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Abstract: We present a deep learning-based method for achieving super-resolution in 

fluorescence microscopy. This data-driven approach does not require any numerical models of 

the imaging process or the estimation of a point spread function, and is solely based on training a 

generative adversarial network, which statistically learns to transform low resolution input 

images into super-resolved ones. Using this method, we super-resolve wide-field images 

acquired with low numerical aperture objective lenses, matching the resolution that is acquired 

using high numerical aperture objectives. We also demonstrate that diffraction-limited confocal 

microscopy images can be transformed by the same framework into super-resolved fluorescence 

images, matching the image resolution acquired with a stimulated emission depletion (STED) 

microscope. The deep network rapidly outputs these super-resolution images, without any 

iterations or parameter search, and even works for types of samples that it was not trained for.   
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Computational super-resolution microscopy techniques in general make use of a priori 

knowledge about the sample and/or the image formation process to enhance the resolution of an 

acquired image. At the heart of the existing super-resolution methods
1–3

,  numerical models are 

utilized to simulate the imaging process, including, for example, an estimation of the point 

spread function (PSF) of the imaging system, its spatial sampling rate and/or sensor-specific 

noise patterns. Fluorescence imaging process is in general more challenging to model and take 

into account e.g., spatially-varying optical aberrations, the chemical environment of the labeled 

sample and the optical properties of the specific mounting media and the fluorophores that are 

used
4–7

. This image modeling related challenge, in turn, leads to formulation of forward models 

with different simplifying assumptions. In general, more accurate models yield higher quality 

results, often with a trade-off of exhaustive parameter search and computational cost.  

Here we present a deep learning-based framework to achieve super-resolution in fluorescence 

microscopy without the need for making any assumptions on or precise modeling of the image 

formation process. Instead, we train a deep neural network using a Generative Adversarial 

Network (GAN)
8
 model to transform an acquired low-resolution image into a high-resolution 

one. Once the deep network is trained (see the Methods section), it remains fixed and can be 

used to rapidly output batches of high resolution images, in e.g., 0.4 sec for an image size of 

1024×1024 pixels using a single Graphics Processing Unit (GPU). The network inference is non-

iterative and does not require a manual parameter search to optimize its algorithmic performance. 

The deep network can also be generalized to different types of samples that were not part of the 

training process.  

We demonstrate the success of this deep learning-based approach by super-resolving the raw 

images captured by a widefield fluorescence microscope and a confocal microscope. In the 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 27, 2018. ; https://doi.org/10.1101/309641doi: bioRxiv preprint 

https://doi.org/10.1101/309641


3 

 

widefield imaging case, we transform the images acquired using a 10×/0.4NA objective lens into 

super-resolved images that match the images of the same samples acquired with a 20×/0.75NA 

objective lens. In the second case, we transform diffraction-limited confocal microscopy
9
 images 

to match the resolution of the images that were acquired using a STED microscope
10,11

, showing 

a PSF width that is improved from ~290 nm down to ~110 nm (i.e., 2.6× improvement). This 

deep learning-based fluorescence super-resolution framework improves both the field-of-view 

and throughput of modern fluorescence microscopy tools and can be used to transform low-

resolution and wide-field images acquired using various imaging hardware into higher resolution 

ones. 

Recently, a number of studies have used deep learning-based approaches to advance optical 

microscopy techniques, including bright-field microscopy
12,13

, holographic phase microscopy
14–

16
, and fluorescence microscopy.

17–20
 Some of these earlier results on fluorescence microscopy 

have focused on faster image acquisition or inference for single molecule localization 

microscopy
17–19

, or resolution enhancement by learning a sample specific imaging process 

through simulations
20

.  Unlike these contributions, our presented technique makes no prior 

assumptions regarding the imaging process, such as an approximate model of the point spread 

function
17–20

, and does not depend on an additional computational technique to generate the 

desired target images, using e.g., PSF-fitting to a sparse set of samples.
17–19

 Rather than 

localizing specific filamentous structures of a sample, here we demonstrate the generalization of 

our approach by super-resolving various sub-cellular structures, such as nuclei, microtubules, F-

actin and mitochondria. We further demonstrate that the presented framework can be generalized 

to multiple microscopic imaging modalities, including cross-modality image transformations 

(e.g., confocal to STED) as we report in the Results section. 
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RESULTS 

