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ABSTRACT 
The impact of modern technology on genetic epidemiology has been 
significant, with studies comprising millions of individuals assessed 
at tens of millions of genetic variants now becoming common. Stud-
ies on this scale provide logistical and analytic challenges starting 
with the issue of efficiently storing, transmitting, and accessing un-
derlying data. Here we present a binary file format (the BGEN for-
mat) that can store both directly-typed and statistically imputed gen-
otype data, and achieves substantial space savings by data com-
pression and the use of an efficient representation for probabilities. 
We investigate the properties of this format using imputed data from 
the UK BiLEVE study, demonstrating both storage efficiency, and 
fast data loading performance on the order of hundreds of millions of 
imputed genotypes per second. To make using BGEN as easy as 
possible, we provide a detailed specification and a freely available 
reference implementation, and we leverage this by developing addi-
tional tools including an indexing tool (bgenix) and an R package 
(rbgen) that permits loading of BGEN-encoded data into the R statis-
tical programming environment. The UK Biobank is one of a number 
of projects that have used BGEN for release of imputed data, and 
we expect the format to continue to be widely implemented and 
used. 

1 INTRODUCTION  
The need to discover and dissect genetic associations at ever finer 
detail, and advances in the throughput of genotyping and sequenc-
ing technologies has driven rapid increases in the scale of genetic 
epidemiology studies.  Studies incorporating millions of individu-
als with genotypes either directly observed or inferred at tens of 
millions of genetic variants are now becoming common1-3. Data of 
this scale has effectively outgrown the practical limits of first-
generation GWAS data formats4,5 and new tools for storage, com-
putation, and analysis are required.  For example, the UK Biobank 
has released data for almost 500,000 individuals with genotypes at 
over 80 million genetic variants1, requiring storing on the order of 
1x1013 genotypes.  Further, many of these genotypes are imputed 
(probabilistically inferred from directly-typed genotypes using 
population reference panels6,7), necessitating formats that handle 
imputation uncertainty.  Simply storing and accessing these data is 
thus a major challenge. 
 
Recent work has focused on methods to exploit the linkage dise-
quilibrium structure of the human genome to achieve extremely 
high compression rates with efficient access to genotypes8.  These 
approaches are highly promising but do not currently extend to 
imputed genotypes. 
 

Here, we focus on the problem of storing large imputed datasets in 
an efficient way.  We present a binary file format (the BGEN for-
mat) that is designed to meet specific goals.  First, the format 
should be widely applicable - in particular it should be capable of 
storing both directly observed and imputed genotype data, should 
support both unphased genotype and phased haplotype data, and 
should handle common but sometimes awkward cases such as 
multiallelic variants and haploid genotype calls.  Second, the for-
mat should achieve a good balance between storage size and file 
access performance.  Data of this type is often created once but 
read many times in subsequent analyses and therefore we focus 
particularly on the efficiency with which data can be read.  Third, 
since a common use case is to access data on specific variants or 
regions of the genome, the format should be amenable to indexing, 
effectively permitting random access. 
 
Most importantly we aim for the format to be practically useful - 
implying in particular that it is widely implementable.  To aid with 
this, we provide a detailed specification of the format (available at 
http://www.bgenformat.org), a set of supporting tools, and an 
open-source implementation that is suited for incorporation into 
other software.  Support for BGEN is now available in a number of 
packages, including QCTOOL, SNPTEST, PLINK9, BOLT-
LMM10, REGSCAN11, BGENIE1, LDSTORE12, MEGA213, and 
HAIL14 (see URLs). Several major projects including the UK Bi-
obank1, ALSPAC15, The Human Connectome Project and the Ma-
lariaGEN project16 have used the BGEN format for data release. 
Widespread software support for BGEN is thus shortening the path 
from this data to the insights it can provide. 

