
 1

BGEN: a binary file format for imputed genotype and haplotype
data
Gavin Band1, Jonathan Marchini2
1Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN
2Department of Statistics, University of Oxford, 24-29 St Giles', Oxford OX1 3LB

ABSTRACT
The impact of modern technology on genetic epidemiology has been
significant, with studies comprising millions of individuals assessed
at tens of millions of genetic variants now becoming common. Stud-
ies on this scale provide logistical and analytic challenges starting
with the issue of efficiently storing, transmitting, and accessing un-
derlying data. Here we present a binary file format (the BGEN for-
mat) that can store both directly-typed and statistically imputed gen-
otype data, and achieves substantial space savings by data com-
pression and the use of an efficient representation for probabilities.
We investigate the properties of this format using imputed data from
the UK BiLEVE study, demonstrating both storage efficiency, and
fast data loading performance on the order of hundreds of millions of
imputed genotypes per second. To make using BGEN as easy as
possible, we provide a detailed specification and a freely available
reference implementation, and we leverage this by developing addi-
tional tools including an indexing tool (bgenix) and an R package
(rbgen) that permits loading of BGEN-encoded data into the R statis-
tical programming environment. The UK Biobank is one of a number
of projects that have used BGEN for release of imputed data, and
we expect the format to continue to be widely implemented and
used.

1 INTRODUCTION
The need to discover and dissect genetic associations at ever finer
detail, and advances in the throughput of genotyping and sequenc-
ing technologies has driven rapid increases in the scale of genetic
epidemiology studies. Studies incorporating millions of individu-
als with genotypes either directly observed or inferred at tens of
millions of genetic variants are now becoming common1-3. Data of
this scale has effectively outgrown the practical limits of first-
generation GWAS data formats4,5 and new tools for storage, com-
putation, and analysis are required. For example, the UK Biobank
has released data for almost 500,000 individuals with genotypes at
over 80 million genetic variants1, requiring storing on the order of
1x1013 genotypes. Further, many of these genotypes are imputed
(probabilistically inferred from directly-typed genotypes using
population reference panels6,7), necessitating formats that handle
imputation uncertainty. Simply storing and accessing these data is
thus a major challenge.

Recent work has focused on methods to exploit the linkage dise-
quilibrium structure of the human genome to achieve extremely
high compression rates with efficient access to genotypes8. These
approaches are highly promising but do not currently extend to
imputed genotypes.

Here, we focus on the problem of storing large imputed datasets in
an efficient way. We present a binary file format (the BGEN for-
mat) that is designed to meet specific goals. First, the format
should be widely applicable - in particular it should be capable of
storing both directly observed and imputed genotype data, should
support both unphased genotype and phased haplotype data, and
should handle common but sometimes awkward cases such as
multiallelic variants and haploid genotype calls. Second, the for-
mat should achieve a good balance between storage size and file
access performance. Data of this type is often created once but
read many times in subsequent analyses and therefore we focus
particularly on the efficiency with which data can be read. Third,
since a common use case is to access data on specific variants or
regions of the genome, the format should be amenable to indexing,
effectively permitting random access.

Most importantly we aim for the format to be practically useful -
implying in particular that it is widely implementable. To aid with
this, we provide a detailed specification of the format (available at
http://www.bgenformat.org), a set of supporting tools, and an
open-source implementation that is suited for incorporation into
other software. Support for BGEN is now available in a number of
packages, including QCTOOL, SNPTEST, PLINK9, BOLT-
LMM10, REGSCAN11, BGENIE1, LDSTORE12, MEGA213, and
HAIL14 (see URLs). Several major projects including the UK Bi-
obank1, ALSPAC15, The Human Connectome Project and the Ma-
lariaGEN project16 have used the BGEN format for data release.
Widespread software support for BGEN is thus shortening the path
from this data to the insights it can provide.

2 METHODS
The BGEN format: Conceptually, a BGEN file stores genotype probability
data for a specified list of samples (with indices 0,…,N-1, say) and a specif-
ic list of variants (with indices 0,…,L-1). The data for each sample consists
of the probability of each possible genotype call that the sample might have
at the variant. Here, the possible genotypes are determined by the variant
alleles and by the ploidy of the sample (i.e. the number of alleles of the
variant that the genome of the sample carries). The ploidy is considered to
be known beforehand and is explicitly stored in the file, i.e. BGEN does not
specifically handle situations where the ploidy might be unknown or uncer-
tain.

