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Abstract

In the absence of both positive and negative selection, DNA sequences evolve at the neutral rate, R = 1. Due to
the prevalence of negative selection, R~1 is rarely achieved in organismal evolution. However, when R ~ 1 is
observed, it does not necessarily indicate neutral evolution because positive and negative selection could be
equally strong but in opposite directions - hereby referred to as quasi-neutrality. We now show that somatic-cell
evolution could be the paradigm of quasi-neutral evolution for these reasons: 1) Quasi-neutrality is much more
likely in small populations (size N < 50) than in large ones; 2) Stem cell population sizes in single niches of
normal tissues, from which tumors likely emerges, have small N's (usually < 50); 3) the genome-wide
evolutionary rate across tissue types is close to R = 1; 4) Relative to the average of R ~ 1, many genes evolve at
a much higher or lower rate, thus hinting both positive and negative selection; 5) When N < 50, selection
efficacy decreases rapidly as N decreases even when the selection intensity stays constant; 6) Notably, N is
smaller in the small intestine (Sml) than in the colon (CO); hence, the ~ 70 fold higher rate of phenotypic
evolution (observed as cancer risk) in the latter can be explained by the greater efficacy of selection, which then
leads to the fixation of more advantageous mutations and fewer deleterious ones in the CO. Under quasi-
neutrality, positive and negative selection can be measured in the same system as the two forces are
simultaneously present or absent.
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Introduction

The effects of positive and negative selection are jointly reflected in the evolutionary rate of DNA
sequences of coding regions. However, the landscape of molecular evolution is dominated by neutral variants as
well as deleterious mutations yet to be eliminated, which collectively underpin the neutral theory (1, 2). Hence,
positive selection, swamped by negative selection, is difficult to determine (1-4).

To incorporate both positive and negative selection, we let R be the rate of sequence evolution, relative to
the neutral rate. The value of R can be expressed as the Ka/Ks ratio, where Ka and Ks are, respectively, the
number of nonsynonymous (or amino acid-altering) and synonymous mutations per site between two DNA
sequences. R is thus the net outcome between positive and negative selection that speeds up and slows down
nucleotide substitutions, respectively by a fraction A and B. Hence, R =1 + A — B when both are in action. The
challenge is to tease apart the opposing factors of A and B, given R. In the evolution between species, the
genome-wide average of R (designated R*) is usually < 0.3 while R* > 0.5 has not been reported in organismal
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evolution. When R < 1, negative selection is obviously in action but positive selection may or may not be
operative.

For a few genes in the genome, R approaches 1 and the conventional view posits very weak selection such
that A ~0and B~0. Note that the conventional view includes the nearly-neutral model (5). Importantly,
while the conventional view of neutrality predicts A ~ 0 ~ B, the condition of R ~ 1 in fact permits A >> 0 and
B>> 0 as long as A ~ B. In such a system, positive selection and negative selection are both strong, but equally
so in opposite directions. We shall refer to such systems of R ~ 1 as “quasi-neutrality”, in contrast with the
conventional “functional neutrality”. The issue is how often, and under what conditions, would the two
opposing forces cancel each other out.

In this context, the evolution in somatic tissues that eventually transitions to tumorigenesis is relevant (6-
11). This process has ultra-microevolutionary distances, in the order of 10~ - 10 per bp, far smaller than the
evolutionary distances between closely related species, which are typically 10-2- 10! per bp. Properties at the
“ultramicro-evolutionary” scale are often distinct from those in the evolution between species (8). In this study,
we ask whether somatic evolution could be quasi-neutral evolution in action. Systems of quasi-neutrality will be
of general significance in molecular evolution because the detection of positive selection in organismal
evolution is uncertain. These analyses usually rely on additional data and make further assumptions (12, 13) but
such assumptions may often be mutually incompatible (He ef al. Unpublished). The ability to analyze positive
and negative selection in the same genome may therefore shed new light on the concurrent operation of the two
opposing forces.