2 METHODS 
The BGEN format: Conceptually, a BGEN file stores genotype probability 
data for a specified list of samples (with indices 0,…,N-1, say) and a specif-
ic list of variants (with indices 0,…,L-1).  The data for each sample consists 
of the probability of each possible genotype call that the sample might have 
at the variant.  Here, the possible genotypes are determined by the variant 
alleles and by the ploidy of the sample (i.e. the number of alleles of the 
variant that the genome of the sample carries).  The ploidy is considered to 
be known beforehand and is explicitly stored in the file, i.e. BGEN does not 
specifically handle situations where the ploidy might be unknown or uncer-
tain. 
 
To represent these data in a practically useful way, a BGEN file is organ-
ised in a series of data blocks.  We now describe these blocks. 
 
First, a header block is present which stores metadata needed to properly 
process the file, including the number of samples and the number of vari-
ants, and fields describing the low-level detail of the format being used.  
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Additionally, this block can contain arbitrary data as specified by the user 
which may be useful e.g. for data versioning. 
 
Second, a sample identifier block may be present; this lists an identifier for 
each of the N samples contained in the file.  This block is optional; if not 
present samples are treated as anonymous. 
 
The remainder of the file consists of a sequence of variant data blocks, one 
for each of the L variants stored in the file.  Each variant data block con-
tains identifying information about the corresponding variant (e.g. its iden-
tifier, genomic position, and alleles), followed by the genotype probability 
data for the variant. Genotype probability data are encoded in a packed bit-
representation, and are then compressed. We describe the layout of this 
data in subsequent paragraphs. (A simpler version of this data storage, 
termed BGEN v1.1, is also supported and is described fully in the specifi-
cation). 
 
Storage of ploidy and missingness: ploidy for each sample is stored in a 
sequence of N consecutive bytes.  Ploidies from 0 to 63 are supported.  
Additionally, we use a single bit from each of these bytes to indicate that 
genotype data for the corresponding sample is missing. To enable efficient 
processing, we also store the maximum and minimum ploidy across sam-
ples; for example this allows implementations to allocate storage efficiently 
and/or to easily detect the common case where all samples are diploid. 
 
Storage of unphased genotype data: For a variant with K alleles and a 
sample of ploidy P there are 

S = (P+K-1) choose (K-1) 
possible unordered genotype configurations. In BGEN these are conceptu-
ally enumerated as follows.  First, encode each genotype as the tuple of 
counts of alleles 1, 2, …, K carried by that genotype.  (For example, for a 
biallelic variant and a diploid sample, the possible genotypes are (2,0), 
(1,1), (0,2) indicating 2, 1, or 0 copies of the first allele).  Second, enumer-
ate genotypes in the colex order of these tuples - i.e. in lexicographic order 
after reading the tuples right-to-left.  This definition is compatible with the 
ordering employed by other common formats, including VCF17 and GEN4, 
and applies to arbitrary ploidy and allele counts. 
 
Given a sample of ploidy P, let p=(p1,…,pS) be the imputed genotype prob-
abilities for the S possible genotypes, enumerated in colex order as above.  
The vector p sums to one; in other words it lies on the unit (S-1)-simplex 
Δ(S-1).  To reduce the storage requirement for p, we approximate p by an-
other vector in Δ(S-1) that can be encoded using only a specified number of 
binary bits per probability.  Specifically, given a number of bits b, we take 
the closest approximation to p on Δ(S-1) that is of the form q/(2b-1), where 
q=(q1,…,qS) is a vector with integer coordinates in the range 0, …, 2b-1, i.e. 
exactly encodable in b binary digits. An algorithm for finding q was given 
by Bomze et al18.  Given q, we encode the probability data for the sample 
by storing q1,…,qS-1 in consecutive bits of the file, for a total storage of b(S-
1) bits.  The final value qS is not stored, since pS can be inferred as one 
minus the value of the other probabilities. Probabilities for consecutive 
samples are encoded in consecutive bits in the file. 
  
