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Abstract: Gene co-expression networks are relevant to functional and clinical translation of 36 

schizophrenia (SCZ) risk genes. We hypothesized that SCZ risk genes may converge into co-37 

expression pathways which may be associated with gene regulation mechanisms and with response to 38 

treatment in patients with SCZ. We identified gene co-expression networks in two prefrontal cortex 39 

post-mortem RNA sequencing datasets (total N=688) and replicated them in four more datasets (total 40 

N=227). We identified and replicated (all p-values<.001) a single module enriched for SCZ risk loci 41 

(13 risk genes in 10 loci). In silico screening of potential regulators of the SCZ risk module via 42 

bioinformatic analyses identified two transcription factors and three miRNAs associated with the risk 43 

module. To translate post-mortem information into clinical phenotypes, we identified polymorphisms 44 

predicting co-expression and combined them to obtain an index approximating module co-expression 45 

(Polygenic Co-expression Index: PCI). The PCI-co-expression association was successfully replicated 46 

in two independent brain transcriptome datasets (total N=131; all p-values<.05). Finally, we tested the 47 

association between the PCI and short-term treatment response in two independent samples of patients 48 

with SCZ treated with olanzapine (total N=167). The PCI was associated with treatment response in the 49 

positive symptom domain in both clinical cohorts (all p-values<.05).  50 

In summary, our findings in a large sample of human post-mortem prefrontal cortex show that co-51 

expression of a set of genes enriched for schizophrenia risk genes is relevant to treatment response. 52 

This co-expression pathway may be co-regulated by transcription factors and miRNA associated with 53 

it.  54 

 55 

KEYWORDS: Gene co-expression networks, dorsolateral prefrontal cortex, olanzapine, RNA 56 

sequencing, schizophrenia. 57 
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[Main Text:]  58 
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Introduction 59 

Schizophrenia (SCZ) risk is highly related to genetic factors, and specific risk loci have recently 60 

been identified by the Psychiatric Genomics Consortium (PGC) (1). The discovery that at least 108 61 

genetic loci are associated with the disease suggests that multiple biological processes may be involved 62 

in SCZ, perhaps converging into one or few common pathways (high coherence), or distributed across 63 

many pathways of genetic risk (low coherence) (2). The question of genetic risk coherence is an 64 

important issue in SCZ research because the functional and clinical translation of PGC SCZ risk 65 

variants remains modest when they are considered on their own or additively cumulated. For example, 66 

currently available cumulative scores do not explain a large fraction of the variance in treatment 67 

response and treatment resistance (3, 4). 68 

The challenge of translating genetic risk into common pathways associated with clinical 69 

predictions is compounded by the fact that we know the risk loci, but in only a minority of cases do we 70 

know which genes within them are causally implicated in the disorder. PGC risk loci include many 71 

genes and are proximal to many more, such that risk variants in the loci may theoretically impact 72 

hundreds of genes (5); additionally, the effect of genetic variants in the PGC loci is not necessarily 73 

restricted to proximal genes (6). Understanding the relationship between risk variants and genes 74 

involved in the disorder may require identification of common pathways and biological processes 75 

involving genes located in multiple loci – rather than considering only the genetic variants associated 76 

with GWAS hits. In turn, discovering biological pathways that bring together multiple SCZ risk loci 77 

will contribute to identify molecular elements, such as transcription factors and miRNA, that may 78 

represent nodes of risk convergence by regulating diverse gene functions.  79 

A basic principle of biology is that the expression of individual genes is often coordinated by 80 

regulatory molecules resulting in the co-expression of gene networks (7). Therefore, gene co-81 
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expression is a biological process possibly relevant to the convergence of SCZ risk into common 82 

pathways that are associated with clinical translation of PGC loci. At least some of the PGC risk 83 

variants control gene expression (8, 9). Recent evidence suggests that genes in the PGC SCZ loci co-84 

segregate into co-expression pathways (8) and genetic variation in such pathways is relevant to SCZ 85 

phenotypes (10).   86 

We hypothesized that genes located in PGC SCZ risk loci may converge into co-expression 87 

pathways which, in turn, may reveal molecular elements potentially contributing to orchestrate genetic 88 

risk into common biological pathways and ultimately clinical outcome. The translational relevance of 89 

such co-expression pathways to SCZ can be validated in terms of their association with clinical 90 

phenotypes in patients, including treatment outcome. However, gene set clustering in co-expression 91 

networks is variable and methodologically complex (11), and thus requires transcriptome-wide 92 

replication to be considered reliable. Fromer and coworkers (8) previously used RNA sequencing in 93 

post-mortem prefrontal cortex to identify gene expression patterns potentially relevant to SCZ risk. 94 

Here, we used RNA sequencing data from the two largest collections of post-mortem prefrontal cortex 95 

currently available: the Lieber Institute for Brain Development repository (LIBD) (12) and the 96 

CommonMind Consortium collection (CMC) (8). We identified gene co-expression networks by means 97 

of Weighted Gene Co-expression Network Analysis (WGCNA) (13). After assessing network 98 

preservation of the LIBD co-expression network in CMC, we focused on one module showing 99 

overrepresentation of genes located in the PGC SCZ loci. We aimed to identify potential genetic 100 

regulators of the loci and to assess clinical translation. In order to translate post-mortem data mining 101 

into clinical phenotypes, we used common genetic variation, i.e., we identified co-expression 102 

quantitative trait loci (co-eQTLs) (10) and combined them to obtain a numeric index approximating 103 

network co-expression (14). Genetic variation in this gene set was associated with short-term treatment 104 

response to olanzapine in terms of positive symptoms in the largest double-blind clinical trial openly 105 
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available to date with genome-wide genotyping (CATIE; N = 121) (15). We replicated the clinical 106 

results in an independent dataset of 46 patients with SCZ treated with olanzapine in Bari, Italy (16). 107 

The current work complements further reports on partially overlapping datasets which focused on 108 

network approaches to identify potential novel drug targets (17). 109 

110 
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Results 111 

Co-expression Network of human prefrontal cortex.  112 

We selected frontal cortex samples from 343 LIBD subjects and 345 CMC subjects. The sample was 113 

filtered based on RNA Integrity Number (≥7.0), age range (17-86 years), ethnicity (African-American 114 

and Caucasians), and diagnosis (LIBD: patients with SCZ = 143, healthy controls [HCs] = 200; CMC: 115 

patients with SCZ = 166; HCs = 179; demographics in Table 1). Transcripts available in both datasets 116 

with Reads Per Kilobase per Million (RPKM) > .1 mapped to 20,993 genes. After preprocessing (11), 117 

we computed WGCNA, separately for patients with SCZ and HCs within each of the two datasets, and 118 

derived network preservation statistics (Fig. S1) (18, 19). We found that all co-expression modules 119 

showed moderate to strong preservation between patients with SCZ and HCs both in the LIBD and in 120 

CMC datasets (all Z-summary scores ≥ 2, Fig. S1). Since all modules were thus relatively preserved 121 

between patients with SCZ and HCs across both datasets at the selected threshold (results in 122 

Supplementary Materials, SM, and Fig. S1), we pooled data from patients and controls and identified 123 

one network for the LIBD and one for the CMC datasets. The results reported in the manuscript refer to 124 

this WGCNA with pooled patients with SCZ and HCs. In this WGCNA, we selected the LIBD network 125 

as the reference and tested its preservation in the CMC network, which was successful (Fig. 1A-B; 126 

additional details in the SM; Table S1 and S2; Fig. S2). The whole network identified in the LIBD 127 

dataset with gene modules and connectivity statistics is available in Data file S1.   128 

 129 

TABLE 1 ABOUT HERE 130 

 131 

 132 
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Prioritization of modules relevant for SCZ.  133 