RESULTS
I. On the joint influences of positive and negative selection - Theory

With both positive and negative selection in operation, the rate of molecular evolution can be expressed as
Ka=N u [(1-p-q) (I/N) +p f(N, s1) + q f(N, s2)]
Ks=Nu (1/N)=u
R=Ka/Ks=1+p[SI-1]+q[S2-1]=1+A-B Eq. (1)
where Ka is the number of nonsynonymous substitutions per nonsynonymous site and Ks is the corresponding
number for synonymous changes. In Eq. (1), A=p [S1 — 1] and B=- q[S2 -1], where p and q are the
proportion of mutations under positive and negative selection, respectively. S1 and S2 are defined as the rate of
accumulating fitness-altering mutations relative to the speed of neutral evolution. The theory has been well

described in textbooks (2-4):

SI=Nuf(N,s)/u=N{f(N,s;)and
S2=Nuf(N,s2)/u=Nf(N,s2) Egs. (1")

In Eq. (1), £ (N, s) = (1-e%)/ (1-e"%) is the fixation probability of non-neutral mutations where s is the
selective coefficient with s;1>0 being beneficial and s2<0 being deleterious.

Fig. 1A shows how the efficacy of selection (S1 and S2) changes, in the log-scale, for both s>0 and s<0
when N varies between 1 and 20. Fig. 1B provides finer details in the linear scale for s>0. Note that the efficacy
increases as N increases and the trend is much stronger for negative selection than for positive selection. Here,
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we set s1 = -s2= s but more complicated setups (14) would yield the same qualitative conclusion. Assuming s <
1 and 2Ns >1, Eq. (1) can be simplified as:

R~1+p(2Ns—-1)—q Eq. (1)

The effect of positive selection, relative to that of negative selection, is amplified by a factor of (2Ns -1) in
Eq. (1’"). When the two forces are in near parity, they yield A ~B and R ~ 1. Hence, p=0.1, ¢ =0.9 and 2Ns =
10 is a quasi-neutral system even though all mutations are under selection. Such a “quasi-neutral” system does
not require A ~ 0 ~ B, as does the conventional neutrality.

Fig. 2 illustrates the R values for 2Ns = 2, 5, 20 and 50 under different proportions of (p, q) using Eq. (1).
We highlight the range of (p, q) that satisfies quasi-neutrality with Ka/Ks between 0.85 and 1.15 (shaded red).
When Ns is small, the range is quite broad but decreases very rapidly as Ns increases. For example, when 2Ns =
50, p has to be smaller than 0.02 and q has to be large. Notably, a small change in p is accompanied by a large
jump in q. The analysis shows that quasi-neutrality is increasingly likely when Ns becomes smaller because
A-> 0 and B-> 0 and therefore A~B is more likely.

I1. Somatic-cell evolution as the paradigm of quasi-neutral evolution

A likely system of quasi-neutrality is somatic-cell evolution, which could lead to tumorigenesis at times.
The stages of somatic-cell evolution are depicted in Fig. 3a (see ref. (8) for detail). We shall focus on Stage I,
which ends in the single cell labeled c-MRCA (the most recent common ancestor of all cancerous cells). The c-
MRCA cell demarcates Stage I and II, right at the very beginning of tumor growth. The evolution in Stage I
most likely takes place in the somatic stem cell niches. As depicted, few cells evolve to become c-MRCA.
Hence, the comparisons between cells that do and do not reach c-MRCA will be crucial in later sections.

Somatic mutations reported in tumor sequencing projects (9, 10) represent the genetic make-up of the c-
MRCA cell, or Stage I evolution (see Fig. 3a and legends). Fig. 3b shows that, across 22 tissue types, the
estimated R*’s are close to 1, ranging between 0.97 and 1.20 with a grand mean of 1.08. In comparison,
sequenced genomes of natural species generally have an R* ratio between 0.05 and 0.3. Because the evolution
of somatic cells differs from that of organisms in many respects, notably the absence of recombination, the
population genetic theory has often been questioned (see ref. (8)). The supporting information addresses the
issue, noting that recombination does not affect the mean evolutionary rate (e.g., Eq. 1 -1’). Recombination
does affect the variance, but only when the rate itself is high.