Super-resolution of fluorescently-labeled intracellular structures 

We initially demonstrated the super-resolution capability of the presented approach by imaging 

bovine pulmonary artery endothelial cell (BPAEC) structures; the raw images, used as input to 

the network, were acquired using a 10×/0.4NA objective lens and the results of the network were 

compared against the ground truth images, which were captured using a 20×/0.75NA objective 

lens. An example of the network input image is shown in Fig 1(a), where the field-of-view (FOV) 

of the 10× and 20× objectives are also labeled. Figs. 1(b, e) show some zoomed-in regions-of-

interest (ROI) revealing further details of a cell’s F-actin and microtubules. A pretrained deep 

neural network is applied to each color channel of these input images (10×/0.4NA), outputting 

the resolution-enhanced images shown in Figs. 1(c, f), where various features of F-actin, 

microtubules, and nuclei are clearly resolved at the network output image, providing a very good 

agreement to the ground truth images (20×/0.75NA) shown in Figs. 1(d, g). Note that all the 

network output images shown in this work were blindly generated by the deep network, i.e., the 

input images were not previously seen by the network. 

Next, we compared the results of deep learning-based super-resolution against a widely-used 

image deconvolution method, i.e., the Lucy-Richardson deconvolution.
21,22

 For this, we used an 

estimated model of the PSF of the imaging system, which is required by the Lucy-Richardson 

deconvolution algorithm to approximate the forward model of the image blur. Following its 

parameter optimization (see the Methods Section), the Lucy-Richardson deconvolution 

algorithm, as expected, demonstrated resolution improvements compared to the input images, as 

shown in Fig. 2(a-3), (b-3), and (c-3); however compared to deep learning results (Fig. 2(a-2), 

(b-2), and (c-2)), the improvements observed with Lucy-Richardson deconvolution are modest, 
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despite the fact that it used parameter search/optimization and a priori knowledge on the PSF of 

the imaging system. We also noticed that the deep network output image shows sharper details 

compared to the ground truth image, especially for the F-actin structures (e.g., Fig. 2(c)). This 

result is in-line with the fact that all the images were captured by finding the autofocusing plane 

within the sample using the FITC channel (see e.g., Fig. 2(b-4)), and therefore the Texas-Red 

channel can remain slightly out-of-focus due to the thickness of the cells. This means the shallow 

depth-of-field (DOF) of a 20×/0.75NA objective lens (~1.4 µm) might have caused some 

blurring in the F-actin structures (Fig. 2(c-4)). This out-of-focus imaging of different color 

channels is not impacting the network output image as much since the input image to the 

network was captured with a much larger DOF (~5.1 µm), using a 10×/0.4NA objectives lens. 

Therefore, in addition to an increased FOV resulting from a low NA input image, the network 

output image is also benefiting from an increased DOF, helping to reveal some finer features that 

might be out-of-focus in different color channels using a high NA objective lens.  

Next, we tested the generalization of our pre-trained network model in improving image 

resolution on new types of samples that were not present in the training phase. Figs. 3(a-c) 

demonstrate the resolution enhancement of mitochondria labeled with MitoTracker Red 

CMXRos by using a deep neural network that was trained with only the images of F-actin 

labeled with Texas Red-X phalloidin. Even though such mitochondrial structures were not part 

of the network’s training set, the deep network was able to correctly infer these structures in its 

blind inference. Another example is shown in Figs. 3(d-f): the F-actin structure labeled with 

Alexa Fluor 488 phalloidin is super-resolved by a neural network that was pre-trained with only 

the images of microtubules labeled with BODIPY FL. These results highlight that our neural 

network does not overfit to a specific type of structure or specimen, but learns to generalize the 
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transformation between two different fluorescence imaging conditions, which will be further 

discussed in the Discussion section. 

Super-resolution from confocal to STED images 

In addition to wide-field fluorescence microscopy, we also applied the presented framework to 

transform confocal microscopy images into images that match the resolution of STED 

microscopy; these results are summarized in Figs. 4 and 5, where 20 nm fluorescent beads with 

645 nm emission wavelength were imaged on the same platform using both a confocal 

microscope and a STED microscope (see the Methods section). After the training phase, the 

neural network, as before, blindly takes an input image (confocal) and outputs a super-resolved 

image that matches the STED image of the same region of interest. Some of the nano-beads in 

our samples were spaced close to each other, within the classical diffraction limit, i.e., under 

~290 nm, as shown in e.g., Fig. 4(d-f), and therefore could not be resolved in the raw confocal 

microscopy images. The neural network super-resolved these closely-spaced nano-particles, 

providing a good match to STED images of the same regions of the sample, see Figs. 4(g, h, i) vs. 

