above ground) SH data on a spatial grid of 2.5◦ for the entire world. These 66

data are averaged and interpolated using the same procedure as for the NLDAS-2 67

dataset. When running in a forecast mode (as was done during this CDC flu challenge), 68

future SH data are provided using the average of historic data. 69

School vacation schedules were collected for the 2014-2015 and 2015-2016 academic 70

years for every state. For each state, a school district was identified to represent each of 71

the three largest cities. Vacation schedules were then collected directly from the district 72

websites. These three school vacation schedules were first processed to a weekly 73

schedule with a value of 0 indicating class was in session all five weekdays and a 1 74

indicating five vacation days. Next, the representative state schedule was produced by 75

averaging the three weekly district schedules. Region schedules are obtained by a 76

population-weighted average of the state schedules. Similarly, the national schedule is 77

generated by a population-weighted average of the regions. 78

For the 2016-2017 season we determine start and end times as well as spring and fall 79

breaks from the previous years’ schedules. Thanksgiving and winter vacation timing was 80

taken from the calendar where the winter break is assumed to be the last two calendar 81

weeks of the year. Based on the proportion of schools closed and number of days closed, 82

p(t) is assigned a value in the range [0, 1]. For example in week ti, if all schools are 83

closed for the entire week then we define the proportion of open schools p(ti) = 1. 84

However, if all schools have Monday and Tuesday off (missing 2 of 5 days), then 85

p(ti) = 0.4. Similarly, if 3 of 10 schools have spring break (entire week off), but the 86

other 7 schools have a full week of class then p(ti) = 0.3. If all schools have a full week 87

of class then p(ti) = 0. 88

Basic model 89

The DICE package has been designed to implement meta-population epidemic modeling 90

on an arbitrary spatial scale with or without coupling between the regions. Our model 91

for coupling between spatial regions follows ref [12]: We assume a system of coupled 92

S-I-R equations (susceptible-infectious-recovered) for each spatial region. In this 93

scenario, the rate at which a susceptible person in region j becomes infectious (that is 94
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transitions to the I compartment in region j) depends on: (1) the risk of infection from 95

those in the same region j, (2) the risk of infection from infected people from region i 96

who traveled to region j, and (3) the risk of infection encountered when traveling from 97

region j to region i. To account for the three mechanisms of transmission, ref [12] 98

defined the force of infection, or the average rate that susceptible individuals in region i 99

become infected per time step as: 100

λi(t) =
D∑
j=1

βj(t)mij

∑D
l=1mljIl∑D
p=1mpjNp

(1)

where D is the total number of regions. In our-case, unlike reference [12], the 101

transmissibility is not the same for all regions and it is allowed to depend on time: βj(t). 102

Given this force of infection we can write the coupled S-I-R equations for each region

as:

dSj
dt

= − λj(t)Sj , (2)

dIj
dt

= λj(t)Sj −
Ij
Tg
, (3)

dRj
dt

=
Ij
Tg
. (4)

Eqs. (2-4) are the coupled version of the familiar S-I-R equations, where Tg is the 103

recovery rate (assumed to be 2-3 days in the case of influenza). The mobility matrix, 104

mij of Eq. 1 describes the mixing between regions. Thus, element i, j is the probability 105

for an individual from region i, given that the individual made a contact, that that 106

contact was with an individual from region j. As shown below, the sum over each row 107

in the mobility matrix is one and in the limit of no mobility between regions the 108

mobility matrix mij is the identity matrix so that λi(t) = βi(t)
Ii
Ni

and we recover the 109

familiar (uncoupled) S-I-R equations: 110

dSj
dt

= − βj(t)
SjIj
Nj

, (5)

dIj
dt

= βj(t)
SjIj
Nj
− Ij
Tg
, (6)

dRj
dt

=
Ij
Tg
. (7)
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The level of interaction between spatial regions is determined by the mobility matrix 111

and its interaction kernel , κ(rik): 112

mij = Njκ(rij)
1∑

kNkκ(rik)
(8)

This kernel is expected to depend on the geographic distance between the regions (rij), 113

and following Mills and Riley [12] we use a variation of the off-set power function for it: 114