To represent these data in a practically useful way, a BGEN file is organ-
ised in a series of data blocks. We now describe these blocks.

First, a header block is present which stores metadata needed to properly
process the file, including the number of samples and the number of vari-
ants, and fields describing the low-level detail of the format being used.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/308296doi: bioRxiv preprint

https://doi.org/10.1101/308296
http://creativecommons.org/licenses/by/4.0/

Band G. and Marchini J.

2

Additionally, this block can contain arbitrary data as specified by the user
which may be useful e.g. for data versioning.

Second, a sample identifier block may be present; this lists an identifier for
each of the N samples contained in the file. This block is optional; if not
present samples are treated as anonymous.

The remainder of the file consists of a sequence of variant data blocks, one
for each of the L variants stored in the file. Each variant data block con-
tains identifying information about the corresponding variant (e.g. its iden-
tifier, genomic position, and alleles), followed by the genotype probability
data for the variant. Genotype probability data are encoded in a packed bit-
representation, and are then compressed. We describe the layout of this
data in subsequent paragraphs. (A simpler version of this data storage,
termed BGEN v1.1, is also supported and is described fully in the specifi-
cation).

Storage of ploidy and missingness: ploidy for each sample is stored in a
sequence of N consecutive bytes. Ploidies from 0 to 63 are supported.
Additionally, we use a single bit from each of these bytes to indicate that
genotype data for the corresponding sample is missing. To enable efficient
processing, we also store the maximum and minimum ploidy across sam-
ples; for example this allows implementations to allocate storage efficiently
and/or to easily detect the common case where all samples are diploid.

Storage of unphased genotype data: For a variant with K alleles and a
sample of ploidy P there are

S = (P+K-1) choose (K-1)
possible unordered genotype configurations. In BGEN these are conceptu-
ally enumerated as follows. First, encode each genotype as the tuple of
counts of alleles 1, 2, …, K carried by that genotype. (For example, for a
biallelic variant and a diploid sample, the possible genotypes are (2,0),
(1,1), (0,2) indicating 2, 1, or 0 copies of the first allele). Second, enumer-
ate genotypes in the colex order of these tuples - i.e. in lexicographic order
after reading the tuples right-to-left. This definition is compatible with the
ordering employed by other common formats, including VCF17 and GEN4,
and applies to arbitrary ploidy and allele counts.

Given a sample of ploidy P, let p=(p1,…,pS) be the imputed genotype prob-
abilities for the S possible genotypes, enumerated in colex order as above.
The vector p sums to one; in other words it lies on the unit (S-1)-simplex
Δ(S-1). To reduce the storage requirement for p, we approximate p by an-
other vector in Δ(S-1) that can be encoded using only a specified number of
binary bits per probability. Specifically, given a number of bits b, we take
the closest approximation to p on Δ(S-1) that is of the form q/(2b-1), where
q=(q1,…,qS) is a vector with integer coordinates in the range 0, …, 2b-1, i.e.
exactly encodable in b binary digits. An algorithm for finding q was given
by Bomze et al18. Given q, we encode the probability data for the sample
by storing q1,…,qS-1 in consecutive bits of the file, for a total storage of b(S-
1) bits. The final value qS is not stored, since pS can be inferred as one
minus the value of the other probabilities. Probabilities for consecutive
samples are encoded in consecutive bits in the file.

The transformation from p to q introduces rounding error into the stored
probabilities. Assuming the probability vector p sums to one, we have the
error bound |q-p|1 < 1/(2b-1), i.e. the maximum difference between a stored
probability and the true probability is at most 1/(2b-1). Thus, the minimum
number of bits per probability required for a given level of accuracy ε is
b=ceil(log2(1+1/ε)). For example, hard-called genotype data can be faith-
fully stored using b=1; while the values b=5, 8, 11, 15, 18 give approxi-
mately one, two, three, four, and five decimal places of accuracy respec-
tively. (Based on the results below, we recommend using b=8 or above for
imputed datasets). Unlike schemes that independently round each probabil-
ity to a specified precision independently, the approximate genotype proba-

bilities stored in BGEN always sum to 1, avoiding potentially subtle nu-
merical issues in downstream analyses.