4(j, k, l).  

To further quantify this resolution improvement achieved by the neural network, we measured 

the PSFs arising from the images of single/isolated nano-beads across the sample field-of-view
23

; 

this was repeated for more than 400 individual particles that were tracked in the images of the 

confocal microscope and STED microscope, as well as the network output image (in response to 

the confocal image). The results are summarized in Fig. 5, where the full-width half-maximum 

(FWHM) of the confocal microscope PSF is centered at ~290 nm, roughly corresponding to the 

lateral resolution of a diffraction limited imaging system at an emission wavelength of 645 nm. 

As shown in Fig. 5, PSF FWHM distribution of the network output provides a very good match 
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to the PSF results of the STED system, with a mean FWHM of ~110 nm vs. ~120 nm, 

respectively.  

 

DISCUSSION 

The generalized point spread function of an imaging system, which accounts for the finite 

aperture of the optical system, as well as its aberrations, noise and optical diffraction, can be 

considered as a probability density function, ( ),p ζ η , where ζ, η denote the spatial coordinates. 

( ),p ζ η  represents the probability of photons emitted from an ideal point source on the sample 

to arrive at a certain displacement on the detector plane. Therefore, the super-resolution task that 

the presented deep learning framework has been learning is to transform the input data 

distribution ( )( ),LRX p ζ η  into a high-resolution output, ( )( ),HRY p ζ η , where the former is 

created by a lower resolution (LR) imaging system and the latter represents a higher resolution 

(HR) imaging system. The network architecture that we have used for training, i.e., GANs
8
 have 

been proven to be extremely effective in learning such distribution transformations ( X Y→ ) 

without any prior information on or modelling of the image formation process or its 

parameters.
24,25

 Unlike other statistical super-resolution methods, the presented approach is data-

driven, and the deep network is trying to find a distribution generated by real microscopic 

imaging systems that it was trained with. This feature makes the network more resilient to poor 

image SNR (signal-to-noise ratio) and related challenges, and the presented method is not 

susceptible to aberrations of the imaging parameters, such as the PSF
5
 and sensor-specific noise 

patterns, which are required for any standard deconvolution and localization method
26

. A similar 
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resilience to spatial and spectral aberrations of an imaging system has also been demonstrated for 

bright-field microscopic imaging using a neural network.
12

  

The capability of transforming a fluorescence microscopic image into a higher resolution one not 

only shortens the image acquisition time because of the increased FOV of low NA systems, but 

also enables new opportunities for imaging objects that are vulnerable to photo-bleaching or 

photo-toxicity.
27,28

 For example, in the experiments reported in Figs. 4 and 5, the required 

excitation power for STED microscopy was 10-fold stronger than that of confocal microscopy, 

as detailed in the Methods section. Furthermore, the depletion beam of STED microscopy is 

typically orders of magnitude higher than its excitation beam, which sets practical challenges for 

some biomedical imaging applications.
28–30

 Most of these issues become less pronounced when 

using a confocal microscopy system, which is also quite simpler in its hardware compared to a 

STED microscope.
31

 Using the presented deep learning-based approach, the diffraction induced 

resolution gap between a STED image and a confocal microscope image can be closed, 

achieving super-resolution microscopy using relatively simpler and more cost-effective imaging 

systems, also reducing photo-toxicity and photo-bleaching.  

Another important feature of the deep network-based super-resolution approach is that it can 

resolve features over an extended DOF because a low NA objective is used to acquire the input 

image; see e.g., Fig. 2(c) and Fig. 3(e, f) for the F-actin structures. A similar observation was 

also made for deep learning-enhanced bright-field microscopy images reported earlier.
13

 This 

extended DOF is also favorable in terms of photo-damage to the sample, by eliminating the need 

for a fine axial scan within the sample volume, which might reduce the overall light delivered to 

the sample, while making the imaging process more efficient.  
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A common concern for computational approaches that enhance image resolution is the potential 

emergence of spatial artifacts which may degrade the image quality, such as the Gibbs 

phenomenon in Lucy-Richardson deconvolution.
32

 To explore this, we randomly selected an 

example in the test image dataset, and quantified the artifacts of the network output image using 

the NanoJ-Squirrel Plugin
5
; this analysis revealed that the network output image does not 

generate  noticeable super-resolution artifacts and in fact has the same level of spatial mismatch 

error that the ground truth HR image has with respect to the LR input image of the same sample 