κ(rij) =
1

1 + (rij/sd)
γ (9)

where sd is a saturation distance in km and the power γ determines the amount of 115

mixing between the regions: as γ decreases there is more mixing while as γ increases, 116

mixing is reduced. In the limit that γ →∞there is no mixing between regions and we 117

recover the uncoupled SIR Eqs. (5-7). The DICE package is designed to allow the 118

estimation of these two parameters (γ and sd), but they can also be set to fixed values. 119

The S-I-R equations model the total population, but the data are the number of 120

weekly observed cases or incidence rate for each spatial region (IRj ). The weekly 121

incidence rate is calculated from the continuous S-I-R model by discretizing the 122

rate-of-infection termλj(t)Sj (or βj(t)
SjIj
Nj

in the uncoupled case): 123

IRj (ti) = Bj + pCj

∫ ti−∆t

ti−1−∆t

λj(t)Sj(t)dt , (10)

scaling by percent clinical pCj , and adding a baseline Bj . p
C
j is the proportion of 124

infectious individuals that present themselves to a clinic with ILI symptoms and Bj is a 125

constant that estimates non-S-I-R or false-ILI cases. The integral runs over one week 126

determining the number of model cases for week ti. ∆t approximates the time delay 127

from when an individual becomes infectious to when they visit a sentinel provider for 128

ILI symptoms and is to 0.5 weeks based on prior calibration [13,14]. Eq. 10 describes 129

how DICE relates its internal, continuous S-I-R model to the discrete ILI data. In the 130

next section we describe the procedure used for fitting this property to an ILI profile. 131

To allow for different models for the force of infection/contact rate, we write this 132

term in the most general way as a product of a basic force of infection, R0
j , multiplied 133

by three time dependent terms: 134
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βej (t) =
R0
j

Tg
· F1(t) · F2(t) · F3(t) (11)

The first time dependent term, F1(t), allows for a dependence of the transmission 135

rate on specific-humidity, the second (F2(t)) on the school vacation schedule, and the 136

third (F3(t)) allows the User to model an arbitrary behavior modification that can drive 137

the transmission rate up or down for a limited period of time. For the purpose of the 138

CDC challenge we only considered models involving either F1(t), F2(t), both, or none 139

(i.e., the contact rate does not depend on time), and the functional form of these terms 140

is discussed in sections S1 Text and S2 Text of the Supporting Information. 141

Fitting the model 142

The DICE fitting procedure determines the joint posterior distribution for the model 143

parameters using a Metropolis-Hastings Markov Chain Monte Carlo (MCMC) 144

procedure. We describe the procedure starting with the simpler uncoupled case. In the 145

uncoupled scenario infection can only happen within each HHS region, since there is no 146

interaction between different spatial regions. The uncoupled regions are run sequentially 147

and posterior distributions for the model parameters and forecasts are obtained. For 148

each region, we simulate three MCMC chains each with 107 steps and a burn time of 149

2× 106 steps. The smallest effective sample size that we report for any parameter is 150

greater than 100. After sampling from the individual posterior densities of each region, 151

we calculate our national forecast as the weighted sum of the regional profiles with the 152

weights given by the relative populations of the regions. It is also possible to fit the 153

national % ILI profile directly, without using any information from the ten HHS regions. 154

In the coupled scenario, the MCMC procedure uses Eqs. (2-4) along with Eq. (10) 155

to simultaneously generate candidate profiles for the coupled ten HHS regions. The 156

log-likelihood of the ten regional profiles is calculated and combined with the proper 157

relative weights to generate a national log-likelihood which is minimized. It is important 158

to note that in the coupled scenario we only optimize the national log-likelihood, and 159

not the individual region-level likelihoods. We also tried fitting the coupled model to 160

the regional log-likelihoods, however the results of the fits were not as accurate as the 161

ones obtained when the national likelihood is optimized (see discussion). 162
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Specific Model variants 163

We ran the model using four variants for the force of infection: (i) The force of infection 164

depends on specific humidity only (H), (ii) school vacation only (V), (iii) both (HV) or, 165

(iv) none (F). 166

Coupling HHS regions 167

We ran the model with and without connectivity between the different regions. 168