Storage of phased genotype (haplotype) data: Phased data is stored as
described above, except the approximation takes place for each of the P
haplotypes carried by the sample. Data for each of the P haplotypes is
stored consecutively. Full details are provided in the specification. We
note that, unlike VCF format, BGEN has no mechanism to identify blocks
of phasing; instead, haplotypes are assumed to be in the same order at each
variant (i.e. to be globally phased within each chromosome).

Compression: Finally, all genotype data for the variant, including the
ploidy/missingness bytes and the encoded probability values are com-
pressed using either the zlib (http://zlib.net) or zstandard
(http://www.zstd.net) compression libraries. The compressed data is stored
immediately following the variant identifying data (which is stored uncom-
pressed) and is followed either by next variant data block, or the end of file
if no further variants are present.

Implementation: To make BGEN widely implementable, we developed
both a detailed file format reference, and a reference implementation writ-
ten in C++ (see URLs). This implementation is designed to be easily in-
corporated into other software; in particular it exposes a flexible interface
that avoids imposing specific storage data structures on the user. Several
packages developed by other authors have successfully used this library for
BGEN support11-13.

Indexing: A design goal of BGEN is to allow indexed access to the com-
pressed data (i.e. to allow efficient access to specific genomic ranges or
specific variants). In BGEN, the separation of variant identifying data
(stored uncompressed) and compressed genotypes makes this particularly
efficient. We illustrate this by implementing a BGEN index file format,
based on sqlite3, in the program bgenix (URLs). This program behaves
similarly to the popular tabix utility for indexing text files19, and permits
efficient access to genomic ranges or to variants with specific identifiers.

Interface to R: We illustrate use of the bgen reference library by imple-
menting an R20 package (rbgen) based on the bgen reference implementa-
tion and Rcpp21. This allows the user to directly load probability data from
an indexed BGEN file into R without intermediate steps, facilitating a wide
range of analyses that are available in R.

Performance comparison: We assessed the performance of the BGEN
format on a dataset of 49,458 samples from the UKBiLEVE study22, imput-
ed into the 1000G Phase 3 reference panel. We used data from chromo-
some 22, which comprised 9,737 directly-typed variants and 521,675 im-
puted variants. Data was supplied in gzipped GEN format, with probabili-
ties stored to 3 decimal places. We re-encoded the data into BGEN format
with 1, 2, 4, 8, 12, 16, and 20 bits per probability, as well as into the plink
binary (BED), VCF, and BCF formats. In this comparison, BGEN formats
with lower numbers of bits, and BED format lose precision relative to the
original data.

We compared the performance of two common, simple operations - reading
the variant identifying data without processing genotypes, and reading all
the genotype data for each variant into memory without additional pro-
cessing. For the latter comparison, we used the -read-test option of
the QCTOOL program to read in all the different data formats. (A caveat is
that the QCTOOL implementation of these formats may not be the fastest
possible - in particular, plink9 has a fast implementation of BED format that
is likely to outperform the implementation used here. However, this places

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/308296doi: bioRxiv preprint

https://doi.org/10.1101/308296
http://creativecommons.org/licenses/by/4.0/

BGEN: a binary file format for imputed genotype and haplotype data

3

all comparisons in a consistent processing framework thus making them
comparable.)

Both zlib and zstandard compression methods supported by BGEN also
allow tuning via a compression parameter. We compared both the maxi-
mum compression available with each library (zlib level 9, zstandard level
21), and an intermediate value chosen to give a reasonable tradeoff between
file size and compression speed (zlib level 6, zstandard level 17). All per-
formance comparisons were made using a machine included in the Well-
come Centre for Human Genetics compute cluster, with data stored on the
cluster storage filesystem. The test machine had an Intel Xeon CPU
clocked at 2.6Ghz, with code compiled using gcc 5.4.0 and avx, sse2, and
ssse3 instruction sets turned on. All timing measurements were made using
a single thread of execution, and were run in triplicate, with the best of
three times reported.

Assessment of file size scaling with number of samples
To assess scaling of file size with number of samples, we used QCTOOL to
subsample the 8-bit encoded data to randomly chosen subsets of between
10 and 31,623 samples.