We prioritized modules in terms of their relevance for SCZ. To assess their relevance to diagnosis, we 134 

tested whether any module eigengenes (the first principal component of gene expression in the 135 

modules, abbreviated as ME in the following) were associated with diagnosis. Six ME were 136 

significantly different between patients with SCZ and HCs in the LIBD network (Bonferroni-corrected 137 

p-value < .05, Table S3), suggesting potentially different co-expression. However, none of these 138 

associations were replicated in CMC (all uncorrected p-values > .05, Table S3). Having found no 139 

replicable co-expression signature of diagnosis, we asked whether any of the modules included more 140 

risk genes for SCZ than expected by chance. This way we directly tested the hypothesis that risk 141 

converges into co-expression pathways. To detect modules in which PGC SCZ risk genes (n = 310; 142 

gene list in the Table S4) were overrepresented, we computed hypergeometric tests and corrected the 143 

results for multiple comparisons (Bonferroni-corrected p-value < .05). We found that the Darkgreen 144 

module in the LIBD network was the only module significantly enriched for genes in the PGC SCZ 145 

loci (10 loci, 13 genes, p-value = 3.1×10-5, see Table 2, see Table S5 for the full list of Darkgreen 146 

genes). Notably, the enrichment remained significant when including both protein-coding and non-147 

protein-coding genes located in the PGC loci (p-value = 5.7×10-4), further suggesting that Darkgreen 148 

co-expressed genes co-localized with genetic risk for SCZ. Next, we asked whether this enrichment 149 

was affected by genetic spatial proximity. Our hypothesis was that the overrepresentation of SCZ risk 150 

genes should remain significant when expanding the boundaries of the loci within a genomic distance 151 

compatible with an influence of sequence elements on gene expression (20, 21). The enrichment 152 

survived permutation-based empirical p-value < .001 when loci were expanded up to 450 kbp (Fig. 1C; 153 

see also Fig. S3, which includes protein-coding and non-protein-coding genes), indicating that many 154 

genes in the same loci were co-expressed in Darkgreen. Additionally, gene set ‘competitive’ 155 

enrichment analysis with the software MAGMA (22) demonstrated that variants falling within 156 
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Darkgreen were associated with greater SCZ risk compared to the remaining sets (we excluded the 157 

Grey module of non-clustered genes; p-value = .036, see Methods and Table S1 for details). Hence, 158 

converging evidence from the gene list and the localization of genetic variants suggested that genetic 159 

risk for SCZ converged into Darkgreen. Moreover, ME Darkgreen was not associated with possible 160 

biological confounders such as smoking habit, nor with antipsychotic or antidepressant medications in 161 

SCZ patients (we used a binary classification of whether or not patients used the substances; 162 

uncorrected p-value > .1; Data file S2 reports uncorrected p-value for all modules in the LIBD 163 

network).   164 

 165 

Functional significance of Darkgreen module.  166 

Darkgreen included 225 genes, of which 157 were protein coding (Table S5). We investigated the 167 

functional significance of Darkgreen by means of gene ontology analyses. Darkgreen was functionally 168 

enriched for gene products involved in homophilic cell adhesion via plasma membrane (Amigo2, 169 

GO:0007156, 9 genes, fold-enrichment = 7.92, Bonferroni-corrected p-value = .022). Specific 170 

Expression Analysis [http://genetics.wustl.edu/jdlab/csea-tool-2/] (23) revealed that Darkgreen was 171 

enriched for genes preferentially expressed in the cortex during young adulthood (24) (Fig. S4). 172 

Therefore, we asked whether Darkgreen genes were also co-expressed during neurodevelopment, given 173 

the importance of developmental ages for SCZ liability (25). WGCNA on a sample of 93 LIBD 174 

subjects from fetuses to 16 year old individuals (hereinafter, LIBD developmental series) non-175 

overlapping with the sample used in the main analysis revealed higher than chance topological 176 

preservation (empirical p-value < .001 (26); Table S6), showing that Darkgreen gene-gene 177 

relationships were significant also in independent subjects during developmental life stages. We also 178 

explored further datasets to assess the robustness of the gene-gene relationships detected in this 179 
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module. Darkgreen was among 12 modules preserved in all of the three additional frontal cortex 180 

microarray and RNA sequencing datasets we analyzed, showing that the gene-gene associations we 181 

identified were robust (Fig. 1D; empirical p-value < .001 (26); Table S6). Fig.1E represents the hub 182 

genes of Darkgreen and their relationship with PGC SCZ hits included in the module. 183 

 184 

Genetic regulation potentially implicated in Darkgreen module co-expression.  185 

We hypothesized that co-expressed genes may be co-regulated by elements such as transcription 186 

factors (TFs) and miRNA. We tested this hypothesis by investigating transcription factors targeting 187 

Darkgreen genes. Using the software Pscan (http://159.149.160.88/pscan/)(27) we identified two TFs 188 

(NRF1, KLF14) whose binding motif was overrepresented in the promoter regions of our co-expressed 189 

genes (Bonferroni-corrected p-value < .05). Interestingly, seven out of 13 SCZ risk genes showed an 190 

association with NRF1 (GIGYF2, NDUFA6, SCAF1, CACNA1C, IGSF9B, TMX2, ANKRD44); also 191 

KLF14 had seven PGC risk gene targets (SCAF1, ANKRD44, GIGYF2, TMX2, CACNA1C, IGSF9B, 192 

AKT3). However, the identified TF were related with several other modules (corrected p-value < .05; 193 

NRF1 to 24 modules; KLF14 to 18 modules; Fig. S5), hindering conclusions about their specificity. It 194 

is also possible that some TFs may exert their effects on multiple modules because of tissue expression 195 

specificity or biological coherence of the identified modules.  196 

Micro-RNAs (miRNAs) are also regulators of gene co-expression (28). Hauberg and coworkers (29) 197 

have shown that the targetome of 10 miRNAs is enriched for SCZ risk variants. Here, we assessed the 198 

overrepresentation of the targetome of each of these miRNAs in Darkgreen. We found that the targets 199 

of three SCZ-related miRNA (miR-101, miR-374, miR-28) were overrepresented in Darkgreen 200 

(Bonferroni-corrected p-value < .05; see Table S7 for further details), suggesting that these miRNAs 201 
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may plausibly promote the correlated expression of Darkgreen genes. Both miR-374 and miR-28 202 

targets shared the same seven SCZ risk genes (AKT3, ANKRD44, CACNA1C, PCDHA3, PCDHA4, 203 

PCDHA5, PCDHA6), while among miR-101 targets we found two risk genes (ANKRD44 and AKT3). 204 

To assess the specificity of these findings, we computed the enrichment for miRNA targetomes in all 205 

other modules and reported uncorrected p-values in Data file S3. The identified miRNAs overlapped 206 

with only few modules (miR-101/miR-374/miR-28 = 8/6/10 modules, corrected p-value < .05, Fig. S6), 207 

suggesting some degree of specificity. Overall, these results are consistent with the idea that genetic 208 

risk convergence in Darkgreen may be mediated by TFs and miRNAs. 209 

 210 

Overlap with genes regulated by antipsychotics 211 

We defined our network based on data from patients with SCZ and HCs. Since SCZ patients are 212 

usually treated with antipsychotics, it can be hypothesized that drugs contributed to the aggregation of 213 

genes into modules. In a recent study, Kim and coworkers (30) identified genes differentially expressed 214 

in the striatum and in the whole brain of mice exposed to haloperidol vs. not exposed mice. We 215 

computed for all modules the enrichment for the differentially expressed genes and found a single 216 

module (Brown) enriched (11 genes, 16% of total differentially expressed genes, Bonferroni-corrected 217 

p-value = .00447, Data file S4). Specifically, Brown was enriched for down-regulated genes (9 genes, 218 

26.5% of down-regulated genes, Bonferroni-corrected p-value = .00411; Fig. S7). Darkgreen did not 219 

show any significant overlap with haloperidol target genes, suggesting that its relevance for SCZ risk 220 

genes was not a by-product of medication, at least to the extent that haloperidol is a representative 221 

antipsychotic.      222 

FIGURE 1 ABOUT HERE 223 
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TABLE 2 ABOUT HERE 224 

 225 

Polygenic Co-expression Index.  226 

To translate Darkgreen co-expression into clinical phenotypes, we generated an index predicting 227 

Darkgreen co-expression based on the genetic background of each individual. We first identified single 228 

nucleotide polymorphisms (SNPs) predicting co-expression (co-eQTLs) of the whole module and 229 

generated a Polygenic Co-expression Index (PCI (10, 14)). We used a Robust Linear Model to assess 230 

allelic dose effects on Darkgreen ME (which explained 28% of the variance in the LIBD dataset). The 231 

linear model was adjusted for diagnosis, age, sex, RNA integrity (RIN), total RPKM mapped, total 232 

RPKM mapped to mitochondrial DNA, and 10 genomic principal components accounting for 233 

population stratification. With the aim of increasing our statistical power, we computed a meta-analytic 234 

p-value for each SNP based on the effect size in the LIBD and CMC datasets (meta-analytic dataset; 235 

overall, 688 subjects). We ranked SNPs based on their meta-analytic p-value and computed several 236 