Informative priors 169

In the previous section we described a traditional MCMC procedure which uses an 170

uninformed prior (UP), that uses a log uniform distribution for the parameters. Early 171

in the flu season, before the ILI curve takes off, this fitting can result in peak intensities 172

that are significantly larger/lower than expected (based on historic values) and/or peak 173

weeks that are inconsistent with past values. One way to constrain the predictions, 174

which has been used by others [15,16] is to use an informed prior (IP). We have used 175

each of the models supported by DICE to fit all previous seasons (starting from 2004) 176

at both the national and regional levels. Using the history of the MCMC chain we then 177

built a posterior distribution for each parameter and fitted it to a 1-D Gaussian. (This 178

assumes that the model parameters are independent.) By repeating this procedure for 179

each season and each model, we create a database of prior knowledge which can be used 180

to inform the MCMC procedure for the current season. Specifically, at each week during 181

the CDC challenge, and for each of the ten HHS regions and the national, we find the 182

past season that is most similar to the current data (based on the value of the Pearson 183

correlation) and use the posterior distributions of that season as an informed prior for 184

the current season. Each region/national has its own informed prior which is allowed to 185

change from one epidemic week to the other. To allow for an informed prior that is less 186

restrictive, we also use a heated informed prior, where the Gaussian temperature is 187

increased by an order of magnitude. In the Results section we refer to the fitting 188

procedures that use a prior as IP and HIP for informed prior and heated informed prior, 189

respectively. Informed priors were used only with the uncoupled SIR Eqs. In a future 190

study we plan to explore how they would extend to the coupled MCMC procedure. 191
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Using discounted historical data for not-yet-seen future time points 192

In addition to informative priors, we also used data augmentation to make maximum 193

use of prior data within a mechanistic framework. For each week during the challenge, 194

we augment the available ILI data using average historic data or using the season that is 195

most similar to the current season. We shifted from the historic data to the most 196

similar data at EW 6 when it was clear that the current season is very different from 197

the historic average. The augmented data was also y-shifted so that it matched the last 198

data point for the current season and it is given a lower weight in the MCMC procedure, 199

determined by the value of the Pearson correlation between the available data and the 200

data used for augmentation. The augmented data procedure was used for both the 201

coupled and uncoupled fits and also using a heated augmented procedure (where the 202

log-likelihood is again heated by a factor of ten). In what follows, we refer to the fitting 203

procedures that use data augmentation and heated data augmentation as DA and HDA, 204

respectively. 205

From model predictions to forecasts 206

During each of the CDC weeks DICE was used to fit both the regional and the national 207

curves using the combinations of coupling, priors and models described in the previous 208

subsections. The uncoupled procedure (and direct fitting of the National %ILI profile) 209

were used throughout the season with all five priors and with the four models for the 210

force of infection leading to: 5× 4 = 20 forecasts. For the coupled procedure we fitted 211

with the following combinations of priors and data augmentation: uninformed prior 212

with no data augmentation, uninformed prior with data augmentation and uninformed 213

prior with heated data augmentation (UP, DA and HDA, respectively), but with all four 214

models for the force of infection, leading to: 3× 4 = 12 forecasts. 215

This total of 32 model-runs were used to make predictions of incidence at both the 216

national and regional levels. The national curve was also fitted directly (without any 217

regional information) using all the models and priors, but these direct results were only 218

used at the end of the season when estimating the performance of each of our 219

procedures. 220

Early in the season we were experimenting with the coupled procedure and we began 221
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to use it as described in the manuscript with the DA and HDA priors on EW 50 and 222

with the UP prior only on EW 9. Hence, some of the coupled results reported in this 223

section were not available in real-time and were generated at the end of the season (but 224

using only the %ILI data that was available in real-time at each week.) 225

Each week a single forecast was selected from these results for each of the ten HHS 226

regions and the national. At the regional level we selected a single forecast from one of 227

the (32) uncoupled or coupled procedures enumerated in the previous paragraph. We 228

first reviewed the results for each region and made a selection which took into account: 229

(1) the historic profile for the region, (2) the quality of the fit (both mean and width), 230

(3) the extent of data adjustments in the past weeks, (4) the lab strain % positive data, 231

and when relevant (5) the impact of upcoming school vacations (particularly the winter 232

break). For the national level we selected either one of the 12 coupled results or the 233

aggregated result obtained as the weighted average of our ten regional selections (with 234

the weights given by the relative population of each region). 235

Results 236

Models selected for forecasts 237

We selected different FOI variants during different weeks. At the regional level, 238

although we selected the most flexible humidity and school vacation assumptions (HV) 239

more often (47.9% 134/280) than the alternatives (Fig 2), we did select humidity-only 240