Downstream effect of loss of precision
To investigate the potential effect of reduced precision encodings on down-
stream association analyses, we simulated case/control and quantitative
traits and tested for association as follows. First, we simulated five binary
traits with different case/control ratios by independently sampling a pheno-
type for each sample from a Bernoulli distribution, using a success proba-
bility of 10%, 25%, 50%, 75%, or 90%. Secondly, we simulated 100 quan-
titative traits including 'true' genetic associations as follows. We grouped
variants into five minor allele frequency ranges (1-2%, 2-5%, 5-10%, 10-
20%, 20-50%) and three ranges of IMPUTE info score (0.1-0.5, 0.5-0.9,
0.9-1). For each of the 100 traits, we randomly picked an allele frequency
and info score bin uniformly among bins, and randomly chose a trait-
associated variant from within this bin. We drew the variant effect size
from a Gaussian distribution with mean 0 and standard deviation equal to
0.04. We then simulated trait values as trait = gβ + ε, where g is the
vector of genotypes at the associated SNP, and ε is chosen to make the
overall trait variance equal to 1, i.e. var(ε)=1-var(gβ). We tested for asso-
ciation with case/control traits using SNPTEST and with QTL traits using
BGENIE1.

We also investigated the effects of the encoding on allele frequencies by
computing the expected allele frequency (i.e. the sum of expected genotype

dosages divided by twice the number of samples) for each variant under
each encoding. We compared the computed expected allele frequency with
the 'true' expectation, computed using the b=16 bit data.

3 RESULTS
File size: BGEN formats with <= 20 bits per probability had lower
file sizes than either GEN format (here compressed using zlib level
9, 4.3Gb) or plink binary format (uncompressed, 6.2Gb) (Fig 1).
While the highest precision BGEN file was comparable in size to
the source data (b=20 bits per probability, 3.7-4.3Gb), comparable
precision in BGEN is achieved using b=12 bits, here giving 2.8-
3.5Gb, a saving of approximately 60-80% over the source data,
depending on compression used. Further decreases in storage size
can be achieved at the cost of some loss of precision (e.g. 2.3-
2.7Gb at 8 bits per probability, 1.3-1.6Gb at 4 bits per probability).
We assess the likely impact of loss of precision on downstream
analyses below. The zstandard method of compression had con-
sistently improved file sizes relative to zlib in our comparison (Fig
1), despite broadly similar or improved encoding times.

File reading performance: In our file reading speed test, data for
each variant in the dataset is parsed and stored in-memory in float-
ing-point form, intended to reflect typical times needed to get data
to the point of analysis. Thus overall timings include time for I/O,
decompression, parsing, and storage in memory, all of which can
be substantial with data volumes of this scale. BGEN formats, as
well as plink binary format, achieved much greater performance
than the GEN-formatted source data (5,081s), reflecting the fact
that binary-encoded genotypes can be parsed much more efficient-
ly than human-readable representations. Decompression time was
also noticeable here, with zstandard-compressed files taking
around 60-80% of the time to read compared to zlib-compressed
files, making the zstandard-compressed BGEN files the fastest in
this test. File reading performance was fastest for 8- and 16-bit-
encoded data (e.g. 328s for 8-bit encoded data, or ~240 million
genotype probabilities parsed per second; 338s for 16-bit encoded
data). This is in part because 8- and 16-bit encodings admit partic-
ularly efficient parsing implementations; we expect further optimi-
zations to be possible e.g. for multiple-of-4 bit sizes, but do not
explore this further here.

The file reading test outlined above involves fully parsing proba-
bilities into floating-point format, and storing in memory. Howev-
er, another strategy is to attempt computation using the encoded
bits directly. To illustrate this, we implemented a simple program
to compute the expected allele frequency for each of the 531,412
variants in our test dataset, using the 8-bit-encoded data com-
pressed with zstandard. We implemented this either using the
method above, which converts each probability to a floating point
number before accumulating, or by using a lookup table to directly
map the 16 bits of stored data per-individual to a dosage value.
Both programs produced identical output, but the lookup table
version was substantially faster, taking approximately 57s to trav-
erse the dataset (i.e. visiting ~460 million genotypes per second)
versus around 200s for the floating-point version. Thus, we expect
that analysis code that takes advantage of the underlying encoded
data will be able to gain additional performance improvements.

