
scVAE: Variational auto-encoders for single-cell gene
expression data
Christopher H Grønbech1, Maximillian F Vording1, Pascal N Timshel2,3, Capser K Sønderby4,
Tune H Pers2,3, and Ole Winther1,4

Abstract
We propose a novel variational auto-encoder-based method for analysis of single-cell RNA sequencing
(scRNA-seq) data. It avoids data preprocessing by using raw count data as input and can robustly estimate
the expected gene expression levels and a latent representation for each cell. We show for several scRNA-
seq data sets that our method outperforms recently proposed scRNA-seq methods in clustering cells. Our
software tool scVAE has support for several count likelihood functions and a variant of the variational
auto-encoder has a priori clustering in the latent space.
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Background
Single-cell RNA sequencing (scRNA-seq) enables
measurement of gene expression levels at the cell
level and thus provides a new framework to un-
derstand dysregulation of disease at the cell-type
level [1]. To date, at number of methods have been
developed to process gene expression data to nor-
malise the data and cluster cells into putative cell
types [2]. Seurat [3] is a popular method which
is a multi-step process of normalisation, trans-
formation, decomposition, embedding, and clus-
tering of the gene expression levels. This can be
cumbersome, and a more automated approach is
desirable. Two recent methods, cellTree [4] and
DIMM-SC [5], model gene expression levels di-
rectly as counts using either the latent Dirichlet
allocation or Dirichlet-mixture generative models,
respectively.

Here, we show that expressive deep generative
models, leveraging the recent progress in deep
neural networks, provide a powerful framework
for modelling the data distributions of raw count
data. We show that these models can learn biolog-
ically plausible representations of scRNA-seq ex-
periments using only the highly sparse raw count
data as input entirely skipping the normalisa-
tion and transformation steps needed in previous
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methods. Our approach is based on the variational
auto-encoder (VAE) framework [6, 7]. These mod-
els learn compressed latent representations of the
input data without any supervisory signals. We
extend these models with likelihood (link) func-
tions suitable for working with count data from
RNA sequencing (RNA-seq) and perform exten-
sive experiments on several data sets to anal-
yse the strength and weaknesses of the models
and the likelihood functions. Variational auto-
encoders have been examined and extended [8–
11], and they have been used in a variety of cases
to, e.g., generate sentences [12], transfer artistic
style of paintings [13], and create music [14]. Re-
cently, a VAE was also used to model traditional
multi-cell RNA-seq data [15].

Compared to traditional auto-encoders, VAEs
have the advantage, because they are probabilis-
tic models, that performance can be quantified in
terms of the likelihood, which is especially useful
for model comparison. Traditional auto-encoders
also learn a latent representation from data that
is used to reconstruct the same as well as new
unseen data. The latent representation is low-
dimensional, so the model is forced to only es-
timate the most important features of the data.
Different auto-encoder models have previously
been used to model normalised (or binarised) tra-
ditional gene expression levels: de-noising auto-
encoders [16–18], sparse auto-encoders [19], and
robust auto-encoders [20]. A generative adversar-
ial network [21], which is a related model, was also
recently used to model normalised single-cell gene
expression levels [22].

Our contributions are threefold: 1) We have de-
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veloped new generative models based on the VAE
framework for directly modelling raw counts from
RNA-seq data; 2) we show that our Gaussian-
mixture VAE (GMVAE) learns biologically plau-
sible groupings of scRNA-seq data of higher qual-
ity than previous methods; and 3) we provide
a publicly available framework for unsupervised
modelling of count data from RNA-seq experi-
ments.

Results
Both the standard VAE and the GMVAE have
been used to model both single-cell and tradi-
tional RNA-seq data sets (Table 1). The perfor-
mance of different likelihood functions have been
investigated, and the latent spaces of the models
have been examined.

scRNA-seq data of purified immune cells
The first data set we modelled was of single-
cell gene expression levels of peripheral blood
mononuclear cells (PBMC) [23]. We also modelled
two subsets of the PBMC data set: one of lympho-
cytes (PBMC-L) and another of T cells (PBMC-
T).

To assess the optimal network architectures for
these data sets, we first trained VAE models us-
ing a negative binomial (NB) likelihood function
(VAE-NB models) with different network archi-
tecture on the three data sets with all genes in-
cluded. This was carried out as grid searches of
number of hidden units and latent dimensions (see
Additional file 1: Figure S1). We found that us-
ing two smaller hidden layers (of 100 units each)
in the generative and inference processes yielded
better results than only using one hidden layer
for all data sets. For the full PBMC data set, a
high-dimensional latent space of 100 dimensions
result in the highest test marginal log-likelihood
lower bound, whereas for the two smaller subsets,
a lower-dimensional latent space of 25 dimensions
gave the best lower bound.