(see Supplementary Fig. S1 and Supplementary Note 1). This conclusion is further confirmed 

by Supplementary Fig. S1(d), which overlays the network output image and the ground truth 

image, revealing no obvious feature mismatch between the two. The same conclusion remained 

consistent for other test images as well. Since our deep network models are trained within the 

GAN framework, potential image artifacts and hallucinations of the generative network were 

continuously being suppressed and accordingly penalized by the discriminative model during the 

training phase, which helped the final generative network to be robust and realistic in its super-

resolution inference. Moreover, in case feature hallucinations are observed in e.g., the images of 

new types of samples, these can be additionally penalized in the loss function as they are 

discovered, and the network can be further regularized to avoid such artifacts from repeating. 

 

METHODS 

Wide-field fluorescence microscopic image acquisition 

The fluorescence microscopic images (Figs. 1 and 2) were captured by scanning a microscope 

slide containing multi-labeled bovine pulmonary artery endothelial cells (BPAEC) (FluoCells 
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Prepared Slide #2, Thermo Fisher Scientific) on a standard inverted microscope which is 

equipped with a motorized stage (IX83, Olympus Life Science). The low-resolution (LR) and 

high-resolution (HR) images were acquired using 10×/0.4NA (UPLSAPO10X2, Olympus Life 

Science) and 20×/0.75NA (UPLSAPO20X, Olympus Life Science) objective lenses, respectively. 

Three bandpass optical filter sets were used to image the three different labelled cell structures 

and organelles: Texas Red for F-actin (OSFI3-TXRED-4040C, EX562/40, EM624/40, DM593, 

Semrock), FITC for microtubules (OSFI3-FITC-2024B, EX485/20, EM522/24, DM506, 

Semrock), and DAPI for nuclei (OSFI3-DAPI-5060C, EX377/50, EM447/60, DM409, Semrock). 

The imaging experiments were controlled by MetaMorph microscope automation software 

(Molecular Devices), which performed translational scanning and auto-focusing at each position 

of the stage. The auto-focusing was performed on the FITC channel, and the DAPI and Texas 

Red channels were both exposed at the same plane as FITC. With a 130 W fluorescence light 

source set to 25% output power (U-HGLGPS, Olympus Life Science), the exposure time for 

each channel was set to: Texas Red 350 ms (10×) and 150 ms (20×), FITC 800 ms (10×) and 400 

ms (20×), DAPI 60 ms (10×) and 50 ms (20×). The images were recorded by a monochrome 

scientific CMOS camera (ORCA-flash4.0 v2, Hamamatsu Photonics K.K.) and saved as 16-bit 

grayscale images with regards to each optical filter set. The additional test images (Fig. 3) are 

captured using the same setup with FluoCells Prepared Slide #1 (Thermo Fisher Scientific), with 

the filter setting of Texas Red for mitochondria, and FITC for F-actin. 

Confocal and STED image acquisition 

The samples for confocal and STED experiments (Figs. 4, 5) were prepared with 20 nm 

fluorescent nano-beads (FluoSpheres Carboxylate-Modified Microspheres, crimson fluorescent 

(625/645), 2% solids, Thermo Fisher Scientific) that were diluted 100 times with methanol and 
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sonicated for 3×10 minutes, and then mounted with antifade reagents (ProLong Diamond, 

Thermo Fisher Scientific) on a standard glass slide, followed by placing a 0.17 mm-thick cover 

glass (Carl Zeiss Microscopy). The confocal and STED imaging experiments were performed on 

a laser scanning confocal and STED microscope (TCS SP8, controlled by Leica Application 

Suite X, Leica Microsystems) with a 100×/1.4NA oil immersion objective lens (HC PL APO 

100x/1.4 OIL CS2, Leica Microsystems).  The scanning for each FOV was performed by a 

resonant scanner working at 8000 Hz with 16 times line average and 30 times frame average. 