1000 2000 3000 4000 5000 6000 7000

40
0

60
0

80
0

10
00

File size Mb

Ti
m

e
to

 re
ad

 (s
)

1
2 4

8

12

16

20

1 2 4

8

12

16

20

x
plink binary

gen.gz (5081s)

v1.1

compression
zlib level 6
zlib level 9
zstd level 17
zstd level 21
none

bits / precision
1 bits / ε ~ 1
2 bits / ε ~ 0.3
4 bits / ε ~ 0.07
8 bits / ε ~ 0.004

12 bits / ε ~ 0.0002
16 bits / ε ~ 2e-05
20 bits / ε ~ 1e-06

Fig 1: Comparison of file size and data read performance.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/308296doi: bioRxiv preprint

https://doi.org/10.1101/308296
http://creativecommons.org/licenses/by/4.0/

Band G. and Marchini J.

4

Partioning and scaling of storage size: We observed a roughly
linear increase in file size with number of samples (with a limiting
slope of approximately 0.05Mb per sample for the zstandard-
compressed 8-bit encoded files; Fig S1; based on taking subsets of
our data). At lower sample counts this trend flattened off, as ex-
pected given the constant overhead of storing variant identifying
data in each file. We also noted that the lowest confidence and
highest-frequency variants occupy more space per variant, on aver-
age, than rarer or more confidently imputed variants (Fig S2).

Listing variants and indexing: A particular feature of BGEN is that
it stores variant identifying data uncompressed. This choice makes
it amenable to indexing by variant and means that accessing vari-
ant information without genotypes involves no decompression. In
our tests, listing the chromosome, position, ID, and alleles of all
531,412 variants from a BGEN file took approximately 5 seconds.
By comparison, the same operation for plink binary format (im-
plemented using the UNIX "cat" command applied to the .bim
file) was essentially instantaneous. Accessing variant identifying
data from compressed GEN or VCF files (using zcat and cut), or
BCF files (using bcftools23) took much longer (>5 minutes), as
expected given that this operation involves decompression of the
whole file. Our implementation of indexing (bgenix, see URLs),
which stores the file location of each variant in an sqlite file, also
does not require decompression, and took approximately 75s to
build an index in our test.

Downstream effects of lowered precision: The use of a limited
number of bits to store probability leads to rounding errors in ap-
proximating probabilities. We investigated the likely effects of
this on downstream association analyses by computing association
test statistics across all variants in chromosome 22 using each en-
coding of the data, for five simulated case/control traits and 100
simulated quantitative traits. We compared results for b=1, 2, 4, 8,
12, or 16-bit-encoded data to the full precision data (encoded with
b=20 bits; Fig 2). Data encoded with b=8 or above showed little
difference in association test results (maximum difference in z-

score (MDZ) = 0.11, max difference in -log10 P-value (MDP) =
0.09), with smaller differences for more common or better-imputed
variants (e.g. MDZ=0.02, MDP=0.03 for variants with info > 0.5
and expected minor allele frequency (MAF) > 0.5%). Similar, but
larger discrepancies were observed for b=4 bits (MDZ=1.6, MDP
= 1.1 across all variants; MDZ=0.4, MDP = 0.4 for variants with
info > 0.5 and MAF > 0.5%).

We note that lower-precision encoding has a systematic impact on
allele frequency estimates for less confidently imputed variants, an
effect that is similar to but less extreme than that caused by thresh-
olding genotype probabilities (Fig S3). Specifically, lower-
precision data tends to underestimate the expected frequency of
rarer alleles. This effect decreases with increasing imputation con-
fidence, with increasing minor allele frequency, and with approxi-
mation precision, and is almost not observable for b=8 and above.

Given the findings above we recommend the use of b=8, 12 or 16
bits for imputed data, with b=8 providing a particularly good bal-
ance between implementation efficiency, accuracy, and overall file
size. Directly genotyped or 'hard called' data can be losslessly
stored using b=1.