The transformation from p to q introduces rounding error into the stored 
probabilities.  Assuming the probability vector p sums to one, we have the 
error bound |q-p|1 < 1/(2b-1), i.e. the maximum difference between a stored 
probability and the true probability is at most 1/(2b-1).  Thus, the minimum 
number of bits per probability required for a given level of accuracy ε is 
b=ceil(log2(1+1/ε)).  For example, hard-called genotype data can be faith-
fully stored using b=1; while the values b=5, 8, 11, 15, 18 give approxi-
mately one, two, three, four, and five decimal places of accuracy respec-
tively.  (Based on the results below, we recommend using b=8 or above for 
imputed datasets). Unlike schemes that independently round each probabil-
ity to a specified precision independently, the approximate genotype proba-

bilities stored in BGEN always sum to 1, avoiding potentially subtle nu-
merical issues in downstream analyses. 
 
Storage of phased genotype (haplotype) data: Phased data is stored as 
described above, except the approximation takes place for each of the P 
haplotypes carried by the sample.  Data for each of the P haplotypes is 
stored consecutively.  Full details are provided in the specification.  We 
note that, unlike VCF format, BGEN has no mechanism to identify blocks 
of phasing; instead, haplotypes are assumed to be in the same order at each 
variant (i.e. to be globally phased within each chromosome). 
 
Compression: Finally, all genotype data for the variant, including the 
ploidy/missingness bytes and the encoded probability values are com-
pressed using either the zlib (http://zlib.net) or zstandard 
(http://www.zstd.net) compression libraries.  The compressed data is stored 
immediately following the variant identifying data (which is stored uncom-
pressed) and is followed either by next variant data block, or the end of file 
if no further variants are present. 
 
Implementation: To make BGEN widely implementable, we developed 
both a detailed file format reference, and a reference implementation writ-
ten in C++ (see URLs).  This implementation is designed to be easily in-
corporated into other software; in particular it exposes a flexible interface 
that avoids imposing specific storage data structures on the user.  Several 
packages developed by other authors have successfully used this library for 
BGEN support11-13. 
 
Indexing: A design goal of BGEN is to allow indexed access to the com-
pressed data (i.e. to allow efficient access to specific genomic ranges or 
specific variants).  In BGEN, the separation of variant identifying data 
(stored uncompressed) and compressed genotypes makes this particularly 
efficient. We illustrate this by implementing a BGEN index file format, 
based on sqlite3, in the program bgenix (URLs).  This program behaves 
similarly to the popular tabix utility for indexing text files19, and permits 
efficient access to genomic ranges or to variants with specific identifiers. 
 
Interface to R: We illustrate use of the bgen reference library by imple-
menting an R20 package (rbgen) based on the bgen reference implementa-
tion and Rcpp21.  This allows the user to directly load probability data from 
an indexed BGEN file into R without intermediate steps, facilitating a wide 
range of analyses that are available in R. 
 
Performance comparison: We assessed the performance of the BGEN 
format on a dataset of 49,458 samples from the UKBiLEVE study22, imput-
ed into the 1000G Phase 3 reference panel.  We used data from chromo-
some 22, which comprised 9,737 directly-typed variants and 521,675 im-
puted variants.  Data was supplied in gzipped GEN format, with probabili-
ties stored to 3 decimal places.  We re-encoded the data into BGEN format 
with 1, 2, 4, 8, 12, 16, and 20 bits per probability, as well as into the plink 
binary (BED), VCF, and BCF formats.  In this comparison, BGEN formats 
with lower numbers of bits, and BED format lose precision relative to the 
original data.   
 
We compared the performance of two common, simple operations - reading 
the variant identifying data without processing genotypes, and reading all 
the genotype data for each variant into memory without additional pro-
cessing.  For the latter comparison, we used the -read-test option of 
the QCTOOL program to read in all the different data formats.  (A caveat is 
that the QCTOOL implementation of these formats may not be the fastest 
possible - in particular, plink9 has a fast implementation of BED format that 
is likely to outperform the implementation used here.  However, this places 
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all comparisons in a consistent processing framework thus making them 
comparable.)   
 