The fluorescent nano-beads were excited with a laser beam at 633 nm wavelength. The emission 

signal was captured with a hybrid photodetector (HyD SMD, Leica Microsystems) with 440 V 

active gain through a 645~752 nm bandpass filter. The excitation laser power was set to 5% for 

confocal imaging, and 50% for STED imaging, so that the signal intensities remained similar 

while keeping the same scanning speed and gain voltage. A depletion beam of 775 nm was also 

applied when capturing STED images with 100% power. The confocal pinhole was set to 1 Airy 

unit (e.g., 168.6 µm for 645 nm emission wavelength and 100× magnification) for both the 

confocal and STED imaging experiments. The scanning step size (i.e., the effective pixel size) 

was ~30.4 nm to ensure sufficient sampling rate. All the images were exported and saved as 8-bit 

grayscale images. 

Image pre-processing 

For widefield images (Figs. 1, 2, and 3), a low intensity threshold was applied to subtract 

background noise and auto-fluorescence, as a common practice in fluorescence microscopy. The 

threshold value was estimated from the mean intensity value of a region without objects, which 

is ~300 out of 65535 in our 16-bit images. The LR images are then linearly interpolated two 

times to match the effective pixel size of the HR images. Accurate registration of the 
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corresponding LR and HR training image pairs is of crucial importance since the objective 

function of our network consists of adversarial loss and pixel-wise loss. We employed a two-step 

registration workflow to achieve the needed registration with sub-pixel level accuracy (see 

Supplementary Fig. S2). First, the fields-of-view of LR and HR images are digitally stitched in 

a MATLAB script interfaced with Fiji
33

 Grid/Collection stitching plugin
34

 through MIJ
35

, and 

matched by fitting their normalized cross-correlation map to a 2D Gaussian function and finding 

the peak location (see Supplementary Note 2). However, due to the optical distortion and color 

aberration of different objective lenses, the local features might still not be exactly matched. To 

address this, the globally matched images are fed into a pyramidal elastic registration algorithm 

to achieve sub-pixel level matching accuracy, which is an iterative version of the registration 

module in Fiji Plugin NanoJ, with a shrinking block size (see Supplementary Fig. S2).
5,12,24,33

 

This registration step starts with a block size of 256×256 and stops at a block size of 64×64, 

while shrinking the block size by 1.2 times every 5 iterations with a shift tolerance of 0.2 pixels. 

Due to the slightly different placement and the distortion of the optical filter sets, we performed 

the pyramidal elastic registration for each fluorescence channel independently. At the last step, 

the precisely registered images were cropped 10 pixels on each side to avoid registration artifacts, 

and converted to single-precision floating data type and scaled to a dynamic range of 0~255. 

This scaling step is not mandatory but creates convenience for fine tuning of hyperparameters 

when working with images from different microscopes/sources. 

For confocal and STED images (Figs. 4, 5) which were scanned in sequence on the same 

platform, only a drift correction step was required, which was calculated from the 2D Gaussian 

fit of the cross-correlation map. The drift was found to be ~10 nm for each scanning FOV 

between the confocal and STED images. We did not perform thresholding to this dataset for the 
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network training. However, after the test images were enhanced by the network, we subtracted a 

constant value (calculated by taking the mean value of an empty FOV) from the confocal 

(network input), the super-resolved (network output), and the STED (ground truth) images, 

respectively, for better visualization and comparison of the images. The total number of images 

used for training, validation and blind testing of each network are summarized in Supplementary 

Table 1.  

Generative adversarial network structure and training 

In this work, our deep neural network was trained following the generative adversarial network 

(GAN) framework
8
, which has two sub-networks being trained simultaneously, a generative 

model which enhances the input LR image, and a discriminative model which returns an 

adversarial loss to the resolution-enhanced image, as illustrated in Fig. 6. We designed our 

objective function as the combination of the adversarial loss with two regularization terms: the 

mean square error (MSE), and the structural similarity (SSIM) index
36

. Specifically, we aim to 

minimize: 

 
( ) ( ) ( )( )

( )

( ; ) ( ) MSE ( ), log 1

l 1

SSIM (

(

log

og

), / 2

; ) log ( () )

G D D G x G x G xy

D G

y

Dy G xD

λ ν+ ×

−  

 = − − × + 

= − −

L

L

  (1) 

where x  is the LR input, ( )G x  is the generative model output, ( )D i  is the discriminative model 

prediction of an image (network output or ground truth image), and y  is the HR image used as 

ground truth. The structural similarity index is defined as:  