4 DISCUSSION
The use of ever-larger cohorts typed or imputed at many millions
of variants is necessitating new strategies for computation, storage,
and data processing. Here we present a binary file format, the
BGEN format, that is suitable for storing both typed and imputed
genotype data. BGEN has several advantages over traditional text
file formats used for this purpose, such as GEN and VCF, includ-
ing smaller file sizes and substantially more efficient file reading
speeds, and supports efficient indexing by variant.

The feature set of BGEN is designed to make it applicable in a
variety of situations. However, there are two important ways in
which BGEN is limited. First, BGEN can store genotypes and
imputed genotype probabilities, but unlike general-purpose formats
like VCF or BCF it cannot currently be used to store other values
of interest, such as sequence read counts or genotype likelihoods.
This may limit the applicability of BGEN in some contexts. Se-
cond, BGEN uses the strategy of compressing data for each variant
independently. This has the advantage of simplicity of implemen-
tation, but methods that can take advantage of sharing of haplotype
segments between individuals, such as those based on PBWT8,24,
effectively model the LD structure of the genome, and as a result
are likely to be able to achieve considerably higher compression
and, potentially, file access speed. However, these methods are not
currently applicable to imputed genotypes.

We have presented some comparative timing data for a typical use
case of reading imputed genotype probability data into floating-
point variables held in memory. With sample sizes now reaching
millions, the high memory and processing requirements of this
representation mean it may not be the most efficient way to pro-
cess data. As we illustrate above, a promising approach is to make

Fig 2: Comparison of association test P-values for simulated case/control
and qtl traits

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/308296doi: bioRxiv preprint

https://doi.org/10.1101/308296
http://creativecommons.org/licenses/by/4.0/

BGEN: a binary file format for imputed genotype and haplotype data

5

direct use of encoded probability values in BGEN, and we expect
that future research in this direction could lead to highly efficient
analysis code.

Ultimately the measure of a file format may be the extent to which
it is used in practice. The design of BGEN presented here was
motivated by the needs of the UK Biobank project, which has re-
leased imputed genotype data for almost half a million samples in
BGEN format1. In addition to tools incorporating our reference
implementation1,11-13, BGEN implementations now exist in other
popular genetic analysis software including PLINK9, BOLT-
LMM10, and HAIL14. Additionally, we have made a suite of tools
available including the 'rbgen' R package which lowers the barrier
to applying the full range of analyses available in R to BGEN-
encoded data. Our hope is that this combination of features, im-
plementations, and available data will make this format useful for
the next generation of genetic epidemiology studies.

5 URLS
The BGEN file format reference is available at: http://www.bgenformat.org

The bgen reference library, bgenix indexing tool, and rbgen R package are
available at: http://www.bitbucket.org/gavinband/bgen

QCTOOL is available at: http://www.well.ox.ac.uk/~gav/qctool

ACKNOWLEDGEMENTS
G.B. is part of the MalariaGEN resource centre, supported by the Well-
come Trust (090770/Z/09/Z; 204911/Z/16/Z). The Wellcome Centre for
Human Genetics is supported by the Wellcome Trust (203141/Z/16/Z).
J.M. acknowledges funding for this work from the European Research
Council (ERC; grant 617306) and the Leverhulme Trust. We thank Colin
Freeman and Jerome Kelleher for their help with the software and manu-
script.

REFERENCES

1 Bycroft, C. et al. Genome-wide genetic data on ~500,000

UK Biobank participants. bioRxiv, doi:10.1101/166298
(2017).

2 Jansen, P. R. et al. Genome-wide Analysis of Insomnia
(N=1,331,010) Identifies Novel Loci and Functional
Pathways. bioRxiv, doi:10.1101/214973 (2018).

3 Mahajan, A. et al. Fine-mapping of an expanded set of
type 2 diabetes loci to single-variant resolution using
high-density imputation and islet-specific epigenome
maps. bioRxiv, doi:10.1101/245506 (2018).

4 Wellcome Trust Case Control, C. Genome-wide
association study of 14,000 cases of seven common

diseases and 3,000 shared controls. Nature 447, 661-678,
doi:10.1038/nature05911 (2007).

5 Purcell, S. et al. PLINK: a tool set for whole-genome
association and population-based linkage analyses.
American journal of human genetics 81, 559-575,
doi:10.1086/519795 (2007).