Both zlib and zstandard compression methods supported by BGEN also 
allow tuning via a compression parameter. We compared both the maxi-
mum compression available with each library (zlib level 9, zstandard level 
21), and an intermediate value chosen to give a reasonable tradeoff between 
file size and compression speed (zlib level 6, zstandard level 17). All per-
formance comparisons were made using a machine included in the Well-
come Centre for Human Genetics compute cluster, with data stored on the 
cluster storage filesystem. The test machine had an Intel Xeon CPU 
clocked at 2.6Ghz, with code compiled using gcc 5.4.0 and avx, sse2, and 
ssse3 instruction sets turned on. All timing measurements were made using 
a single thread of execution, and were run in triplicate, with the best of 
three times reported. 
 
Assessment of file size scaling with number of samples 
To assess scaling of file size with number of samples, we used QCTOOL to 
subsample the 8-bit encoded data to randomly chosen subsets of between 
10 and 31,623 samples. 
 
Downstream effect of loss of precision 
To investigate the potential effect of reduced precision encodings on down-
stream association analyses, we simulated case/control and quantitative 
traits and tested for association as follows.  First, we simulated five binary 
traits with different case/control ratios by independently sampling a pheno-
type for each sample from a Bernoulli distribution, using a success proba-
bility of 10%, 25%, 50%, 75%, or 90%.  Secondly, we simulated 100 quan-
titative traits including 'true' genetic associations as follows.  We grouped 
variants into five minor allele frequency ranges (1-2%, 2-5%, 5-10%, 10-
20%, 20-50%) and three ranges of IMPUTE info score (0.1-0.5, 0.5-0.9, 
0.9-1).  For each of the 100 traits, we randomly picked an allele frequency 
and info score bin uniformly among bins, and randomly chose a trait-
associated variant from within this bin. We drew the variant effect size 
from a Gaussian distribution with mean 0 and standard deviation equal to 
0.04.  We then simulated trait values as trait = gβ + ε, where g is the 
vector of genotypes at the associated SNP, and ε is chosen to make the 
overall trait variance equal to 1, i.e. var(ε)=1-var(gβ).  We tested for asso-
ciation with case/control traits using SNPTEST and with QTL traits using 
BGENIE1.  
 
We also investigated the effects of the encoding on allele frequencies by 
computing the expected allele frequency (i.e. the sum of expected genotype 

dosages divided by twice the number of samples) for each variant under 
each encoding. We compared the computed expected allele frequency with 
the 'true' expectation, computed using the b=16 bit data. 

3 RESULTS 
File size: BGEN formats with <= 20 bits per probability had lower 
file sizes than either GEN format (here compressed using zlib level 
9, 4.3Gb) or plink binary format (uncompressed, 6.2Gb) (Fig 1).  
While the highest precision BGEN file was comparable in size to 
the source data (b=20 bits per probability, 3.7-4.3Gb), comparable 
precision in BGEN is achieved using b=12 bits, here giving 2.8-
3.5Gb, a saving of approximately 60-80% over the source data, 
depending on compression used.  Further decreases in storage size 
can be achieved at the cost of some loss of precision (e.g. 2.3-
2.7Gb at 8 bits per probability, 1.3-1.6Gb at 4 bits per probability).  
We assess the likely impact of loss of precision on downstream 
analyses below.  The zstandard method of compression had con-
sistently improved file sizes relative to zlib in our comparison (Fig 
1), despite broadly similar or improved encoding times. 
 