PCIs by adding one SNP at a time (SNPs weights are available in Table S8). Our purpose was to 237 

identify an ensemble of SNPs affording prediction of co-expression (correlation between Darkgreen 238 

ME and PCIs), rather than identifying single genetic variants associated with co-expression per se 239 

(although it is noteworthy that the first ranked SNP, rs9836592, would survive Bonferroni correction 240 

for multiple comparisons). To determine how many variants should be included in the PCI, we 241 

replicated the association between Darkgreen ME and PCIs in two additional transcriptomic and 242 

genomic datasets (BRAINEAC samples with RIN > 5.5, N = 38; LIBD developmental series samples 243 

with RIN  7.0, N = 93) (31, 32)). The test sets did not affect the model at any stage, because both the 244 

ME and the weights of the SNPs in the PCI were derived from the training sets. We found that all PCIs 245 

including between 6 and 32 SNPs afforded significant predictive capacity in both datasets with an 246 
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effect size comparable between discovery and replication sets (BRAINEAC: p-value < .05, Fig. 2A-B; 247 

LIBD developmental series: p-value < .05; Fig 2A and Fig. S8). Table 3 includes annotations of the 248 

first 32 SNPs.   249 

To study translational phenotypes in a clinical population, we performed a meta-analysis of the 250 

BRAINEAC and the LIBD developmental series - both test datasets independent of the training sets - 251 

to select the most reliable predictors of co-expression. Prediction strength reached a plateau between 14 252 

and 17 SNPs, with no further improvement when more SNPs were added (Fig. 2C). Based on these 253 

results, we used the PCIs including 14 to 17 SNPs as predictors of symptom improvement (positive, 254 

negative, and general PANSS) in the CATIE clinical trial of antipsychotic efficacy.  255 

FIGURE 2 ABOUT HERE 256 

TABLE 3 ABOUT HERE 257 

 258 

Clinical study.  259 

We focused on patients treated with olanzapine because it showed the best response in the study (33) 260 

and because we had a replication sample available undergoing the same treatment. The outcome 261 

variable was percent change of symptom severity from baseline to one-month follow-up both in CATIE 262 

and in UNIBA datasets. We computed a Robust Multiple Regression to assess the association with the 263 

PCIs, controlling for age, gender, education level and ancestry (indexed using the first ten genomic 264 

principal components). We corrected statistics for multiple comparisons using pACT (34). Table 4 265 

illustrates the results. This correction procedure accounts for the high correlation between the 266 

predictors and between the dependent variables. We found the most significant relationship between 267 

the PCI-16 and positive PANSS improvement (corrected p-value = .033, partial-η2 = .061; Fig. 3A), 268 
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which replicated in the UNIBA independent clinical sample (one-tailed p = .0475, partial-η2 = .067; 269 

Fig. 3B; Table 4). We assessed the biological significance of this set of 16 SNPs by interrogating 270 

Haploreg v. 4.1. Haploreg tests the presence of genetic regulatory elements in a given SNP list (35, 36). 271 

Our SNP list was specifically enriched for H3K27ac-H3K9ac marks in the dorsolateral prefrontal 272 

cortex including Brodmann Areas (BA) 46 and 9 (Bonferroni-corrected p-value = .029). It is worth 273 

mentioning that the LIBD RNA sequencing was obtained on BA 46 cortical tissue.  274 

 275 

276 
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Discussion 277 

We investigated the convergence of SCZ PGC loci into co-expression networks with the aim of 278 

identifying a biological pathway of SCZ risk and regulatory elements associated with gene co-279 

expression that could be translated to the clinic. We identified a gene co-expression module enriched 280 

for genes located in risk loci for SCZ. This finding was reproducible, as demonstrated by network 281 

preservation and replicated topological overlap in four independent brain gene expression datasets. 282 

Module genes were associated with potential gene expression regulation elements. Co-eQTLs 283 

identified in 688 subjects were associated with short-term treatment response to olanzapine – a first line 284 

antipsychotic - in patients with SCZ. These findings suggest a significant degree of coherence of SCZ 285 

risk genes and co-expression partners that might be translated to the clinic. 286 

 287 

Gene co-expression in schizophrenia 288 

In the context of noncoding variation, which characterizes most GWAS significant SNPs and common 289 

disorders, gene expression is likely the phenotype closest to DNA in which inter-individual differences 290 

can be directly associated with genetic variation. The multifold preservation of the network is 291 

important because one may expect that gene co-expression in patients with SCZ may be confounded by 292 

state-related factors such as pharmacological treatment; instead, our results demonstrate that such state-293 

related factors did not dominate the topology of the network, which was replicated in three independent 294 

datasets of non-psychiatric individuals of various ages totaling 227 subjects. Therefore, it is unlikely 295 

that our results are biased because of the use of data from patients. Moreover, we failed to associate the 296 

gene-gene relationships within Darkgreen with smoking or antipsychotic medication (90 patients were 297 

treated and 50 showed no evidence of treatment with antipsychotics), though these phenomenological 298 
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factors are poorly quantified in post-mortem tissue. Notably, it is difficult to conclusively rule out the 299 

effect of antipsychotic medication because the possible confounding effects of medication may depend 300 

on the specific antipsychotic administered and on the dosage.  301 

Jaffe and coworkers (12) have suggested that preprocessing RNA data controlling for hidden RNA 302 

quality is a key factor affecting the inferences drawn from transcriptome studies and the topology of the 303 

network we report here holds also when preprocessing data with the conservative approach they 304 

described (Fig. S11). In summary, the network we identified and validated in the largest sample tested 305 

to date (including data from overall 915 post-mortem samples) is robust in terms of reproducibility and 306 

highlights gene-gene relationships revealing non-random clustering of SCZ risk genes. 307 

 308 

The schizophrenia risk co-expression module 309 

Gene ontology analysis revealed involvement of Darkgreen genes in cell-cell adhesion, a biological 310 

process previously associated with risk for SCZ and bipolar disorder (37, 38). It should be noted that 311 

we selected genes expressed in the brain, whereas ontologies were not filtered in the same way. This 312 

implies that our approach was conservative and more biological functions than currently detected may 313 

be shared by these genes. Interestingly, the same gene ontology characterized differentially expressed 314 

genes in induced pluripotent stem cell-derived differentiated neurons, in a recent study comparing 315 

populations of monozygotic twins with discordant response to clozapine in treatment-resistant SCZ 316 

(39). Taken together, both findings highlight the potential importance of the genes co-expressed in 317 

Darkgreen for the physiology of olanzapine and clozapine, two atypical antipsychotics. Darkgreen 318 

included also genes coding for proteins involved in synaptic transmission mediated by serotonin, 319 

glutamate and GABA (HTR1F, GRM5, GABRB1, GABRG3), or involved in neural excitability 320 
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(KCNH1, KCNA3, KCNH7, KCNH5), along with CACNA1C, a risk gene for SCZ and bipolar disorder 321 

supported by multiple lines of evidence (40-44). The functions of the genes in Darkgreen are consistent 322 

with previous pathway analyses of SCZ risk (45) and enhance the biological plausibility that the co-323 

regulation of this module has functional relevance.  324 

Although co-expression does not necessarily imply gene co-regulation, it is noteworthy that the 13 325 

PGC hits of Darkgreen are distributed across 10 different loci, rather than encompassing a single locus 326 

that is co-transcripted because of genetic proximity (20, 21). This finding suggests that there may be 327 

co-regulators of these 10 loci, which we attempted to identify via bioinformatics analyses. The findings 328 

that promoter sequences of Darkgreen genes were enriched for the target sequence of two transcription 329 

factors (NRF1 and KLF14) and for the targetome of three miRNAs previously associated with SCZ 330 

(miR-101, miR-374, miR-28) represent a potentially relevant clue about regulatory elements and target 331 

sequence patterns potentially implicated in the co-regulation of SCZ risk genes. However, the 332 

association of TFs and, to a lesser extent, of miRNAs to other modules hinder conclusions about 333 

specificity. The targetome of genetic regulatory elements is generally larger than the size of a single co-334 

expression module and may therefore be associated with multiple gene sets.  Furthermore, the role of 335 

these regulatory elements in neurodevelopment (46-48) and the significant preservation of Darkgreen 336 

topology in very young subjects is consistent with the hypothesis that SCZ risk genes are coordinated 337 

by processes relevant to neurodevelopmental trajectories. 338 

 339 

Genetic variants associated with co-expression of schizophrenia risk genes 340 

Since it is not possible to directly assess gene expression in the living human brain, it is of interest to 341 

translate models of gene co-expression into genetic variants (co-eQTLs) which index co-expression in 342 
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living individuals. The co-eQTLs detected here merit further investigation as potential indicators of loci 343 

affected by genetic regulatory elements associated with positive symptoms and their clinical course. 344 