(H, 47/280 16.8%), school-vacations-only (V, 62/280 22.1%) and fixed transmissibility 241

(F, 37/280 13.2%) models on a number of occasions. For the national model, we only 242

used the aggregated forecast of the regional models on 9/28 (32.1%) occasions. 243

For assumptions about the inferential prior, before the epidemic peaked (EW 06 for 244

the nation) we rarely chose an uninformed prior (UP). Most often we chose the heated 245

data augmentation option (HDA). Early in the season (EW 43-49), when our options 246

did not include the coupled procedure, we chose the informed prior (IP) or heated 247

informed prior (HIP) most often. Once the season had peaked the uninformed prior was 248

selected often both for the national profile and individual regions, we continued to select 249

the data augmentation (DA) and HDA options for the nation well after the season has 250

peaked (EWs 12-14, 16 and 18). 251
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Fig 2. Forecast model choices for force of infection, use of priors, coupling,
and data augmentation; for national and regional estimates by week Left
panel: the selected model for the force of infection: H - specific humidity only, V -
school vacation only, HV - both specific humidity and school vacation and F - fixed
value for the force of infection, AG - national aggregated from the regional choices
(weighted average of the direct uncoupled fits to each of the ten HHS regions). Middle
panel: selected model for the prior distribution. UP - uninformed prior, IP - informed
prior, HIP - heated informed prior, DA - data augmentation, and HDA - heated data
augmentation. Right panel: selected spatial coupling model: UC - uncoupled, C -
coupled. For the national AG indicates aggregate where the national forecast .

For assumptions about coupling, once the coupled procedure was available, it was 252

often selected for both the national profile and most regions (2, right panel), with the 253

exception of regions 1 and 8. We found that the coupled procedure used regions 8 (and 254

to a lesser extent 1) as a way to reduce the error to the national fit, at the cost of 255

producing poor fits to these regions, hence their coupled results were rarely selected for 256

submission. The aggregate option for the national selection was only selected at EWs 5 257

and 6, the weeks prior to the peak and the peak week itself. For these two weeks our 258

errors for both season targets and 1− 4 week forecasts were large (see Figure 4 below). 259

Accuracy of forecasts 260

At both the national and regional levels, the accuracy of the weekly %-ILI forecasts 261

decreased as the lead time increased. The %ILI 1-4 week forecast and observed data for 262

the national data and the three largest HHS regions (Figure 1): 4, 5, and 9 is shown in 263

Figure 3. Early in the season, up to and including EW01, the national curve is nearly 264

identical to the historic national curve, whereas our mechanistic forecasts consistently 265
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Fig 3. Comparison of submitted forecast and final CDC-reported % of
clinic visits that were for ILI for the continental USA and three selected
regions. Final season CDC reported (black line), reported during the season (black
circles) and predicted %ILI (colored bands) as a function of epidemic week at the
national (A) and three of the ten regional levels (B to D). In each panel, the four
colored shaded bands denote our one (red), two (blue), three (green) and four (light
purple) week-ahead predictions made at each week during the challenge. The width of
the colored bands represent our 5-95% prediction intervals as submitted for the forecast.
The gray line denotes the historic average. For similar plots for the other seven HHS
regions see S1 Fig.

overestimated incidence. After EW01, our national predictions improve significantly, 266

while the historic curve no longer follows the 2016-2017 national profile. Similarly, for 267

the three largest HHS regions, the historic curve is similar to the 2016-2017 profile until 268

EW 01, at which point they start to deviate and our forecasts become more accurate. 269