 
1 , 2

2 2 2 2

1 2

(2 )(2 )
SSIM( , )

( )( )

x y x y

x y x y

c c
x y

c c

µ µ σ

µ µ σ σ

+ +
=

+ + + +
  (2) 
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where ,x yµ µ  are the averages of ,x y ; 2 2,x yσ σ  are the variances of ,x y ; 
,x yσ  is the covariance of 

x and y; and 1 2,c c  are the variables used to stabilize the division with a small denominator. An 

SSIM value of 1.0 refers to identical images. When training with the wide-field fluorescence 

images, the regularization constants λ  and ν  were set to accommodate the MSE loss and the 

SSIM loss to be ~1% of the combined generative model loss ( ; )G DL . When training with the 

confocal-STED image datasets, we kept λ  the same and set ν  to 0. While the adversarial loss 

guides the generative model to map the LR images into HR, the two regularization terms assure 

that the generator output image is established on the input image with matched intensity profile 

and structural features. These two regularization terms also help us stabilize the training schedule 

and smoothen out the spikes on the training loss curve before it reaches equilibrium. For the sub-

network models, we employed a similar network structure as described in Ref. [24].  

Generative Model  

U-net is a CNN (convolutional neural network) architecture, which was first proposed for 

medical image segmentation, yielding high performance with very few training datasets.
37

 The 

same network architecture has also been successfully applied in recent image reconstruction and 

virtual staining applications
16,24

. The structure of the generative network used in this work is 

illustrated in Fig. 6, which consists of four down-sampling blocks and four up-sampling blocks. 

Each down-sampling block consists of three residual convolutional blocks, within which it 

performs:  

 { }{ }{ }11 LReLU Conv LReLU Conv LReLU Conv , 1, 2,3,4.kk kx x x k−−
  = + =     

  (3) 
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where kx  represents the output of the k-th down-sampling block, and 0x  is the LR input image. 

{ }Conv  is the convolution operation, [ ]LReLU is the leaky rectified linear unit activation 

function with a slope of 0.1α = , i.e., 

 LReLU( ; ) Max(0, ) Max(0, )x x xα α= − −×   (4) 

The input of each down-sampling block is zero-padded and added to the output of the same 

block. The spatial down-sampling is achieved by an average pooling layer after each down-

sampling block. A convolutional layer lies at the bottom of this U-shape structure that connects 

the down-sampling and up-sampling blocks. 

Each up-sampling block also consists of three convolutional blocks, within which it performs: 

 ( ){ }{ }{ }15LReLU Conv LReLU Conv LReLU Conv Concat , , 1, 2,3,4kk ky x y k−−
   = =    

  (5) 

where ky  represents the output of the k-th up-sampling block, and 0y  is the input of the first up-

sampling block. ( )Concat is the concatenation operation of the down-sampling block output and 

the up-sampling block input on the same level in the U-shape structure. The last layer is another 

convolutional layer that maps the 32 channels into 1 channel that corresponds to a monochrome 

grayscale image. 

Discriminative Model 

As shown in Fig 6, the structure of the discriminative model begins with a convolutional layer, 

which is followed by 5 convolutional blocks, each of which performs the following operation: 

 { }{ }1LReLU Conv LReLU Conv , 1, 2,3, 4,5k kz z k−
 = =      (6) 
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where kz  represents the output of the k-th convolutional block, and 0z  is the input of the first 

convolutional block. The output of the last convolutional block is fed into an average pooling 

layer whose filter shape is the same as the patch size, i.e., H W× . This layer is followed by two 

fully connected layers for dimension reduction. The last layer is a sigmoid activation function 

whose output is the probability of an input image being ground truth, defined as:  

 
1

( )
1 exp( )

D z
z

=
+ −

  (7) 

Network training schedule 

During our training the patch size is set to be 64 64× , with a batch size of 12 on each of the two 

GPUs. Within each iteration, the generative model and the discriminative model are each 

updated once while keeping the other unchanged. Both the generative model and the 

discriminative model were randomly initialized and optimized using the adaptive moment 

estimation (Adam) optimizer
38

 with a starting learning rate of 41 10−×  and 51 10−× , respectively. 