For example, the first ranked SNP, rs9836592, has been associated with risk for bipolar disorder (49), 345 

another disorder frequently treated with antipsychotic drugs such as olanzapine.  Furthermore, this SNP 346 

has been already associated with the regulation of gene expression (49) and is an eQTL for CACNA1D 347 

(9). Moreover, the entire set of 16 SNPs was enriched for histone acetylation marks. Previous evidence 348 

supports the relevance of histone modification pathways to SCZ (45) and the specific role of H3K27ac 349 

markers in autism (50) a neurodevelopmental disorder sharing some genetic risk with SCZ (51). The 350 

clinical evidence obtained in two independent samples supports the functional role of these SNPs in the 351 

clinical treatment of SCZ.  352 

 353 

Clinical translation of transcriptome data mining 354 

We found that the PCI computed using the genetic variants above described was reproducibly 355 

associated with treatment response to olanzapine. On the one hand, this finding suggests that the 13 356 

PGC hit genes co-expressed in Darkgreen are candidates within their loci for mechanistic 357 

interpretations of response to treatment. On the other hand, the PCI indexes a wider group of genes, 358 

going beyond the 13 PGC hits, suggesting a broader transcriptomic landscape of risk and more relevant 359 

here, of the biology of treatment response. Such landscape stratifies patients with SCZ in terms of 360 

treatment response even though Darkgreen co-expression is not reproducibly associated with diagnosis 361 

and the PCI variants per se are not associated with diagnosis. Another implication of the present 362 

findings is that antipsychotic efficacy may involve many more genes than those coding for the 363 

traditional targets, e.g., dopamine and serotonin antagonism, and may depend on the convergence in 364 

terms of genetic regulation of multiple neural transmission systems, including glutamate and GABA 365 
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receptors, as well as calcium and potassium channels. This possibility is implicit in the fact that 366 

dopamine and serotonin are engaged in tuning glutamate and GABA neuronal activity in cortex (52, 367 

53).   368 

Our findings further suggest a link of SCZ risk loci and their molecular interactors with inter-individual 369 

variation in response to treatment with olanzapine selectively in terms of positive symptoms domain, 370 

despite the differences between the clinical datasets we used. The current evidence is limited by the 371 

relatively restricted sample size in the clinical groups (total N=167) and by the modest size of the 372 

clinical effects. Therefore, this evidence awaits further independent replications in larger clinical 373 

samples. However, this clinical translation is promising with respect to the feasibility of patient 374 

stratification based on biological measures, in line with dimensional views of the diagnosis of SCZ (6, 375 

54-57).  376 

This study demonstrates the potential for co-expression genetic studies to be translated in the clinic. 377 

However, several limitations suggest caution. First, while WGCNA is a flexible and extensively used 378 

tool, gene co-expression network analyses can be implemented with different methodological 379 

nuancing. For example, reproducible gene-gene relationships can be reflected in different gene 380 

clustering across datasets and studies. Second, a large portion of the variance in treatment response 381 

remains unexplained (> 90%), suggesting the potential role of other factors not assessed here. Large 382 

datasets including longitudinal clinical information, genome-wide genotyping, along with brain 383 

imaging data and environmental variables, may bring us closer to the clinical utility of this work (58). 384 

Third, the role of potential regulators of gene co-expression requires biological evidence to offer 385 

mechanistic explanation of how their targets are related with response to olanzapine. Addressing these 386 

limitations will be necessary steps to more routinely apply genetic screening in the clinic.  387 

Nevertheless, this work demonstrates that a proportion of SCZ risk genes converge into gene co-388 
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expression networks and provides information on potentially relevant molecules implicated in this 389 

process. The findings offer a proof of concept that translation of genetic risk into clinical information 390 

requires the study of multiple levels of biological organization, starting from the very beginning of the 391 

information flow from DNA to phenotypes, i.e., gene expression. 392 

393 
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Material and Methods 394 

Study design 395 

Table 1 summarizes the demographic data and relative statistics for the subjects included in all 396 

experiments. For the co-expression network study, we used RNA sequencing data from the LIBD (12) 397 

and from the CMC (8) post-mortem series for a transcriptome-wide WGCNA (13). Both datasets 398 

included post-mortem mRNA expression levels of HCs and patients with SCZ in the human prefrontal 399 

cortex, whereas the three additional datasets used for replication included only non-psychiatric 400 

individuals (31, 59). Additionally, the LIBD dataset included toxicological tests performed on frozen 401 

post-mortem tissue long after death. Smoking habit was assessed based on nicotine and cotinine 402 

quantification, as well as on reports from familiars. Drug consumption assessment, particularly 403 

regarding antipsychotics and antidepressants, has been recorded as a yes/no variable. Permission to use 404 

post-mortem brain materials was obtained by the next of kin (see the original reports for further 405 

information). We selected subsets of individuals in the LIBD and CMC datasets to match possible 406 

confounding variables across the datasets as closely as possible. Therefore, we included samples with 407 

age ≥ 17 years of Caucasian or African American ancestry, RNA integrity number (RIN) ≥ 7.0. We 408 

used χ2 tests to assess the effects of gender, ethnicity and diagnosis between datasets and a two-sample 409 

t-test to assess the effect of age.  410 

In the clinical studies, all participants provided written informed consent following the guidelines of 411 

the Declaration of Helsinki after receiving a complete description of the study. Protocols and 412 

procedures were approved by the ethics committee of the University of Bari (UNIBA) and by the 413 

institutional review board of each clinical site involved in the CATIE program. Diagnosis of 414 

Schizophrenia was established via Structured Clinical Interview for DSM-IV-TR (SCID). Symptom 415 

severity was assessed with Positive and Negative Syndrome Scale (PANSS) (60) at study entry and at 416 
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several follow-up visits. The first clinical cohort included patients recruited in CATIE study by the 417 

NIMH and treated with olanzapine (N = 121) (33). The second cohort included 46 patients recruited 418 

from the region of Apulia, Italy, also treated with olanzapine in monotherapy (16). Study protocols and 419 

exclusion criteria are available in SM Materials and Methods. 420 

 421 

Co-expression Network of human prefrontal cortex 422 

We processed RNA sequencing raw data as previously described (12) (SM Materials and Methods). 423 

We selected 20,993 Ensembl ID transcripts with median Reads Per Kilobase per Million mapped reads 424 

(RPKMs) > 0.1 in both the LIBD and CMC datasets. We log2-transformed RPKMs values with an 425 

offset of 1, e.g., log2(RPKM+1). RNA expression data are affected by systematic noise, e.g., as a 426 

consequence of batch effects. We used the Remove Unwanted Variation (RUV) tools (RUVcorr R 427 

Bioconductor package) developed by Freytag et al. (11) to model systematic but latent sources of noise, 428 

without explicitly modeling nuisance covariates (61-63). RUV capitalizes on the putatively low 429 

physiological variation of housekeeping genes (HK). Therefore, variation in HK expression may reflect 430 

more closely systematic noise than inter-individual variability. This version of RUV was specifically 431 

designed to correct the signal prior to WGCNA (SM Material and Methods).  432 

WGCNA (13, 64) uses gene-gene Pearson’s correlation indices as a continuous, i.e., weighted, measure 433 

of gene-gene relationships. We computed unsigned networks, i.e., negatively correlated genes are 434 

considered connected rather than non-connected (65). The correlation matrix was transformed into an 435 

adjacency matrix by raising Pearson’s coefficients to a positive exponent, β, which is chosen to meet 436 

the “scale-free” power law connectivity distribution. Scale invariance is widely considered a common 437 

organization feature of cellular functions (66). A hierarchical clustering method was then used to group 438 
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genes into clusters, called “modules” (SM Materials and Methods). Colors were used to arbitrarily label 439 

co-expression modules, with the “grey” module representing genes that did not cluster into any 440 

particular module. Co-expression was summarized by the ME, the first principal component of the 441 

expression of genes in any given module. A unique ME was computed for each module.  442 

First, we computed separate co-expression networks for patients with SCZ and HCs within each of the 443 

two datasets. To identify possible differences in network topology between patients and controls, we 444 

employed the same β value for all datasets, because this parameter affects mean network connectivity 445 