Averaged over the entire season, our selected national forecast does better than the 270

historic NULL model only for the 1-week prediction window (Figure 4). However, for 271

the largest HHS region (Region 4) we perform better for all four prediction horizons, for 272

region 9 (bottom left panel) for the first three, and for region 5 (bottom right panel) for 273

the first two. 274

Although our forecasts gave potentially useful information over and above the null 275

model for the timing of the peak week (Figure 4) and for the amplitude of peak 276
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Fig 4. A Weekly Mean absolute error for the n-week ahead forecast (1 week, green; 2
weeks, purple; 3 weeks, orange; and 4 weeks, blue) and the historic NULL model (black).
The average mean absolute error of each forecast horizon, and of the historic prediction,
is shown in the legend. Forecast and actual onset week (B, peak week (c and peak
intensity (D during each week of the CDC challenge: selected forecast (red line); 95%
prediction interval (red shading); observed value (gray horizontal line); historic mean
(horizontal dashed line); and historic median (horizontal dotted line). The vertical gray
line shows the observed peak week (A, C and D) and the observed onset time (B).

intensity, the peak week of EW 6 was the same as the historical mean. Between EW50 277

(eight weeks before the season peaks) and EW 4 (two weeks before the season peak) our 278

forecast correctly predicted to within ±1 week of the observed peak week (EW 6). One 279

week before the season peaks, and at the peak week (EWs 5 and 6), our model forecast 280

has an error of two weeks. 281

Forecasts based on the mechanistic model performed better than the historic null 282

model for the peak intensity (Figure 4 A/B/C/D). Two weeks before the peak week 283
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(and three weeks early in the season) we start predicting the correct peak intensity of 284

5.1% (to within ±0.5%). The mean and median historic values are significantly lower ( 285

4.4% and 4.1% respectively) and outside the ±0.5% range. Our forecast performance for 286

intensity appears to drop off at the end of the season. However, this is an artifact of the 287

forecasting work flow. Once the peak had clearly passed, the final model was selected for 288

reasons other than the peak intensity and the observed peak intensity was submitted. 289

Selected forecasts based on the mechanistic model did not accurately predict onset. 290

Both the mean of onset (EW 51) and median (EW 50) historic values are within a week 291

of the observed 2016/17 onset week (EW 50). However, our model was unable to 292

properly predict the onset until it happens. As with peak values, once onset has been 293

observed in the data, we use the observed value in our formal submission, which is not 294

reflected in onset values from the chosen model. 295

Retrospective analyses of model forecasting ability 296

Once the challenge was over, we examined retrospectively the performance of all 297

mechanistic model variants over the course of all seasons in the historical database and 298

separately for the 2016-17 season. To assess the quality of all the near-term forecasts 299

(1− 4 weeks) from the different models and assumptions about priors, we show in 300

Figure 5 their weekly CDC score (see Methods), for the 4 different forecast lead times 301

(1-, 2-, 3- and 4- weeks ahead), for the prediction of the National %ILI intensity. 302

Coupled models were more accurate than non-coupled models for the 2016-17 season 303

and for historical seasons for all 4 lead times. 304

The performance of mechanistic models was comparable to that of the historical 305

average null model at the beginning and end of the season. However, in the middle of 306

the season when there is greater variation in the historical data, the performance of the 307

best mechanistic model variants was substantially better than that of the historical 308

average model. 309

For predicting ILI incidence for the 2016-17 season, which followed similar trend to 310

the historical average, coupled models that used data augmentation were more accurate 311

than coupled models that did not use data augmentation. However, on average for 312

historical seasons, coupled models that did not use augmented data were more accurate 313

than those that did. Also, on average for historical seasons, coupled models that 314

included humidity were more accurate than those that did not (see dark banding in 315
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Fig 5. Weekly CDC score for the 1 to 4 week forward national %ILI forecast. Left
column: 2016-2017 season. Right column: averages over seven flu seasons, 2010-2016. In
the method/model labels (y-axis): D- direct, C-coupled, and aggregate, H, V, HV and F
denote the four models for the force of infection: Humidity only, vacation only, both
and fixed. The prior models are: uniform prior (UP), informed prior (IP), heated
informed prior (HIP), data augmentation (DA), and heated data augmentation (HDA).
Selected (only available for the 2016-2017 season), is what we submitted each week and
the NULL model is the historic average. The vertical dashed black line, in the left
panels, denotes the national season peak week for the 2016-2017 season.
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upper portion of charts on the right hand side of Figure 5). 316