File reading performance: In our file reading speed test, data for 
each variant in the dataset is parsed and stored in-memory in float-
ing-point form, intended to reflect typical times needed to get data 
to the point of analysis.  Thus overall timings include time for I/O, 
decompression, parsing, and storage in memory, all of which can 
be substantial with data volumes of this scale. BGEN formats, as 
well as plink binary format, achieved much greater performance 
than the GEN-formatted source data (5,081s), reflecting the fact 
that binary-encoded genotypes can be parsed much more efficient-
ly than human-readable representations. Decompression time was 
also noticeable here, with zstandard-compressed files taking 
around 60-80% of the time to read compared to zlib-compressed 
files, making the zstandard-compressed BGEN files the fastest in 
this test. File reading performance was fastest for 8- and 16-bit-
encoded data (e.g. 328s for 8-bit encoded data, or ~240 million 
genotype probabilities parsed per second; 338s for 16-bit encoded 
data).  This is in part because 8- and 16-bit encodings admit partic-
ularly efficient parsing implementations; we expect further optimi-
zations to be possible e.g. for multiple-of-4 bit sizes, but do not 
explore this further here. 
 
The file reading test outlined above involves fully parsing proba-
bilities into floating-point format, and storing in memory.  Howev-
er, another strategy is to attempt computation using the encoded 
bits directly. To illustrate this, we implemented a simple program 
to compute the expected allele frequency for each of the 531,412 
variants in our test dataset, using the 8-bit-encoded data com-
pressed with zstandard. We implemented this either using the 
method above, which converts each probability to a floating point 
number before accumulating, or by using a lookup table to directly 
map the 16 bits of stored data per-individual to a dosage value.  
Both programs produced identical output, but the lookup table 
version was substantially faster, taking approximately 57s to trav-
erse the dataset (i.e. visiting ~460 million genotypes per second) 
versus around 200s for the floating-point version.  Thus, we expect 
that analysis code that takes advantage of the underlying encoded 
data will be able to gain additional performance improvements. 
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Fig 1: Comparison of file size and data read performance. 
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Partioning and scaling of storage size: We observed a roughly 
linear increase in file size with number of samples (with a limiting 
slope of approximately 0.05Mb per sample for the zstandard-
compressed 8-bit encoded files; Fig S1; based on taking subsets of 
our data).  At lower sample counts this trend flattened off, as ex-
pected given the constant overhead of storing variant identifying 
data in each file. We also noted that the lowest confidence and 
highest-frequency variants occupy more space per variant, on aver-
age, than rarer or more confidently imputed variants (Fig S2). 
 
Listing variants and indexing: A particular feature of BGEN is that 
it stores variant identifying data uncompressed. This choice makes 
it amenable to indexing by variant and means that accessing vari-
ant information without genotypes involves no decompression.  In 
our tests, listing the chromosome, position, ID, and alleles of all 
531,412 variants from a BGEN file took approximately 5 seconds.  
By comparison, the same operation for plink binary format (im-
plemented using the UNIX "cat" command applied to the .bim 
file) was essentially instantaneous. Accessing variant identifying 
data from compressed GEN or VCF files (using zcat and cut), or 
BCF files (using bcftools23) took much longer (>5 minutes), as 
expected given that this operation involves decompression of the 
whole file.  Our implementation of indexing (bgenix, see URLs), 
which stores the file location of each variant in an sqlite file, also 
does not require decompression, and took approximately 75s to 
build an index in our test. 
 
Downstream effects of lowered precision: The use of a limited 
number of bits to store probability leads to rounding errors in ap-
proximating probabilities.  We investigated the likely effects of 
this on downstream association analyses by computing association 
test statistics across all variants in chromosome 22 using each en-
coding of the data, for five simulated case/control traits and 100 
simulated quantitative traits. We compared results for b=1, 2, 4, 8, 
12, or 16-bit-encoded data to the full precision data (encoded with 
b=20 bits; Fig 2).  Data encoded with b=8 or above showed little 
difference in association test results (maximum difference in z-

score (MDZ) = 0.11, max difference in -log10 P-value (MDP) = 
0.09), with smaller differences for more common or better-imputed 
variants (e.g. MDZ=0.02, MDP=0.03 for variants with info > 0.5 
and expected minor allele frequency (MAF) > 0.5%).  Similar, but 
larger discrepancies were observed for b=4 bits (MDZ=1.6, MDP 
= 1.1 across all variants; MDZ=0.4, MDP = 0.4 for variants with 
info > 0.5 and MAF > 0.5%). 
 