(β = 6 was the minimum value that satisfied the scale invariance criterion for all datasets, which fits 446 

well with the authors’ suggestions for unsigned networks; for signed networks higher exponents are 447 

generally needed, e.g., β = 12). We used the methods described by Langfelder et al.(18) and by Johnson 448 

et al.(26) to compare graph properties using permutation approaches. These procedures are 449 

complementary because the first relies on evaluation of graph parameters, while the second entails an 450 

empirical, parameter-free test. The preservation technique published by Langfelder and  coworkers (18) 451 

uses connectivity and density to derive a summary score that characterizes optimal preservation with Z 452 

≥ 10, partial preservation with 2 ≤ Z < 10, and no preservation with Z < 2 (1,000 permutations). The 453 

technique developed by Johnson et al. (26), instead, assesses whether the topological relationships 454 

between genes in the second dataset mirror those of the first dataset at a level greater than chance. 455 

Therefore, for each module we computed the median of its topological overlap matrix and compared 456 

this value against the null distribution of medians computed on random modules of identical size. We 457 

used 10,000 re-samplings and a threshold for replication significance of empirical p-value < .001. 458 

Network statistics showed strong preservation between HCs and patients with SCZ within each dataset. 459 

Moreover, we used Wilcoxon signed rank test to demonstrate that preservation statistics (Z-values) 460 

were greater between groups within the same dataset than between the same group across the two 461 
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datasets (SM Results, Fig. S1). Based on these results, we adopted an alternative approach. We pooled 462 

data from patients with SCZ and HCs and identified one network for the LIBD and one for the CMC 463 

datasets, allowing greater statistical power for the next steps of the analysis. All the following analyses 464 

used the LIBD network with pooled patients with SCZ and HCs as the reference set. The minimum 465 

value of β that satisfied scale invariance criterion both in the LIBD and in the CMC datasets was 5. 466 

This network was comprised of 43 modules, with 6,706 transcripts falling in the grey module, i.e., not 467 

clustered (Data file S1). These modules were strongly preserved in CMC (Fig. 1a-b, Table S1). 468 

Importantly, the “gold” module, i.e., a random module whose size was defined as equal to the median 469 

of the sizes of all modules, showed the lowest Z preservation statistic (Fig 1a). We cross-checked 470 

preservation using CMC as the reference (57 modules, grey: 7,228 transcripts; also in this case, all 471 

modules had Z ≥ 2; Table S2).  472 

We assessed the association of the LIBD Module Eigengenes (MEsLIBD) with case-control status (i.e., 473 

HCs vs. patients with SCZ) with a Robust Linear Model with the lmRob function of the robust R 474 

package. We used Bonferroni correction for multiple comparisons (corrected p-value < .05). We 475 

introduced observed demographics, RNA quality feature and RNA sequencing coverage as covariates 476 

since they may potentially affect gene expression measures. The model accounted for age, gender, RIN, 477 

total reads mapped, total reads mapped at mitochondrial DNA and 10 genomic ancestries as covariates 478 

to account for potential genetic stratification (SM Materials and Methods). Then, we replicated the 479 

findings in the CMC dataset. In order to obtain factor scores in the CMC network (MEsCMC) for each 480 

corresponding LIBD module, we computed the factor loadings for each MELIBD. Factor loadings 481 

express the weighted contribution of each gene in the module to the ME. Then, we projected factor 482 

loadings into the corresponding CMC gene expression data to obtain projected-MEsCMC. Thus, we 483 

evaluated the replication of the association between co-expression (projected-MECMC) and case-control 484 

status in the CMC dataset (p-value < .05).  485 
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In order to address the effect of potential confounders on the identified network, we employed Robust 486 

Linear Models to assess the association between each MELIBD and nicotine, cotinine and smoking status 487 

separately. Moreover, we evaluated the association between each MELIBD with antipsychotics and 488 

antidepressants in the SCZ group (α = .1; Data file S2). 489 

 490 

Co-expression Network replication  491 

We used several datasets of post-mortem brain samples to validate the LIBD modules through the 492 

above-mentioned permutation procedure (26). 493 

 i) The LIBD Developmental Series (spanning ages from fetal to adolescent);  494 

ii) The CMC dataset (as already described);  495 

iii) The BRAINEAC Frontal Cortex dataset (31);  496 

iv) The GTEx Brain Cortex dataset (59, 67);  497 

v) The GTEx Frontal Cortex Brodmann Area 9 dataset (59, 67).  498 

Datasets i-ii) were pre-processed as described in the pre-processing section. Dataset iii) is publicly 499 

available at http://www.braineac.org/. Microarray expression data were downloaded and pre-processed 500 

through RUV tools, selecting the same parameters used for the LIBD and CMC datasets (k = 5). 501 

Datasets iv-v) are available at https://www.gtexportal.org/home/. RNA sequencing data have been 502 

downloaded in the already pre-processed release format (GTEx Analysis V6p), with the aim to test for 503 

module replication regardless of the pre-processing pipeline.            504 

 505 
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Prioritization of modules relevant for SCZ 506 

The enrichment analysis is used to characterize the functional profile of gene sets identified a priori. It 507 

consists in identifying over-represented gene classes within another gene set.  508 

(1) We investigated the overlap between the LIBD modules and genetic association with SCZ (1). We 509 

referred to genes identified by the PGC study (n = 310 genes were included in the network based on 510 

transcript expression levels, Table S4) and used a hypergeometric test to assess the significance of the 511 

over-representation in each module. We selected the modules surviving Bonferroni correction for 512 

multiple comparisons (number of modules = 43, p-value = .05/43 = .00116). Moreover, we conducted 513 

hypergeometric tests at multiple levels of PGC loci expansion (from ±50 kbp to ±10Mbp) to investigate 514 

the range of the gene-gene interactions potentially involved in the convergence of SCZ risk genes. We 515 

used the biomaRt R package (68) to select protein coding genes located within the expanded PGC loci. 516 

Finally, we derived an empirical p-value through a permutation approach (p < .001, SM Materials and 517 

Methods). Since restricting the analysis to protein coding genes may bias results because network 518 

analysis encompasses different gene biotypes (protein-coding and non-protein-coding), we repeated the 519 

same analysis also including all the genes located in the expanded PGC loci, regardless of gene biotype 520 

(Fig. S3). 521 

(2) In addition, we explored the enrichment for common SCZ variants. We used summary statistics of 522 

9.4 million SNPs from the largest GWAS in SCZ by PGC (1) publically available 523 

(http://www.med.unc.edu/pgc/results-and-downloads) and excluded the MHC region on chromosome 6 524 

because high LD in this locus could bias gene set enrichment statistics as already suggested by other 525 

authors (45). We used Multi-marker Analysis of GenoMic Annotation (MAGMA)(22) to perform a 526 

gene-set competitive enrichment analysis adjusted for confounding variables (SI Materials and 527 
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Methods). The significance threshold was set at the nominal p-value < .05 because we were only 528 

interested in modules that already showed a significant overrepresentation of SCZ risk genes.   529 

 530 

Functional enrichment analyses  531 

We used Amigo2 (http://amigo2.geneontology.org/amigo, Gene Ontology database released 2017-06-532 

09) online available tools to perform functional enrichment analyses of the Darkgreen module, which 533 

was selected based on the overrepresentation of SCZ risk genes. We listed Darkgreen protein coding 534 

genes and performed online automatic searches in the Gene Ontology Database Released on 2017-06-535 

29 with the PANTHER Overrepresentation Test (release 2017-04-13). Furthermore, we used Specific 536 

Expression Analysis (SEA) software [http://genetics.wustl.edu/jdlab/csea-tool-2/] (23) to track cell- 537 

and tissue-specific expression pattern during neurodevelopment (Fig. S4). 538 

 539 

Enrichment analysis of Transcription Factor Binding Sites  540 

We used Pscan, a freeware web interface (http://159.149.160.88/pscan/)(27) to scan promoter regions 541 

of our co-expressed genes looking for binding specificity of known Transcription Factors (TF). We 542 

referred to the JASPAR 2016 (69) database of TF binding profiles and defined the promoter regions 543 

spanning 1,000 bp upstream the transcription starting site by selecting these options from the web 544 

interface. We scanned 472 different TF binding domains. We considered statistically significant TFs 545 

surviving Bonferroni correction for multiple comparisons (corrected p-value < .05). Then, we explored 546 

the contribution of single genes to the selected TFs and reported SCZ risk genes contained in 547 