With these network architectures different dis-
crete likelihood functions was examined for each
data set. The marginal log-likelihood lower bound
as well as the adjusted Rand index for the test
sets are listed in Table 2. From this table it is
clear that the using the negative binomial distri-
bution yielded the highest lower bound for all data
sets followed closely by its zero-inflated version
(ZINB). For the Rand indices, however, using the
constrained Poisson (CP) distribution gave the
highest values for the subsets, especially for the
T cells, while a straight Poisson distribution yield
the highest index for the full data set with the
constrained version as a close second. It should
be noted, however, that a high lower bound does

not necessarily result in a high Rand index. For in-
stance were the lower bounds and Rand indices for
the full data set not strongly correlated with, e.g.,
a sample correlation coefficient of r = −0.0903
(see Additional file 1: Figure S2).

To test whether a more complex model is re-
quired or a simpler model is sufficient in mod-
elling the data, the network architecture and like-
lihood function yielding the highest marginal log-
likelihood lower bound for the VAE model for each
data set were used to train GMVAE models as
well as factor-analysis (FA) models. The result-
ing lower bounds and Rand indices are listed in
Table 2. The FA models had worse lower bounds
compared to their VAE equivalents, but the Rand
indices are significantly higher (except for the
PBMC-L data set), whereas the GMVAE models
improved both the lower bounds and the Rand
indices. This shows that non-linear models really
makes a difference for the marginal log-likelihood
of the data. The latent space of the GMVAE-NB
model for the test set of the full PBMC data set
can be seen in Figure 1, which shows different
clusters corresponding to distinct cell types, while
more similar cell types are clustered together.

To see if we can achieve better results by lim-
iting the genes we use in our models, we also
trained and tested models using only the 100 most
varying genes for all data sets and the 800 most
varying genes for the PBMC and the PBMC-
T data sets using the same procedure as above.
Different network architectures were examined
(see Additional file 1: Figures S3–S4), and dif-
ferent likelihood functions and models were in-
vestigated using the optimal network architec-
tures (see Additional file 1: Tables S1–S2). Using
a constrained Poisson distribution as the likeli-
hood function produced the highest lower bounds,
whereas different likelihood functions produced
the best Rand indices. The GMVAE models have
again higher lower bounds than their correspond-
ing VAE and FA models, but also higher Rand
indices.

Sun et al. [5] have reported adjusted Rand in-
dices for both PBMC-L and PBMC-T data sets
using variations of their DIMM-SC model as well
as the Seurat [3], cellTree [4], and k-means clus-
tering models (see Additional file 1: Table S1–S2
for performance of these models). For the PBMC-
L data set, the highest Rand index achieved by
these models was a DIMM-SC model was 0.990
using the 100 most varying genes. Our GMVAE-
CP model yielded a Rand index of 0.9990 using
the same genes (see Additional file 1: Figure S5 for
its latent space), and two models, the VAE-ZINB
and the VAE-CP models, resulted in Rand indices
of 1.000 using all genes. The highest Rand index
that the other models achieved for the PBMC-T
data set using the 100 most varying genes was
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Table 1: Overview of gene expression data sets.

Data set Selection Examples Features Classes Sparsity [%]

Purified immune cells All cells 94 655 32 738 10 98.06
T cells 32 695 32 378 3 98.39
Lymphocytes 28 733 32 378 3 98.16

Mouse brain cells All cells 1 306 127 27 998 — 92.82
20k 20 000 27 998 — 92.82

TCGA All gene IDs 10 830 60 498 29 53.83
All gene names 10 830 58 581 29 52.47

Examples refer to cells or cell samples, features refer to gene names or gene IDs, while classes refer to either cell
types or tissue sites. The T cells data subset contains CD8+/CD45RA+ naïve cytotoxic T cells, CD4+/CD25+
regulatory T cells, and CD4+/CD45RA+/CD25- naïve T cells, while the lymphocytes data subset contains
CD56+ natural killer cells, CD19+ B cells, and CD4+/CD25+ regulatory T cells.

Table 2: Test metrics for the purified immune cells data sets.

PBMC PBMC-T PBMC-L

Model Likelihood function Ltest Rtest
adj Ltest Rtest

adj Ltest Rtest
adj

VAE Poisson (P) −2074.1 0.5635 −1774.5 0.5485 −1998.4 0.9737
Negative binomial (NB) −2066.2 0.4276 −1769.6 0.5449 −1989.7 0.9917
Zero-inflated Poisson (ZIP) −2068.7 0.5297 −1771.7 0.5929 −1992.4 0.9990
Zero-inflated negative binomial (ZINB) −2066.4 0.5319 −1770.3 0.5577 −1990.0 1.000
Piece-wise categorical Poisson (PCP) −2079.6 0.4819 −1778.3 0.4824 −2001.8 0.9928
Constrained Poisson (CP) −2100.3 0.5543 −1795.1 0.8240 −2019.2 1.000

FA Negative binomial −2083.0 0.6207 −1785.0 0.8146 −2010.2 0.9969
GMVAE Negative binomial −2064.5 0.4664 −1768.8 0.5563 −1986.9 0.9990

The test marginal log-likelihood lower bounds (in nats), Ltest, and the adjusted Rand indices, Rtest
adj , of the PBMC

data sets evaluated using different likelihood functions for the standard VAE and using the most promising
likelihood function for the FA and GMVAE models. The highest lower bounds and Rand indices for each data set
and model have been highlighted in bold.