We examined the performance of the different model variants for individual regions 317

for the near-term forecasting of %-ILI (Figures S2 Fig and S3 Fig). Again, the coupled 318

models with uninformative prior outperformed other model variants. Although for some 319

regions, the improvement in forecast score for the uninformative prior variants over 320

other coupled variants was less pronounced (Regions 1 and 7), these models never 321

appeared to be inferior to the other variants. 322

In a similar way, we examined the forecast accuracy of different mechanistic model 323

variants in forecasting season-level targets: onset, peak time and peak intensity for the 324

2016-17 season and on average across all seasons (6). Again, for all three targets during 325

2016-17, the coupled uninformative model variant was at least as good as other coupled 326

options and better than the non-coupled variants. We note that in the latter part of the 327

season, after the single observed onset and peak had passed, results from a single season 328

do not contain much information about model performance. However, the performance 329

of the coupled uninformative prior model was on average better than other model 330

variants across the historical data and different epidemic weeks for all three targets, 331

other than one exception. From EW1 onwards for peak intensity, uncoupled heated 332

augmented prior variants performed better than did coupled uninformative prior model 333

variants. 334

Discussion 335

In this study, we have described our participation in a prospective forecasting challenge. 336

Although we drew on results from a large set of mechanistic models, our single forecast 337

for each metric was made after choosing between available model results for that metric 338

in that week and was therefore somewhat subjective. We performed poorly at the start 339

of the competition when our mechanistic models consistently over-estimated incidence. 340

However, during the middle phase of the season, our models produced less biased 341

estimates and consistently outperformed non-mechanistic models based on the average 342

of historical data. A systematic testing of model variants using historical data suggests 343

that spatially coupled models are systematically better than historical null models 344

during the middle of the season and are not significantly worse even at the start of the 345
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Fig 6. As in Figure 5 but for the seasonal targets: onset week (top), peak week
(middle) and peak intensity (bottom). Left column: 2016-2017 season, right column:
averaged over seven seasons, 2010-2016. For the 2016-2017 season, the coupled
procedure with data augmentation correctly predicts onset week and peak week from
the start of the CDC challenge. Peak intensity is predicted best with a coupled
uninformed prior. When averaged over seven seasons (right column) the coupled
uninformed prior does best for all three season targets.

season. 346

This study is slightly different from many prior studies of influenza forecasting [17] 347
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in that it describes and assesses a subjective choice between multiple mechanistic 348

models as the basis of a prospective forecast, rather than describing the performance of 349

a single model or single ensemble of models used for an entirely objective forecast. 350

Although this could be viewed as a limitation of our work, because individual subjective 351

decisions cannot be reproduced, we suggest that the explicit description of a partially 352

subjective process is a strength. In weather forecasting, there is a long history of 353

evaluating the accuracy of entirely objective forecasts versus partially subjective 354

forecasts [18,19]. Broadly, for each different forecast target and each forecast lead-time, 355

there has been a gradual progression over time such that objective forecasts are 356

becoming more accurate than subjective forecasts. We note also that although we 357

describe the subjective process as it was conducted, we also provide a thorough 358

retrospective assessment of the predictive performance of each model variant. 359

By reflecting on our choices and their performance, we can evaluate the importance 360

of a number of different model features. Our coupled model variants performed much 361

better than uncoupled variants consistently across the 2016-17 season, for different 362

targets and when evaluated using the historical data. This prospective study supports 363

recent retrospective results suggesting that influenza forecasts can be more accurate if 364

they explicitly represent spatial structure [20,21]. Given that the model structure we 365

used to represent space was relatively coarse [12], further work is warranted to test how 366

forecast accuracy at larger spatial scales can be improved by models that include 367

iteratively finer spatial resolution. 368

In submitting forecasts based on uninformed mechanistic priors using an uncoupled 369

model at the start of the season, we failed to learn lessons that have been present in the 370

influenza forecasting literature for some time [17]. Historical variance is low during the 371

start of the season and the growth pattern is not exponential. Therefore, it would be 372

reasonable to forecast early exponential growth only in the most exceptional of 373

circumstance, such as during the early days of a pandemic. Model solutions that are 374

anchored to the historical average in some way, such by the use of augmented data for 375

not-yet-seen time points, are likely to perform better. 376

Models that included humidity forcing performed better on average in our analysis 377

of all historical data than equivalent models that did not include those terms, especially 378

for the forecasting of ILI 1- to 4-weeks ahead [22]. However, we did not see similar 379
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support for the inclusion of school vacation terms improving accuracy, which has been 380

suggested in a retrospective forecasting study at smaller spatial scales (by this 381

group) [23]. The lack of support for school vacations in the present study could indicate 382

that the prior work was under-powered or that sampling and then averaging of school 383

vacation data across large spatial scales degrades its contribution to forecasts. 384