Darkgreen related with the TF more strongly than genome-wide average for the same TF (27)). Finally, 548 
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to explore the specificity of our findings, we evaluated the enrichment of all the other modules and 549 

reported corrected p-values (Fig. S5). 550 

 551 

Micro-RNA target prediction 552 

We investigated the overlap between SCZ related miRNA targetomes (29) and Darkgreen, with the 553 

purpose to identify specific regulatory elements of co-expressed genes. We used four miRNA target 554 

repositories to obtain different lists of targets for each miRNA family (i. TargetScan v7.1, 555 

http://www.targetscan.org/vert_71/ (70); ii) MirTarget, http://www.mirdb.org/(71); TargetMiner, 556 

http://www.isical.ac.in/~bioinfo_miu/targetminer20.htm(72) and TarBase V7.0(73)). Then, we 557 

performed a hypergeometric test for over-representation of miRNA targets in Darkgreen and combined 558 

p-values with sum-log Fisher’s method across different lists for each miRNA family. The corrected 559 

significance threshold for the combined p-values was set to p-value = .00125, after having applied 560 

Bonferroni correction (10 miRNA families tested times 4 tools used). We inspected targetomes 561 

overlapping with Darkgreen and reported SCZ risk genes available in at least one gene list (Table S7). 562 

Finally, we investigated the specificity of these enrichments by extending the same analysis to all the 563 

LIBD modules and miRNA families (Data file S3). We expected that each miRNA would be associated 564 

with only few modules. We showed results corrected for multiple comparisons (Bonferroni rule, 565 

number of modules = 43; Fig. S6). 566 

 567 

Overlap with genes regulated by haloperidol 568 

We investigated the overlap between putative antipsychotics target genes and Darkgreen as well as all 569 

other modules. We used lists of genes differentially expressed (DEG) between haloperidol-treated mice 570 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323428doi: bioRxiv preprint 

http://www.targetscan.org/vert_71/
https://doi.org/10.1101/323428


30 
 

and the control mice (30). We used lists of DEG at q-value < .05 in the striatum and in the whole brain 571 

of mice (30). Moreover, we separately tested up- and down- regulated genes. We employed biomaRt R 572 

package (68) to convert mouse genes into human orthologs. We performed hypergeometric test for 573 

over-representation of haloperidol targets in network modules and used Bonferroni correction for 574 

multiple comparisons (number of modules = 43; Fig. S7).     575 

 576 

Meta-analysis of co-expression quantitative trait loci  577 

SNP genotyping procedures and genotype imputation have been described previously for LIBD (9), 578 

CMC (8), BRAINEAC (31), CATIE (33) and UNIBA (10) subjects (also see SM Materials and 579 

Methods). We selected SNPs in the genes encompassed in Darkgreen, expanded by 100 kbp up- and 580 

down-stream gene start and end, consistent with previous studies (10, 14). We employed a relatively 581 

conservative extension of the genes because with larger flanks, e.g., 500 kbp to 1 mbp, the SNP sets 582 

would largely overlap between modules.  We selected SNPs with MAF ≥ 0.1 because the sample size 583 

was too limited to investigate uncommon variants and pooled minor allele carriers when MAF ≤ 0.15 584 

to avoid biasing estimations of population variance with small genotypic groups. These filters resulted 585 

in 52,198 SNPs available in both the LIBD and the CMC datasets that we selected for further analyses. 586 

We aimed to identify an ensemble of SNPs that, together, could predict gene co-expression (co-587 

eQTLs). The biological plausibility of co-eQTLs is supported by findings that only 30% of mRNA 588 

expression heritability is associated with cis-active elements (74), suggesting a role of distant 589 

regulatory elements and possibly trans-elements in heritable mRNA expression. With this purpose, we 590 

investigated the association between the Darkgreen co-expression module summarized by the ME-591 

Darkgreen (see section 2.3) and SNP allelic dosage. We used a Robust Linear Model to estimate the 592 
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effect of the SNP allelic dosage separately in the LIBD and the CMC datasets with the lmRob function 593 

of the robust R package. We included diagnosis (HCs vs. patients with SCZ), age, gender, RIN, total 594 

count of mapped reads, total count of mitochondrial mapped reads and 10 ancestries as covariates. 595 

Notably, co-varying for diagnosis allowed us to detect markers of co-expression valid both in patients 596 

and controls rather than risk markers for SCZ. Finally, we performed a fixed-effect meta-analysis over 597 

the two datasets with the rma.uni function of the metaphor R package, using partial correlation 598 

coefficients of allelic dosage as an estimate of effect size. Then, we ranked SNPs according to their 599 

meta-analytic p-value. 600 

Following previous work on polygenic summaries of additive genetic effects (1, 10), we restricted the 601 

analysis to independent SNPs. In this perspective, we evaluated pair-wise R2 between SNPs within 250 602 

kbp. We considered two SNPs independent when R2 < 0.1 (1). We then performed a priority LD 603 

pruning by iteratively discarding the SNP with the weaker association. We used this procedure to 604 

enrich our selection for relevant variants (for further applications of a similar procedure see 605 

http://prioritypruner.sourceforge.net/documentation.html). The final selection included 2,266 tagging 606 

SNPs with negligible residual interdependence. We used the top 100 ranked co-eQTLs for the PCI 607 

computation. 608 

 609 

Polygenic Co-expression Index 610 

We employed a previously published procedure based on Signal Detection Theory to assign weights 611 

(A’) to each SNP genotype (10, 14) (SM Materials and Methods). For each genotypic population of 612 

each of the 100 top-ranked SNPs, we computed the A’ weights separately in the LIBD and the CMC 613 

datasets. Then, we averaged the weights across the two datasets (Table S8). We defined the PCI as the 614 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323428doi: bioRxiv preprint 

http://prioritypruner.sourceforge.net/documentation.html
https://doi.org/10.1101/323428


32 
 

average of A’ values corresponding to all the genotypes of each subject. In this way, the PCI could be 615 

interpreted as the genetically indexed inter-individual variability associated with gene co-expression 616 

measured by Darkgreen Module Eigengene (ME-Darkgreen). The PCI is positively correlated with 617 

ME-Darkgreen and is not confounded by ethnicity (SM Materials and Methods and Fig. S9).  618 

A relevant issue is how many SNPs need to be included in the PCI. Including too few SNPs may not 619 

afford sufficient predictive power, while too many SNPs may yield overfitting effects on the positive 620 

correlation between the PCI and the ME-Darkgreen. To identify a SNP ensemble with significant 621 

predictive power, we computed 100 different PCIs with an increasing number of SNPs (the first PCI 622 

included just the first ranked co-eQTL, the second PCI included the first and the second co-eQTL, and 623 

so on up to the 100th co-eQTL) and assessed the Pearson’s correlations between the PCIs and the ME-624 

Darkgreen both in the LIBD and the CMC datasets. In case of overfitting, the effect size of the 625 

correlation PCIs-ME in the discovery sets should monotonically increase when more SNPs are added, 626 

whereas the effect size in the replication datasets should reach a plateau and then decrease (Fig. 2A). 627 

We assessed the statistical significance of the PCI-ME correlation in the two independent replication 628 

sets also via a permutation approach (p-value < .05, SM Materials and Methods).  629 

Then, we performed a fixed-effect meta-analysis separately on the discovery and replication datasets. 630 

In this way, we estimated global replication effect sizes using PCI-ME correlation coefficients (Fig. 631 

2C). In order to identify the best set of predictors for the clinical study, we selected PCIs based on the 632 

largest replication effect size. We started to include PCIs at the beginning of the plateau and stopped 633 

when the effect size reached the absolute maximum and then started to decline (a possible effect of 634 

overfitting; Fig. 2C).   635 

 636 
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Clinical study 637 

We used two samples of patients with SCZ treated with olanzapine to assess the association between 638 

the PCIs and the clinical outcome measured with the PANSS. Clinical outcome was defined as the 639 

difference between baseline and early clinical response (one month) relative to baseline symptoms in 640 

PANSS sub-scales and total scores. Patients were genome-wide genotyped (SM Materials and 641 

Methods) and SNP genotypes were used to compute PCIs for each patient. We tested the association 642 

between clinical outcome and PCIs through a Robust Linear Model using age, gender, education level 643 

and ten genomic PCs as nuisance covariates. The CATIE cohort was used as discovery sample and 644 

results were corrected for multiple comparisons, i.e. the multiple clinical subscales and PCIs we tested 645 

(corrected p-value < .05). Due to the high correlation among the set of predictors – the PCIs – and 646 

among the set of outcomes, we used an appropriate procedure for p-values adjustment of multiple 647 

correlated tests (34). We selected the best model and replicated the association in the UNIBA cohort 648 