Figure 1: Latent space of the GMVAE-NB trained and evaluated on the PBMC data set. The encoding of the
cells in the latent space has been embedded in two dimensions using t-SNE and are colour-coded using their cell
types. Clear separations can be seen corresponding to different cell types, but some similar cell types are also
clustered close together or mixing together.
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Table 3: Test metrics for the mouse brain cells data
sets.

Data set Model Likelihood Ltest

MB-20k VAE P −5553.01
NB −5517.0
ZIP −5538.3
ZINB −5516.4
PCP −5586.7
CP −5595.3

GMVAE ZINB −5508.6
MB-1M VAE ZINB −5398.2

GMVAE ZINB −5396.3

The test marginal log-likelihood lower bound (in nats),
Ltest, for the MB-1M data sets evaluated using
different likelihood distributions for the standard VAE
and using the most promising likelihood function for
the GMVAE. The highest lower bounds for each data
set and model have been highlighted in bold.

0.408 by a DIMM-SC model. Our GMVAE-CP
model yielded a Rand index of 0.7076 using the
same genes. Using the 800 most varying genes, the
highest Rand index attained by the other models
was 0.556 for the best DIMM-SC model, while it
was 0.8452 for the GMVAE-CP model (see Addi-
tional file 1: Figure S6 for its latent space).

scRNA-seq data of mouse brain cells
Next, we considered the second single-cell gene
expression data set [24], which consists of gene
expression levels for 1.3 million mouse brain cells
(MB-1M). Since no cell labels are available for this
data set, the adjusted Rand index cannot be eval-
uated.

We can scale the model to train on the full
MB-1M data set without any modifications. How-
ever, because of the large number of cells, we used
the smaller subset of 20 000 cells (MB-20k) to
perform a network architecture grid search (see
Additional file 1: Figure S7) as well as to test
the different likelihood functions (see Table 3)
following the same procedure as in the previous
section. The highest test marginal log-likelihood
lower bound was achieved using the zero-inflated
negative binomial distribution with the regular
negative binomial as a close second. A GMVAE
model with 10 components (clusters) was also
trained on the subset using this configuration, and
this model improved upon the lower bound (see
Additional file 1: Figure S8 for its latent space).

For the full data set a VAE and a GMVAE
model were trained using the optimal configura-
tion found for the subset, and the lower bounds
using these models are listed in Table 3. The GM-
VAE model achieved the highest lower bound of
the two, and its latent space have been plotted in
Figure 2, which shows somewhat clear regions for

Table 4: Test metrics for the TCGA data set.

Model Likelihood Ltest/105 Rtest
adj

VAE P −337.84 0.6517
NB −1.6187 0.6176
ZIP −338.08 0.6470
ZINB −1.6220 0.6673
PCP −337.98 0.6421
CP −72.615 0.6995

GMVAE NB −1.6194 0.3611

The test marginal log-likelihood lower bound (in nats),
Ltest, as well as the adjusted Rand index, Rtest

adj , for the
feature-mapped TCGA data set evaluated using
different likelihood distributions for the standard VAE
and using the most promising likelihood function for
the GMVAE. The highest lower bound and Rand index
have been highlighted in bold.

each cluster and even some separation for some
clusters. To train each model one epoch on the
full data set took approximately 8 minutes for the
VAE model and approximately 26 minutes for the
GMVAE model on a GeForce GTX 1080 Ti graph-
ics card.

Traditional RNA-seq data of human cancer
cells
Lastly, we modelled the traditional RNA-seq data
set of human cancer cells from TCGA [25]. As
with the previous data sets different network ar-
chitectures (see Additional file 1: Figure S9) and
likelihood functions (see Table 4) were investi-
gated. There was a clear difference in marginal
log-likelihood lower bound between using either
of the negative binomial distributions from any of
the Poisson distributions. The constrained Pois-
son distribution, however, achieved a significantly
higher lower bound than the other Poisson distri-
butions. The adjusted Rand indices were much
closer together in value for the different likeli-
hood functions with the constrained Poisson dis-
tribution having the highest index. A GMVAE
model with negative binomial distribution was
also trained, but it did not produce better re-
sults than its VAE equivalent, especially not for
the Rand index. The latent space of the GMVAE-
NB model can be seen in Figure 3, where samples
belonging to multiple tissue sites are clearly sep-
arated. The latent space for the VAE-NB model
looks very similar despite the difference in Rand
index (see Additional file 1: Figure S10).