We found the experience of participating in a prospective forecasting challenge to be 385

different to that of a retrospective modeling study. The feedback in model accuracy was 386

much faster and the need for statistically robust measures of model likelihood or 387

parsimony less obvious. We encourage the use of forecasting challenges for other 388

infectious disease systems as a focus for better understanding of underlying dynamics in 389

addition to any actionable information arising from the forecasts themselves. 390
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Supporting information 400

S1 Text Details of the parametric dependence of the force of infection on 401

specific humidity 402

Eq. 11 allows the transmission rate to depend on time using three terms. The first 403

time dependent term, F1(t), allows for a dependence of the transmission rate on 404

specific-humidity. In temperate regions specific humidity has a seasonal oscillation with 405

a minimum in the winter and a maximum in the summer. We follow Shaman et al. [24] 406

and relate the local SH, qj(t), to the reproduction number as: 407

βej (t) =
R0
j

Tg
· F1(t) = R0 × [1 + ∆R · e−a·qj(t)] (12)

In the above equation, and unlike the work published by others, the values of the 408

parameters a and ∆R are fitted. The effect of specific humidity can be combined with 409

that of school vacation which is discussed in the following sub-section. 410

S2 Text Details of the parametric dependence of the force of infection on 411

school vacation schedule 412

The second term in Eq. 11 allows the transmission rate to depend on the weekly 413

school vacation schedule (pj(t)) and we implement is as: 414

βej (t) =
R0
j

Tg
· F2(t) = R0 × [1− α · pj(t)] (13)

DICE fits the effect of school closure by optimizing the parameter α, which is in the 415

range 0− 1. Larger values of α indicate a more significant lowering of Re as a result of 416

planned school vacations. Conversely small values of α indicate that the school vacation 417

schedule is not an important factor in determining the ILI profile. The effect of school 418

vacation can be combined with that of specific humidity, i.e. βej (t) =
R0

j

Tg
· F1(t) · F2(t). 419

S1 Fig. Predicted %ILI as a function of epidemic week for seven of the 420

ten HHS regions. 421

Final season CDC reported (black line), reported during the season (black circles) 422

and predicted %ILI (colored bands) as a function of epidemic week for seven of the ten 423

HHS regions not shown in the main text panel. In each panel the four colored shaded 424
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bands denote our n-week forward prediction (n = 1, 2, 3, 4), and the gray line denotes 425

the historic average. The average relative error (measured with respect to the error of 426

the historic NULL model) is indicated for each of the four prediction horizons in the 427

legend. See main text and 3 for more details.
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S2 Fig. Zoom-able separate file of weekly CDC score for 1− 4 week 429

forward regional forecast averaged over the 2010-2016 seasons. 430

As in the right columns of Figure 5 but for the ten HHS regions. Each columns 431

denotes an HHS region and going down a columns we move from 1 to 2, 3 and 4 weeks 432

forecasts. In the method/model labels (y-axis): UN- uncoupled and C-coupled. H, V, 433

HV and F denote the four models for the force of infection: Humidity only, vacation 434

only, both and fixed. The prior models are: uniform prior (UP), informed prior (IP), 435

heated informed prior (HIP), data augmentation (DA), and heated data augmentation 436

(HDA). Selected, is what we submitted each week and the NULL model is the historic 437

average. For all ten regions, and in agreement with the results for the nation, the 438

coupled procedure performs better than the uncoupled.

439
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S3 Fig. Zoom-able separate file of weekly CDC score for the seasonal 440

targets: onset week, peak week and peak intensity for the ten HHS regions 441

averaged over the 2010-2016 seasons. 442

Top, middle and bottom rows are onset week, peak week and peak intensity. The 443

NULL result is calculated using the historic mean regional profile. For all three targets, 444

and all ten regions, the coupled method does better than the uncoupled with the details 445

of the prior and force of infection models depending on the region.

446
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