(one-tailed p-value < .05). We reported the effect size as partial 2. 649 

Finally, to assess the biological significance of the SNPs encompassed in the PCI, we submitted the list 650 

and the selected variants in full linkage disequilibrium with them to HaploReg 4.1(36) selecting 651 

American ancestry and all four epigenome sources. Haploreg is a repository of genetic regulatory 652 

elements across multiple tissues according to previous genomic studies (35, 36). Since the reference 653 

network was identified in dorsolateral prefrontal cortex, we specifically interrogated this brain region 654 

including BA46 and 9. Finally, we computed the statistics for overrepresentation of regulatory 655 

elements (Bonferroni-corrected p-value < .05). 656 

 657 
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Fig. S1. Results of intra-dataset preservations (Langfelder method). 662 

Fig. S2. Preservation of CMC network in the LIBD dataset (Langfelder method). 663 

Fig. S3. Darkgreen module enrichment for schizophrenia risk genes (all gene biotypes).  664 
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Figures: 1014 

 1015 

Fig. 1. Co-expression Network. (A) Preservation of the LIBD network in the CMC dataset 1016 

(Langfelder method). The LIBD modules are shown on the x-axis ranked by Z-summary preservation 1017 

score (y-axis). Z ≥ 10 denotes strong preservation, 2 ≤ Z < 10 moderate, and Z < 2 absent (18). (B) 1018 

Replication of the LIBD modules topology in the CMC dataset (Johnson method). Bars indicate the 1019 
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number of replicated modules at empirical p-value < .001 vs. not replicated modules (10,000 1020 

permutations). (C) Darkgreen module enrichment for schizophrenia risk genes. Enrichment 1021 

significance is shown over increasing expansion of schizophrenia risk loci boundaries. The x-axis 1022 

reports the size of expansion in kilo-base pairs (kbp). The y-axis indicates the –log10 p-value of the 1023 

hypergeometric test for overrepresentation of schizophrenia risk loci in Darkgreen. Boxplots show the 1024 

null distribution of the lowest enrichment p-value over all network modules obtained after network 1025 

labels permutation (n=10,000). The red horizontal line shows the Bonferroni threshold selected 1026 

(number of modules = 43, α = .0012). Stars and diamonds denote Darkgreen exact enrichment p-value. 1027 

(D) Replication of the LIBD modules in several different datasets (Johnson method). Slate-blue fields 1028 

denote modules (x-axis) replicated at empirical p-value < .001 (over 10,000 permutations). (E) 1029 

Darkgreen graph. The nodes of the graphs (spheres) are genes and schizophrenia risk genes are colored 1030 

in dark red. Gold spheres represent a selection of the most connected genes in the module (scaled intra-1031 

modular connectivity ≥ 0.3) and have a diameter proportional to intra-modular connectivity. i.e., larger 1032 

spheres denote genes harboring more connections within Darkgreen. Lines denote gene-gene 1033 

relationships and their width is proportional to connection strength.  1034 
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 1037 

Fig. 2. Polygenic Co-expression Index. (A) The plot illustrates the variation of the effect size of the 1038 

correlation between the PCI and the Darkgreen module eigengene (Y-axis) for a series of PCIs with 1039 
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incrementally added SNPs. The discovery (LIBD, CMC) and replication datasets (BRAINEAC, LIBD 1040 

development) are represented with different colors. For increasing number of SNPs included in the PCI 1041 

(x-axis), the effect size in the discovery sets increases monotonically because of overfitting, while it 1042 

remains stable and then drops in the replication set, suggesting an optimal signal-to-noise ratio in the 1043 

replication set between 6 and about 40 SNPs. (B) PCI replication. Empirical significance of the 1044 

correlations between PCIs and Module Eigengene (ME) in the replication set (BRAINEAC). Stars and 1045 

diamonds display on the y-axis the significance of each ME-PCI correlation over an increasing number 1046 

of SNPs (x-axis). Box plots show the corresponding null distribution of the correlation coefficients 1047 

when genotypes are permuted (2,000 permutations). Color and shape key in the panel highlight 1048 

different empirical significance cut-offs. (C) Meta-analysis of the effect sizes in the discovery and 1049 

replication datasets. Dark red vertical dashed lines delimit a plateau in the replication effect sizes 1050 

between 14 and 17 SNPs. Note that the effect size never increases above the level observed at the 17th 1051 

SNP. 1052 
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 1061 

 1062 

 1063 

 1064 

Fig. 3. Association between the PCI and clinical outcome. Negative correlation between the PCI 1065 

with 16 SNPs and symptom improvement in the positive domain of the PANSS (difference between 1066 

endpoint and baseline relative to baseline, shown on the Y-axis) in the (A) CATIE and (B) UNIBA 1067 

cohorts. 1068 
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Tables 

Table 1. Demographics. 

 
LIBD CMC Stats LIBD vs. CMC BRAINEAC 

LIBD 

Developmental 

Ages 

GTEx:  

Brain Cortex 

GTEx: 

Brain BA9 
CATIE UNIBA 

Sample size 343 345   38 93 96 92 121 46 

Female (male) 

[ratio] 

105 (238) 

[0.44] 

114 (231) 

[0.49] 
χ2 = 0.4 p = 0.55 9 (29) [0.31] 33 (60) [0.55] # # 27 (94) 

[0.28] 

9 (37) 

[0.24] 

Age mean ± s.d. 

(years) 
45.2 ± 14.8 60.8 ± 17.4 t = -12.7 p < 2.2×10-16 56.6 ± 19.1 3.5 ± 6.0 # # 41.5 ± 10.9 27.7 ± 6.8 

Age range (years) 17-85 17-86   20-89 0-16 # # 19-65 16-42 

Diagnosis SCZa 

(HCb) 
143 (200) 166 (179) χ2 = 2.6 p = 0.11 0 (38) 0 (93) # # 121 (0) 46 (0) 

Ethnicity CAUCc 

(AAd) 
166 (177) 283 (62) χ2 = 84.3 p < 2.2×10-16 38 (0) 40 (53) # # 77 (44) 46 (0) 

a patients with schizophrenia; b healthy controls; c Caucasian; d African-American; # data unavailable as per ref. 49.  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/323428doi: bioRxiv preprint 

https://doi.org/10.1101/323428


50 
 

 

Table 2. PGC loci and genes overlapping with the module Darkgreen. 

Ensembl gene ID 
HGNCa 

Symbol 
Gene name 

PGC loci 

rank 

PGC loci  

index SNP 

PGC loci  

position (hg19b) 

PGC  

index SNP  

p-value 

ENSG00000187987 ZSCAN23 zinc finger and SCAN domain containing 23 1 rs115329265 chr6:28303247-28712247 3.48×10-31 

ENSG00000151067 CACNA1C 
calcium channel, voltage-dependent, L type, alpha 1C 

subunit 
4 rs2007044, rs2239063 chr12:2321860-2523731 3.22×10-18 

ENSG00000204120 GIGYF2 GRB10 interacting GYF protein 2 22 rs6704768 chr2:233559301-233753501 2.32×10-12 

ENSG00000065413 ANKRD44 ankyrin repeat domain 44 31 rs6434928 chr2:198148577-198835577 2.06×10-11 

ENSG00000080854 IGSF9B immunoglobulin superfamily, member 9B 36 rs75059851 chr11:133808069-133852969 3.87×10-11 

ENSG00000184983 NDUFA6 
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 

6, 14kDa 
57 rs1023500, rs6002655 chr22:42315744-42689414 1.71×10-9 

ENSG00000213593 TMX2 thioredoxin-related transmembrane protein 2 59 rs9420 chr11:57386294-57682294 2.24×10-9 

ENSG00000117020 AKT3 v-akt murine thymoma viral oncogene homolog 3 64 
rs10803138, rs77149735, rs14403, 

chr1_243881945_I 
chr1:243503719-244002945 3.73×10-9 

ENSG00000126461 SCAF1 SR-related CTD-associated factor 1 106 rs56873913 chr19:50067499-50135399 4.69×10-8 

ENSG00000255408 PCDHA3 protocadherin alpha 3 

108 chr5_140143664_I chr5:140023664-140222664 4.85×10-8 
ENSG00000204967 PCDHA4 protocadherin alpha 4 

ENSG00000204965 PCDHA5 protocadherin alpha 5 

ENSG00000081842 PCDHA6 protocadherin alpha 6 

a HUGO Gene Nomenclature Committee ID. bHuman Genome version 19. 
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Table 3. SNP annotations.  