Discussion
We show that VAEs can be used to model scRNA-
seq data. The GMVAE model achieves better
marginal log-likelihood lower bounds as well as
higher Rand indices compared to both a corre-
sponding VAE model as well as previous results,
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Figure 2: Latent space of the GMVAE-ZINB trained and evaluated on the MB-1M data set. Ten clusters was
used in the model, and the encoding of the cells in the latent space has been embedded in two dimensions using
t-SNE and are colour-coded using the clusters to which they belong. Different regions can be seen with even some
separation for some clusters.

Figure 3: Latent space of the GMVAE-NB trained and evaluated on the feature-mapped TCGA data set. The
encoding of the cells in the latent space has been embedded in two dimensions using t-SNE and are colour-coded
using the tissue sites to which they belong. Many of the clusters are clearly separated and they correspond to
different tissue sites.
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and the latent spaces for the GMVAE also show
clear separation according to cell types. The GM-
VAE model, however, struggles with traditional
RNA-seq data, but this might be explained by
the diversity within each data sample.

In modelling three different data sets and sub-
sets thereof, we have found the following guide-
lines help in achieving a higher marginal log-
likelihood lower bound score on a data set. The
network architecture should adapt to the data
set: The more cells in the data set, the larger the
network should be to better capture more subtle
co-variation between genes. The network should
also be larger if several cell types are present to
capture this variability, or if preprocessing leaves
the data set less sparse, which is the case for,
e.g., selecting the most varying genes. The mod-
els for all data sets also benefited from deeper
network architectures. For the likelihood func-
tion, the negative binomial distribution (or in one
case, its zero-inflated version) yielded the highest
values of the lower bound when using all genes,
especially for the traditional RNA-seq data set,
while the constrained Poisson distribution pre-
vailed when limiting to the most varying genes.
We have also shown that using a simpler linear-
factor model for the generative process lead to
significantly worse lower bounds, demonstrating
that non-linear transformations can more easily
express more subtle co-variation patterns in the
data sets.

Its built-in clustering helps the GMVAE achieve
a better log likelihood lower bound than the stan-
dard VAE. Compared to the DIMM-SC model
by Sun et al. [5], the GMVAE models and some
VAE models achieve a higher adjusted Rand in-
dex. We found, however, that the correlation be-
tween lower bounds and Rand indices to be weak.
We also showed that both models are able to scale
up to very large data sets like the data set of 1.3
million mouse brain cells from 10x Genomics.

During the submission process and independent
of our work, two recent articles [26, 27] have pro-
posed methodology quite similar to ours. Both fo-
cus on the zero-inflated negative binomial likeli-
hood function. One [26] uses variational inference
like we propose here, and the other [27] uses a
bottleneck non-probabilistic auto-encoder.

Conclusions
We show that the two proposed variational auto-
encoders are able to model gene expression counts
using appropriate discrete probability distribution
as likelihood (link) functions and provide a soft-
ware implementation. These models are proba-
bilistic and put a lower bound on the marginal
likelihood of the data sets, enabling us to exam-
ine and compare different link functions. We have

applied both models successfully to both single-
cell and traditional RNA-seq data sets. Building
clustering into the Gaussian-mixture variational
auto-encoder, we have a model that can sort cells
into cell populations with little human interaction
compared to earlier more involved models. Hav-
ing both an inference process and a generate pro-
cess, makes it possible to project new data onto an
existing latent space, or even generate new data
from samples in the latent space. This means that
new cells can be introduced to an already trained
model, and it could enable combining the latent
representations of two cells to generate a cell and
the transitional states in between.

In the future, we would like to make the models
more flexible by adding more latent variables [10]
and making the models adaptable to the number
of clusters [28]. We could also use semi-supervised
learning and active learning to better classify cells
and identify cell populations. This would also help
with transfer learning enabling modelling multiple
data sets with the same model. Since these models
are generative, it should also be possible to com-
bine encodings of the cells in the latent space a
produce in-between cells like Campbell and Kautz
[29], who used a Gaussian-process latent-variable
model on fonts [30]. We note that it is possible
to apply these models to data sets with multiple
modalities such as RNA-seq and exome sequenc-
ing [31].

Methods
We have developed generative models for directly
modelling the raw read counts from scRNA-seq
data. In this section, we describe the models as
well as the different data likelihood (link) func-
tions for this task.