This framework was implemented with TensorFlow framework version 1.7.0
39

 and Python 

version 3.6.4 in Microsoft Windows 10 operating system. The training was performed on a 

consumer grade laptop (EON17-SLX, Origin PC) equipped with dual GeForce GTX1080 

graphic cards (NVDIA) and a Core i7-8700K CPU @ 3.7GHz (Intel). The final model for 

widefield images were selected with the smallest validation loss at around ~50,000
th

 iteration, 

which took ~10 hours to train. The final model for confocal-STED transformation is selected 

with the smallest validation loss at around ~500,000
th

 iteration, which took ~90 hours to train.  

Implementation of Lucy-Richardson deconvolution 
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To make a fair comparison, the lower resolution images were up-sampled 2 times by bilinear 

interpolation before being deconvolved. We used the Born and Wolf PSF model
40,41

, with 

parameters set to match our experimental setup, i.e., NA = 0.4, immersion refractive index = 1.0, 

pixel size = 325 nm. The PSF is generated by an Fiji PSF Generator Plugin
33,42

. We performed 

an exhaustive parameters search by running the Lucy-Richardson algorithm with 1~100 

iterations and damping threshold 0%~10%. The results were visually assessed, with the best one 

obtained at 10 iterations and 0.1% damping threshold (Fig. 2, third column). The deconvolution 

for Texas Red, FITC, and DAPI channels were performed separately, assuming central emission 

wavelengths to be 630 nm, 532nm, and 450 nm, respectively. 

Characterization of the lateral resolution by PSF fitting 

The resolution differences among the network input (confocal), the network output (confocal), 

and the ground truth (STED) images were characterized by fitting their PSFs to a 2D Gaussian 

profile, as shown in Fig. 5. To do so, more than 400 independent bright spots were selected from 

the ground truth STED images and cropped out with the surrounding 19×19-pixel regions, i.e., 

~577×577 nm
2
. The same locations were also projected to the network input and output images, 

followed by cropping of the same image regions as in the ground truth STED images. Each 

cropped region was then fitted to a 2D Gaussian profile. The FWHM values of all these 2D 

profiles were plotted as histograms, shown in Fig. 5. For each category of images, the histogram 

profile within the main peak region is fitted to a 1D Gaussian function (Fig. 5).  
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Figure 1. Deep learning-based super-resolved images of bovine pulmonary artery endothelial 

cells (BPAEC). (a) Network input image acquired with a 10×/0.4NA objective lens. A small ROI 

is zoomed-in and shown in (b) network input, (c) network output, and (d) ground truth 

(20×/0.75NA). (e-g) Further zoom-in on a cell’s F-actin and microtubules, corresponding to each 

image in (d-f). 
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Figure 2. Comparison of deep learning results against Lucy-Richardson image deconvolution.  
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Figure 3. Generalization of a pre-trained neural network model to new types of structures that it 

was not trained for. (a) Network input, (b) network output, and (c) ground truth images show that 

the mitochondria inside a BPAEC can be super-resolved by a neural network that was trained 

with only F-actin images. (d) Network input, (e) network output, and (f) ground truth images 

show that F-actin inside a BPAEC can be super-resolved by a neural network that was trained 

with only microtubule images. 
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Figure 4. Image resolution improvement beyond the diffraction limit: from confocal microscopy 

to STED. (a) A diffraction-limited confocal microscope image is used as input to the network 

and is super-resolved to blindly yield (b) the network output, which is comparable to (c) STED 

image of the same FOV, used as the ground truth. (d-f) show examples of closely spaced nano-

beads that cannot be resolved by confocal microscopy. (h-i) The trained neural network takes (d-

f) as input and resolves the individual beads, very well agreeing with (j-l) STED microscopy 

images. The cross-sectional profiles reported in (d-l) are extracted from the original images. Also 

see Fig. 5 for further quantification of the performance of the deep network on confocal images, 

and its comparison to STED. 
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Figure 5. PSF characterization, before and after the network, and its comparison to STED. We 

extracted more than 400 bright spots from the same locations of the network input (confocal), 

network output (confocal), and the corresponding ground truth (STED) images. Each one of 

these spots was fit to a 2D Gaussian function and the corresponding FWHM distributions are 

shown in each histogram. These results show that the resolution of the network output images is 

significantly improved from ~290 nm (top row: network input using a confocal microscope) 

down to ~110 nm (middle row: network output), which provides a very good fit to the ground 

truth STED images of the same nano-particles, summarized at the bottom row.  
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Figure 6. The training process and the architecture of the generative adversarial network that we 

used for super-resolution. 
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