Rank SNP Position Al1a Al2 MAFb 
Meta-analysis  

p-value 

Bonferroni  

p-value 

SNP  

location 

Tag gene 

HGNC 

Symbolc 

Darkgreen 

gene  

HGNC 

Symbold 

Dakgreen gene Ensembl IDe 
Dakgreen gene  

biotype 

1 rs9836592 chr3:53855083 C T 0.25 0.0000021 0.0048 intron CHDH CHDH ENSG00000016391 protein coding 

2 rs17011429 chr2:125085600 T G 0.23 0.0000535 0.12 intron CNTNAP5 CNTNAP5 ENSG00000155052 protein coding 

3 rs58576982 chr15:27749496 A G 0.19 0.0000765 0.17 intron GABRG3 GABRG3 
ENSG00000182256,  

ENSG00000259168 

protein coding,  

antisense 

4 rs10014574 chr4:92192230 G A 0.10 0.0001972 0.45 intron CCSER1 CCSER1 ENSG00000184305 protein coding 

5 rs12465842 chr2:56532732 G A 0.12 0.0005040 1 intron CCDC85A CCDC85A ENSG00000055813 protein coding 

6 rs10412427 chr19:46506781 C T 0.17 0.0006336 1 intron CCDC61 CCDC61 ENSG00000104983 protein coding 

7 rs5004361 chr13:29959809 C T 0.24 0.0006947 1 intron MTUS2 MTUS2 ENSG00000132938 protein coding 

8 rs7627178 chr3:53881471 A G 0.44 0.0007412 1 intron 
CHDH, 

IL17RB 

CHDH, 

IL17RB 

ENSG00000056736,  

ENSG00000016391 
protein coding 

9 rs8057209 chr16:5688474 A C 0.14 0.0009018 1 intergenic 
  

ENSG00000260411 
processed 

transcript 

10 rs2586722 chr18:49824019 T C 0.12 0.0009148 1 intergenic 
 

DCC ENSG00000187323 protein coding 

11 rs953778 chr11:64066999 T C 0.20 0.0009182 1 coding 
KCNK4, 

TEX40 

BAD, 
CCDC88B, 

DNAJC4, 

ESRRA, 
FERMT3, 

FKBP2, 

GPR137, 
NUDT22, 

PLCB3, 

PPP1R14B, 
PRDX5, 

RPS6KA4, 

STIP1, 
TRMT112, 

TRPT1, 

VEGFB 

ENSG00000231680, 

ENSG00000002330, 

ENSG00000168071, 
ENSG00000110011, 

ENSG00000173153, 

ENSG00000149781, 
ENSG00000173486, 

ENSG00000173264, 

ENSG00000149761, 
ENSG00000149782, 

ENSG00000173457, 

ENSG00000126432, 
ENSG00000162302, 

ENSG00000168439, 

ENSG00000173113, 
ENSG00000149743, 

ENSG00000173511 

lincRNA, 

protein coding, 

protein coding, 
protein coding, 

protein coding, 

protein coding, 
protein coding, 

protein coding, 

protein coding, 
protein coding, 

protein coding, 

protein coding, 
protein coding, 

protein coding, 

protein coding, 
protein coding, 

protein coding 

12 rs12023485 chr1:19599481 T C 0.17 0.0010460 1 intron AKR7L AKR7L ENSG00000211454 protein coding 

13 rs2073105 chr1:19549864 C T 0.19 0.0010472 1 promoter EMC1 EMC1 
ENSG00000230424,  

ENSG00000127463 

antisense,  

protein coding 
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14 rs260098 chr15:99641932 A G 0.46 0.0010960 1 intergenic SYNM SYNM 
ENSG00000259475,  

ENSG00000182253 

antisense,  

protein coding 

15 rs7115028 chr11:88483559 A C 0.24 0.0014171 1 intron GRM5 GRM5 ENSG00000168959 protein coding 

16 rs2429175 chr12:2045085 A G 0.34 0.0017808 1 intron LINC00940 

CACNA1C, 

DCP1B, 
LRTM2 

ENSG00000151067, 

ENSG00000151065, 
ENSG00000166159 

protein coding, 

protein coding, 
protein coding 

17 rs2015586 chr10:119021737 C T 0.43 0.0018226 1 intron SLC18A2 SLC18A2 ENSG00000165646 protein coding 

18 rs73055782 chr19:46500197 C T 0.48 0.0018739 1 intron CCDC61 CCDC61 ENSG00000104983 protein coding 

19 rs12650211 chr4:91578496 T C 0.17 0.0020413 1 intron CCSER1 CCSER1 ENSG00000184305 
processed 

transcript 

20 rs2909160 chr7:102840922 T C 0.12 0.0020747 1 intron DPY19L2P2 DPY19L2P2 ENSG00000170629 
processed 

transcript 

21 rs2839149 chr21:47632580 T C 0.26 0.0025836 1 intron LSS LSS ENSG00000160285 protein coding 

22 rs1510173 chr16:54253227 T C 0.46 0.0028605 1 intergenic 
 

FTO ENSG00000140718 protein coding 

23 rs6828754 chr4:6877902 T C 0.40 0.0029061 1 intron KIAA0232 KIAA0232 ENSG00000170871 protein coding 

24 rs55844460 chr8:6648691 G T 0.45 0.0029581 1 intergenic 
 

AGPAT5 
ENSG00000249898, 

ENSG00000155189 

antisense, 

protein coding 

25 rs7756776 chr6:13051652 G A 0.36 0.0029726 1 intron PHACTR1 PHACTR1 ENSG00000112137 protein coding 

26 rs7964786 chr12:121132100 C T 0.44 0.0030576 1 intron MLEC MLEC ENSG00000110917 protein coding 

27 rs56140649 chr2:56577297 C T 0.19 0.0034265 1 intron CCDC85A CCDC85A ENSG00000055813 protein coding 

28 rs7688945 chr4:141642216 C A 0.26 0.0034656 1 intron TBC1D9 TBC1D9 ENSG00000109436 protein coding 

29 rs35310447 chr17:7018444 T G 0.32 0.0034804 1 promoter ASGR2 

ASGR1, 

BCL6B, 
DLG4, 

MIR497HG, 

RPL7AP64, 
SLC16A11 

ENSG00000141505, 

ENSG00000161940, 
ENSG00000132535, 

ENSG00000267532, 

ENSG00000213876, 
ENSG00000174326 

protein coding, 

protein coding, 
protein coding, 

antisense, 

pseudogene, 
protein coding 

30 rs1858719 chr8:17977212 T G 0.50 0.0035667 1 intergenic 
 

ASAH1, 

PCM1 

ENSG00000245281, 

ENSG00000253384, 

ENSG00000104763, 
ENSG00000078674 

antisense, 

pseudogene, 

protein coding, 
protein coding 

31 rs16965349 chr17:36614524 A G 0.22 0.0036403 1 intron ARHGAP23 ARHGAP23 ENSG00000225485 protein coding 

32 rs5999223 chr22:34549440 A G 0.34 0.0038297 1 intergenic 
  

ENSG00000224404 lincRNA 

aReference Allele; bMinor Allele Frequency; cHUGO Gene Nomenclature Committee ID; dHGNC symbol of the closest gene (±500kbp) encompassed in Darkgreen Module; 
dEnsembl ID of the closest gene (±500kbp) encompassed in Darkgreen Module. 
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Table 4. Association between PCIs and positive PANSS early treatment response. 

PANSS subscales # SNPs in the PCI CATIE UNIBA 

t-value p-value Corrected p-value t-value One-sided p-value 

Positive  PCI #14 -2.11 .03681 .134 -1.93 .0306 

PCI #15 -2.74 .00714 .033 -1.79 .0403 

PCI #16 -2.74 .00708 .033 -1.71 .0475 

PCI #17 -2.58 .01119 .049 -1.60 .0553 

Negative PCI #14 0.59 .5575 1 1.14 .1311 

PCI #15 0.29 .7750 1 1.18 .1218 

PCI #16 0.28 .7816 1 1.35 .0925 

PCI #17 0.22 .8198 1 1.42 .0817 

General PCI #14 -1.52 .1301 .277 -0.28 .3889 

PCI #15 -1.81 .0721 .191 -0.19 .4234 

PCI #16 -1.74 .0837 .208 -0.24 .4075 

PCI #17 -1.78 .0771 .198 -0.23 .4106 
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