Latent-variable models
We take a generative approach to modelling the
data-generating process of the count data vector
x. We assume that x is drawn from the distribu-
tion pθ(x) = p(x |θ) parameterised by θ. In this
case, x represents a single cell and its components
xn, which are also called features, correspond to
the gene expression count for gene n. The num-
ber of features, N , is very high, but we would still
want to be able to model co-variation between the
features. We achieve this by introducing a stochas-
tic latent variable z, with fewer dimensions than
x, and condition the data-generating process on
this. The joint probability distribution of x and z
is then

pθ(x, z) = pθ(x | z)pθ(z), (1)

where pθ(x | z) is the likelihood function and pθ(z)
is the prior probability distribution of z. We have
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considerable freedom to choose these distribu-
tions. We will consider a deep neural network
mapping from z to (the sufficient statistics) of x.
Marginalising out z results in the marginal likeli-
hood for one data point of θ:

pθ(x) =

∫
pθ(x | z)pθ(z) dz. (2)

The log-likelihood function for all data points
(also called examples, which in this case are cells)
will be the sum of the log-likelihoods for each
data point: F(θ) =

∑M
m=1 log pθ(xm), whereM is

the number of cells. We can then use maximum-
likelihood estimation, arg maxθ F(θ), to infer the
value θ.

Deep generative models
For all but the simplest linear models, the
marginalisation over the latent variables in equa-
tion (2) is intractable. However, we want to use
flexible non-linear functions in order to model
complex data. Variational auto-encoders [6, 7]
solve this by using an auto-encoding variational
Bayesian optimisation algorithm as described be-
low.

The non-linear transformations used in a vari-
ational auto-encoder are most often deep neural
networks (or multi-layer perceptrons, MLPs). The
choice of likelihood function pθ(x | z) depends on
the statistical properties of the data, e.g., con-
tinuous or discrete observations, sparsity, as well
as computational tractability. Contrary to most
other VAE-based articles considering either con-
tinuous or categorical input data, our goal is to
model discrete count data directly, which is why
Poisson or negative binomial likelihood functions
are natural choices. This will be discussed in more
detail below. The prior over the latent variables
p(z) is usually chosen to be an isotropic standard
multivariate Gaussian distribution to get the fol-
lowing generative process (illustrated in Fig. 4):

pθ(x | z) = f(x;λθ(z)), (3a)

pθ(z) = N
(
z;0, I

)
, (3b)

where f is a discrete distribution such as the
Poisson: f ′(x;λ) = e−λ λ

x

x! and f(x;λ) =∏
k f
′(xk;λk). The Poisson rate parameters are

functions of z: λθ(z). We can for example param-
eterise it by a single-layer feedforward neural net-
work:

λθ(z) = h
(
Wz + b

)
. (4)

Here, W and b are the weights and bias of a
linear model, θ = (W,b), and h(·) is an appro-
priate element-wise non-linear transformation to

xm

zm

MLP θ

m = 1, . . . ,M

VAE

xm

zmym

MLP

MLP

θ

m = 1, . . . ,M

GMVAE

Figure 4: Model graphs of the generative processes.
The generative processes of (left) the standard
variational auto-encoder and (right) the
Gaussian-mixture variational auto-encoder. Grey circles
signify observable variables and white circles represent
latent variables. The black squares denote the functions
next to them with the variables connected by lines as
input and the variable connected by an arrow as output.

make the rate non-negative. The Poisson likeli-
hood function can be substituted by other proba-
bility distributions with parameters of the distri-
bution being non-linear functions of z in the same
fashion as above (see below). In order to make
the model more expressive we can also replace
the single-layer model with a deep model with
one or more hidden layers. For L layers of adapt-
able weights we can write: al = hl(Wlal−1 + bl)
for l = 1, . . . , L, a0 = z and λθ(z) = aL with
hl(·) denoting the activation function of the lth
layer. For the hidden layers, the rectifier function,
ReLU(x) = max(0, x), is often a good choice. The
reconstruction x̃ is the mean of this probability
distribution: x̃ = Ex | z

[
x
]
, which can be com-

puted analytically from the parameters. The vari-
ance of the reconstruction can also be computed
in similar fashion.

Gaussian-mixture variational auto-encoder

Using a Gaussian distribution as the prior prob-
ability distribution of z only allows for one mode
in the latent representation. If there is an inher-
ent clustering in the data, like for scRNA-seq data
where cells represent different cell types, it would
be desirable to have multiple modes – one for ev-
ery cluster or class. This can be implemented by
using a Gaussian-mixture model in place of the
Gaussian distribution. Following previous work
[7–9, 32], a discrete latent variable y is introduced
to distinguish between the clusters and z is condi-
tioned on this. The joint probability distribution
of x, y, and z is then factorised in the following
way:

pθ(x, y, z) = pθ(x | z)pθ(z | y)pθ(y). (5)
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As before, the latent variables, y and z, can be
marginalised out to give the marginal likelihood:

pθ(x) =
∑
y

∫
pθ(x, y, z) dz. (6)