6 The 1000 Genomes Project Consortium. A global
reference for human genetic variation. Nature 526, 68-
74, doi:10.1038/nature15393 (2015).

7 McCarthy, S. et al. A reference panel of 64,976
haplotypes for genotype imputation. Nature genetics 48,
1279-1283, doi:10.1038/ng.3643 (2016).

8 Durbin, R. Efficient haplotype matching and storage
using the positional Burrows-Wheeler transform
(PBWT). Bioinformatics 30, 1266-1272,
doi:10.1093/bioinformatics/btu014 (2014).

9 Chang, C. C. et al. Second-generation PLINK: rising to
the challenge of larger and richer datasets. GigaScience
4, 7, doi:10.1186/s13742-015-0047-8 (2015).

10 Loh, P. R. et al. Efficient Bayesian mixed-model
analysis increases association power in large cohorts.
Nature genetics 47, 284-290, doi:10.1038/ng.3190
(2015).

11 Haller, T., Kals, M., Esko, T., Magi, R. & Fischer, K.
RegScan: a GWAS tool for quick estimation of allele
effects on continuous traits and their combinations.
Briefings in bioinformatics 16, 39-44,
doi:10.1093/bib/bbt066 (2015).

12 Benner, C. et al. Prospects of Fine-Mapping Trait-
Associated Genomic Regions by Using Summary
Statistics from Genome-wide Association Studies.
American journal of human genetics 101, 539-551,
doi:10.1016/j.ajhg.2017.08.012 (2017).

13 Mukhopadhyay, N., Almasy, L., Schroeder, M.,
Mulvihill, W. P. & Weeks, D. E. Mega2: data-handling
for facilitating genetic linkage and association analyses.
Bioinformatics 21, 2556-2557,
doi:10.1093/bioinformatics/bti364 (2005).

14 Seed C., B. A., Bloom J. M., Goldstein J. I., King D.,
Poterba T., Neale B.M. Hail: An Open-Source
Framework for Scalable Genetic Data Analysis. In
preparation (2018).

15 Boyd, A. et al. Cohort Profile: the 'children of the 90s'--
the index offspring of the Avon Longitudinal Study of
Parents and Children. International journal of
epidemiology 42, 111-127, doi:10.1093/ije/dys064
(2013).

16 Malaria Genomic Epidemiology, N. A global network
for investigating the genomic epidemiology of malaria.
Nature 456, 732-737, doi:10.1038/nature07632 (2008).

17 Danecek, P. et al. The variant call format and VCFtools.
Bioinformatics 27, 2156-2158,
doi:10.1093/bioinformatics/btr330 (2011).

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/308296doi: bioRxiv preprint

https://doi.org/10.1101/308296
http://creativecommons.org/licenses/by/4.0/

Band G. and Marchini J.

6

18 Bomze I.M., G. S., Yıldırım E.A. Rounding on the
standard simplex: regular grids for global optimization.
Journal of Global Optimization 59, 243-258 (2013).

19 Li, H. Tabix: fast retrieval of sequence features from
generic TAB-delimited files. Bioinformatics 27, 718-
719, doi:10.1093/bioinformatics/btq671 (2011).

20 Team, R. C. R: A Language and Environment for
Statistical Computing.

21 Eddelbuettel, D. & Francois, R. Rcpp: Seamless R and C
plus plus Integration. J Stat Softw 40, 1-18 (2011).

22 Wain, L. V. et al. Novel insights into the genetics of
smoking behaviour, lung function, and chronic
obstructive pulmonary disease (UK BiLEVE): a genetic
association study in UK Biobank. The Lancet.
Respiratory medicine 3, 769-781, doi:10.1016/S2213-
2600(15)00283-0 (2015).

23 Li, H. A statistical framework for SNP calling, mutation
discovery, association mapping and population genetical
parameter estimation from sequencing data.
Bioinformatics 27, 2987-2993,
doi:10.1093/bioinformatics/btr509 (2011).

24 Li, H. BGT: efficient and flexible genotype query across
many samples. Bioinformatics 32, 590-592,
doi:10.1093/bioinformatics/btv613 (2016).

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/308296doi: bioRxiv preprint

https://doi.org/10.1101/308296
http://creativecommons.org/licenses/by/4.0/