We note that lower-precision encoding has a systematic impact on 
allele frequency estimates for less confidently imputed variants, an 
effect that is similar to but less extreme than that caused by thresh-
olding genotype probabilities (Fig S3). Specifically, lower-
precision data tends to underestimate the expected frequency of 
rarer alleles. This effect decreases with increasing imputation con-
fidence, with increasing minor allele frequency, and with approxi-
mation precision, and is almost not observable for b=8 and above. 
 
Given the findings above we recommend the use of b=8, 12 or 16 
bits for imputed data, with b=8 providing a particularly good bal-
ance between implementation efficiency, accuracy, and overall file 
size.  Directly genotyped or 'hard called' data can be losslessly 
stored using b=1. 

4 DISCUSSION 
The use of ever-larger cohorts typed or imputed at many millions 
of variants is necessitating new strategies for computation, storage, 
and data processing. Here we present a binary file format, the 
BGEN format, that is suitable for storing both typed and imputed 
genotype data.  BGEN has several advantages over traditional text 
file formats used for this purpose, such as GEN and VCF, includ-
ing smaller file sizes and substantially more efficient file reading 
speeds, and supports efficient indexing by variant. 
 
The feature set of BGEN is designed to make it applicable in a 
variety of situations.  However, there are two important ways in 
which BGEN is limited.  First, BGEN can store genotypes and 
imputed genotype probabilities, but unlike general-purpose formats 
like VCF or BCF it cannot currently be used to store other values 
of interest, such as sequence read counts or genotype likelihoods.  
This may limit the applicability of BGEN in some contexts.  Se-
cond, BGEN uses the strategy of compressing data for each variant 
independently.  This has the advantage of simplicity of implemen-
tation, but methods that can take advantage of sharing of haplotype 
segments between individuals, such as those based on PBWT8,24, 
effectively model the LD structure of the genome, and as a result 
are likely to be able to achieve considerably higher compression 
and, potentially, file access speed. However, these methods are not 
currently applicable to imputed genotypes. 
 
We have presented some comparative timing data for a typical use 
case of reading imputed genotype probability data into floating-
point variables held in memory.  With sample sizes now reaching 
millions, the high memory and processing requirements of this 
representation mean it may not be the most efficient way to pro-
cess data. As we illustrate above, a promising approach is to make 

Fig 2: Comparison of association test P-values for simulated case/control 
and qtl traits 
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direct use of encoded probability values in BGEN, and we expect 
that future research in this direction could lead to highly efficient 
analysis code. 
 
Ultimately the measure of a file format may be the extent to which 
it is used in practice.  The design of BGEN presented here was 
motivated by the needs of the UK Biobank project, which has re-
leased imputed genotype data for almost half a million samples in 
BGEN format1.  In addition to tools incorporating our reference 
implementation1,11-13, BGEN implementations now exist in other 
popular genetic analysis software including PLINK9, BOLT-
LMM10, and HAIL14.  Additionally, we have made a suite of tools 
available including the 'rbgen' R package which lowers the barrier 
to applying the full range of analyses available in R to BGEN-
encoded data.  Our hope is that this combination of features, im-
plementations, and available data will make this format useful for 
the next generation of genetic epidemiology studies. 
 

5 URLS 
The BGEN file format reference is available at: http://www.bgenformat.org 
 
The bgen reference library, bgenix indexing tool, and rbgen R package are 
available at: http://www.bitbucket.org/gavinband/bgen 
 
QCTOOL is available at: http://www.well.ox.ac.uk/~gav/qctool 
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