For z to follow a Gaussian-mixture model, the
mean and variance should be dependent on y, and
y should follow a categorical distribution. Using a
Poisson likelihood again, the generative process
becomes

pθ(x | z) = f(x;λθ(z)), (7a)

pθ(z | y) = N
(
z;µθ(y),σ2

θ(y)I
)
, (7b)

pθ(y) = Cat
(
y;π

)
. (7c)

Here, π is a K-dimensional probability vector,
where K is the number of components in the
Gaussian-mixture model. The component πk of
π is the mixing coefficient of the kth Gaussian
distribution, quantifying how much this distribu-
tion contributes to the overall probability distri-
bution. Without any prior knowledge the cate-
gorical distribution is fixed to be uniform. Fig. 4
shows the generative process for the Gaussian-
mixture variational auto-encoder (GMVAE). The
reconstruction x̃ is computed for each cluster as
before and then averaged using the mixing coef-
ficients: x̃ = Ey

[
Ex | z

[
x
]]
. The variance of the

reconstruction can again be computed in similar
fashion.

Modelling gene expression count data
Instead of normalising and transforming the gene
expression data, the original transcript counts are
modelled directly to take into account the total
amount of genes expressed in each cell also called
the cell depth. To model count data, the likeli-
hood function pθ(x | z) will need to be discrete
and only have non-negative support. We will con-
sider a number of such distributions in the follow-
ing and investigate which ones are best in term
of likelihood on held-out data. The Poisson (P)
distribution is chosen as the first potential can-
didate. Gene expression data are also generally
over-dispersed [33], so the negative binomial (NB)
distribution is also tested.

To properly handle the sparsity of the scRNA-
seq data [34], we test two approaches: a zero-
inflated distribution and modelling of low counts
using a discrete distribution. A zero-inflated dis-
tribution adds an additional parameter, which
controls the amount of excessive zeros added to
an existing probability distribution. For the Pois-
son distribution, f(x;λ), the zero-inflated version
(ZIP) is defined as

f(x; ρ, λ) =

{
ρ+ (1− ρ)f(x;λ), x = 0,

(1− ρ)f(x;λ), x > 0,
(8)

where ρ is the probability of excessive zeros. The
zero-inflated negative binomial (ZINB) distribu-
tion have an analogous expression. Both these
zero-inflated version have also been examined.

The other method is to model low counts using
a discrete distribution and using a second prob-
ability distribution to model the higher counts.
Using the Poisson distribution in the latter case,
leads to the following distribution:

f(x; τ , λ) =

{
τk, x = k, 0 ≤ x < K,

τKg(x−K;λ), x ≥ K,
(9)

where K is the cut-off between low and high
counts, and τ is a K + 1-dimensional probability
vector with components τk quantifying the prob-
ability of a count being equal to k for low counts
or K for high counts. This distribution we call a
piece-wise categorical Poisson (PCP) distribution,
and it has been used to predict demand for large
quantities [35].

Since the cell depth varies for cells [34], a vari-
ation of the Poisson distribution called the con-
strained Poisson distribution is also examined.
This distribution has been used to model word
counts in documents of varying length [36], which
corresponds to gene expression levels in cells. For
the constrained Poisson distribution, the rate pa-
rameter λn for each count xn of gene n is repa-
rameterised as

λn = Dpn, (10)

where D is the cell depth and pn is the propor-
tional contribution for gene n to the cell depth.
This ensures the cell depth is reconstructed cor-
rectly and builds normalisation directly into the
model. Since

∑
n pn = 1, this also couples the

counts for different genes in each cells, whereas the
other probability distributions model each count
individually.

As described earlier, parameters for these prob-
ability distributions are modelled using deep neu-
ral networks. Since we do not know the true con-
ditioning structure of the genes, we make the sim-
plifying assumption that they are independent for
computational reasons and therefore use feedfor-
ward neural networks.

Variational auto-encoders
In order to train and evaluate deep generative
models, we need approximative inference. Here we
will use variational auto-encoders which amounts
to replacing the intractable marginal likelihood
with its variational lower bound and estimate
the intractable integrals with low-variance Monte
Carlo estimates. The lower bound is optimised
for different models on the training set and af-
ter training evaluated on a test set in order to
perform model comparison.
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Since the likelihood function pθ(x | z) for the
standard VAE is modelled using non-linear trans-
formations, the posterior probability distribu-
tion pθ(z |x) = pθ(x | z)pθ(z)/pθ(x) becomes in-
tractable. Variational auto-encoders use a vari-
ational Bayesian approach where pθ(z |x) is re-
placed by an approximate probability distribu-
tion qφ(z |x) modelled using non-linear transfor-
mations parameterised by φ. Thus, the marginal
log-likelihood can be written as

log pθ(x) = KL
(
qφ(z |x)

∥∥ pθ(z |x)
)

+L(θ,φ;x).
(11)

Here, the first term is the Kullback–Leibler (KL)
divergence between the true and the approxi-
mate posterior distributions. The KL divergence
is a non-negative measure of the dissimilarity be-
tween two probability distributions, and it is only
zero for identical probability distributions. How-
ever, since the true posterior distribution is in-
tractable, this KL divergence cannot be evalu-
ated, but because it is non-negative, it does put
a lower bound on the marginal log-likelihood:
log pθ(x) ≥ L(θ,φ;x), which is why L(θ,φ;x)
is called the marginal log-likelihood lower bound.
This can be decomposed into two terms as well:

L(θ,φ;x) = Eqφ(z|x)
[

log pθ(x|z)
]

−KL
(
qφ(z|x)

∥∥ pθ(z)
)
,

(12)

where the first term is the expected negative re-
construction error, which measures how good the
model can reconstruct x. The second term is the
relative KL divergence between the approximate
posterior distribution qφ(z|x) and the prior distri-
bution pθ(z) of z. Since both terms are integrals
over z, these are still analytically intractable, so
they are evaluated using Monte Carlo sampling in-
stead. Compared to estimating the marginal like-
lihood directly by for example importance sam-
pling, the variance of these Monte Carlo esti-
mators have much lower variance because they
involve averages over logarithms of distributions
and not the distributions themselves. The KL di-
vergence can, however, be computed analytically
for two Gaussian distributions. For the standard
VAE, the approximate posterior distribution is
chosen to be a multivariate Gaussian distribution
with a diagonal covariance matrix:

qφ(z |x) = N
(
z;µφ(x),σ2

φ(x)I
)
, (13)

where µφ(x) and σ2
φ(x) are non-linear transfor-

mations of x parameterised by φ. Using a single-
layer feedforward neural network for each, they
are computed as

µφ(x) = u
(
W(φ)

µ x + b(φ)
µ

)
, (14a)

σ2
φ(x) = v

(
W

(φ)
σ2 x + b

(φ)
σ2

)
. (14b)
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Figure 5: Model graphs of the inference processes.
The inference processes of (left) the standard
variational auto-encoder and (right) the
Gaussian-mixture variational auto-encoder. See Fig. 4
for explanation of symbols. In addition, the rhombi
symbolise deterministic variables.

As in equation (4), W(φ) and b(φ) are the weights
and biases of linear models, while u(·) and v(·)
are appropriate non-linear transformations. Equa-
tion (13) is called the inference process, and it is
illustrated in Fig. 5.

Both processes are optimised simultaneously
using a stochastic gradient descent algorithm,
and a reparameterisation trick for sampling from
qφ(z |x) is used that allows back-propagation of
the gradients in the optimisation algorithm. The
reported marginal log-likelihood lower bound is
the mean over all examples.

Because of the additional latent variable, the
marginal log-likelihood lower bound for the GM-
VAE has added complexity:

L(θ,φ;x) = Eqφ(y|x)
[
Eqφ(z|x,y)

[
log pθ(x|z)

]
−KL

(
qφ(z|x)

∥∥ pθ(z|y)
)]

−KL
(
qφ(y|x)

∥∥ pθ(y)
)
.

(15)

The first term is the standard VAE lower bound
for each class y averaged over all classes, and the
second term is the KL divergence for y. The two
approximate posterior distributions in the infer-
ence process are

qφ(z|x, y) = N
(
z;µφ(x, y),σ2

φ(x, y)I
)
, (16a)

qφ(y|x) = Cat
(
y;πφ(x)

)
. (16b)

Here, the kth component of πφ(x) is the responsi-
bility of the kth Gaussian distribution for x, quan-
tifying how much this distribution contributes to
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the overall probability of x. The inference process
for the GMVAE is shown in Figure 5.

Adjusted Rand index
The adjusted Rand index [37], Radj, is used to
measure the similarity between two different clus-
terings of the same data set. Two identical clus-
terings have Radj = 1, while the expected value of
the adjusted Rand index is 0 (it is not bounded
below).

Because the VAE have no built-in clustering,
k-means clustering is used to cluster the latent
representations of the cells fro this model. For the
Gaussian-mixture VAE, each cell sample can di-
rectly be a assigned to a cluster by picking the
mixture component with the highest responsibil-
ity.

We note that the adjusted Rand index is not
optimised during the optimisation algorithm and
is computed only at the end.

Visualising the latent space
To visualise the latent space in which the latent
representations reside, the mean values of the ap-
proximate posterior distribution qφ(z|x) are plot-
ted instead of the samples. This is done to better
get a representation of the probability distribution
for the latent representation of each cell. For the
standard VAE, this is just z̄ = µφ(x), and for the
GMVAE, z̄ = Ey

[
µφ(x, y)

]
. To visualise higher

dimensional latent spaces, we projected to two di-
mensions using t-distributed stochastic neighbour
embeddings [38].

RNA-seq data sets
We model three different RNA-seq data sets as
summarised in Table 1. The first data set is
of single-cell gene expression levels of peripheral
blood mononuclear cells (PBMC) [23]. It is pub-
lished by 10x Genomics as ten data sets of dif-
ferent purified cell types [39–48], and we use the
filtered gene–cell matrices for each data set. One
of these data sets contains two different cell types,
but since there are no separation of the two in the
data set, we only use the ten cell types assigned
by 10x Genomics. We combine these ten data sets
into one single data set of purified immune cells
(PBMC). Following Sun et al. [5], we also make
two smaller subsets of the purified immune cell
types: one subset of lymphocytes with three dis-
tinct cell types (PBMC-L) and one subset of T
cells with three similar cell types (PBMC-T). The
specific cell types for each subset are listed in Ta-
ble 1. This table also shows the high sparsity of
the data sets.

The second data set is also a single-cell gene
expression data set made publicly available by 10x

Genomics [24], and we again use the filtered gene–
cell matrix. This data set contains gene expression
levels for 1.3 million mouse brain cells (MB-1M),
but in contrast to the PBMC data set, the cells
were not purified so this data set does not contain
any information about cell types. A smaller subset
of 20 000 uniformly randomly selected cells (MB-
20k) is also provided by 10x Genomics [24].

The last data set is a traditional RNA-seq data
set made publicly available by TCGA [25, 49].
This data set consists of RSEM expected gene ex-
pression counts for samples of human cancer cells
from 29 tissue sites. Gene IDs are used in this data
set, so the available mapping from TCGA [49] is
used to map the IDs to gene names. The difference
in number of genes and sparsity from the original
data set is not large as can be seen from Table 1.

Experiment setup
Each data set is divided into training, validation,
and test sets using a 81 %-9 %-10 % split with uni-
formly random selection. The training sets are
used to train the models, the validation sets are
used to validate the models during training, and
the test sets are used to evaluate the models after
training.

For the deep neural networks, we examine dif-
ferent network architectures to find the optimal
one for each data set. We test deep neural net-
works of both one and two hidden layers with 100,
250, 500, or 1000 units each. We also experiment
with a latent space of both 10, 25, 50, and 100
dimensions. A standard VAE with the negative
binomial distribution as the likelihood function
(a VAE-NB model) is used for these experiments.
Using the optimal architecture, we test the prob-
ability functions introduced earlier as likelihood
function for the standard VAE.

The hidden units in the deep neural networks
use the rectifier function as their non-linear trans-
formation, while the latent units and the output
units use a non-linear transformation appropriate
for the parameters they model. For real, positive
parameters (λ for the Poisson distribution, r for
the negative binomial distribution, σ in the Gaus-
sian distribution), we model the natural logarithm
of the parameter. For the standard deviation σ
in the Gaussian-mixture model, however, we use
the softplus function, log(1+ex), to constrain the
possible covariance matrices to be only positive-
definite. The units modelling the probability pa-
rameters in the negative binomial distribution, p,
and the zero-inflated distributions, πk, use the sig-
moid function, while for the categorical distribu-
tions in the constrained Poisson distribution, the
piece-wise categorical distributions, as well as for
the Gaussian-mixture model, the probabilities are
given as logits with linear functions, which can be
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evaluated as probabilities using softmax normal-
isation. Additionally for the piece-wise categori-
cal distributions, we choose the cut-off K to be 4,
since this strikes a good balance between the num-
ber of low and high count for all examined data
sets (see Additional file 1: Figure S11 for an ex-
ample of this). For the k-means clustering and the
GMVAE model, the number of clusters is chosen
to be equal to the number of classes, if cell types
were provided.

The models are trained using one Monte Carlo
sample for each example and using the Adam op-
timisation algorithm [50] with a mini-batch size
of 100 and a learning rate of 10−4. Additionally,
we use batch normalisation [51] to improve con-
vergence speed of the optimisation. We train all
models for 500 epochs and use early stopping with
the validation marginal likelihood lower bound to
select parameters θ and φ. As a baseline model to
test whether the non-linearity in the neural net-
work contributes to a better performance, we try
out models with the same link function, but with-
out the hidden layers in the generative process.
This corresponds to factor analysis (FA) with a
generalised linear model link function (denoted
FA models).

Software implementation
The models described in this sections have been
implemented in Python using Google’s machine-
learning software library TensorFlow [52] in
an open-source and platform-independent soft-
ware tool called scVAE (single-cell (or sparse
count) variational auto-encoders), and the source
code is freely available at https://github.com/
chgroenbech/scVAE along with a user guide and
examples. The results in this article were pro-
duced using version 1.0.[53]

The data sets presented in “Results” along with
others are also easily accessed using this tool. This
tool also includes extensive support for sparse
data sets and makes use of this sparseness to re-
duce its memory footprint. It can thus be used on
the largest data sets currently available as demon-
strated on the MB-1M data set [24].
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