While Fig. 3b portrays somatic cell evolution as compatible with the quasi-neutrality of Fig. 2, it could
also be compatible with the strictly neutrality of p ~ q ~ 0. Indeed, a recent report suggested q ~ 0 in somatic
cell evolution although, curiously, it also estimated p to fall between 1% and 4% (15). Earlier, p was suggested
to be ~5% (8). According to Eq. 1”°, R ~ 1 dictates q > p if p > 0. Even if Ns is as small as 3, merely three times
as large as the neutrality of Ns =1, q would still be ~ 5p. A companion analysis (Chen QJ et al.; see Appendix)
provides further justifications for q > p > 0 to account for the TCGA data. In short, somatic cell evolution is not
likely to be neutral in the conventional sense.

Size of stem cell population in a niche

Fig. 2 shows that 2Ns must be small to have R* close to 1. Thus, N and s cannot both be large. In
particular, if N is large (> 100), s has to be small and the system reverts to the conventional neutrality. Here, we
evaluate the range of N in somatic evolution. As portrayed in Fig. 3a, the relevant stage happens in the stem cell
niche, from which tumors likely emerge. Each individual niche is the unit of evolution, within which
competitions between cells happen (6, 16-21). Critically, it is the size of the stem cell population in a niche (N)
that determines the efficacy of selection.
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A stem cell niche in the small intestine (Sml) and colon (CO) is in the crypt (17, 18) where N is generally
suggested to be in the range of 2 — 20 in mouse, and comparable in human (19, 20). Since a crypt in the human
Sml is roughly 1/5 as large as a colonic crypt (Fig S1), it is hypothesized that N in the SmI (Nsmi) is smaller
than in the colon (Nco). To test the hypothesis of Nsm < Nco, we cultured organoids from single crypts
collected from human Sml and CO (see Methods). Simulations suggest that genome sequencing data from
single crypts can be useful for this test.

Briefly, sequencing data from a sample of n cell lineages would yield a small peak for low frequency
variants (Fig. S3) at the interval of 1/2n where 2n is the total number of genomes in n cells. Such a peak would
be detectable if n is between 2 and 10. In our data, sequenced Sml crypt samples reveal a visible small peak that
suggests Nsmi to be in the range of 2 — 5 (see supporting information. The peak is missing in the CO data, thus
suggesting Nco > 10, which has been shown to be <30 (19, 20). Given the range where Nsm and Nco fall, the
evolution in somatic tissues would satisfy the quasi-neutrality condition of R ~ 1 even when s is not small (say s
>0.1).

I1I. Testing the quasi-neutral model in Stage I of somatic-cell evolution
Given 50 > Nco > Nsmi > 2, the two predictions under quasi-neutrality are:
1) At the DNA sequence level, CO is predicted to have accumulated more advantageous mutations but fewer
deleterious ones in comparison with Sml, resulting in comparable R*’s (~1) between the two tissues.
i1) At the phenotypic level, CO would evolve the proliferative phenotype at a higher rate, and hence would have
a higher rate of phenotypic evolution (observed as cancer risk), than Sml.

Rate of DNA sequence evolution

For the first test, we separate nonsynonymous mutations into advantageous, neutral and deleterious ones
following the procedure of Wu et al. (8). In a collection of 12,420 genes of colon adenocarcinoma (COAD;
from TCGA open portal), 3.6% of them, with Ka/Ks > 4, are classified as advantageous and 23.8% of the genes
that show a Ka/Ks ratio of < 0.5 are classified as deleterious. The rest are considered neutral. Here, we compare
the distributions of non-synonymous changes in the three categories from the normal Sml and CO (21) as well
as from the COAD (TCGA open portal). Note that g/p > 1 (at 6.1 = 23.8%/3.6%) is as expected in Eq. (1°°).

In the normal Sml, the distribution of SN'Vs is very close to the distribution of the gene number itself
(Table 1, 4.3%-73.5%-22.2% vs. 3.6%-72.7%-23.8%, P = 0.88 by G-test) as if SNVs simply fall randomly on
the genes with little interference by natural selection. The normal Sml tissue indeed appears to evolve neutrally.
On the other hand, the distribution of SNVs in the normal CO is distinct from the gene number distribution
(5.0%-78.6%-16.4% vs. 3.6%-72.7%-23.8%, P < 0.01 by G-test), suggesting that these mutations do not come
randomly from all genes. Positively selected genes tend to contribute more SNVs in the normal CO and
negatively selected genes contribute fewer than expected. SNV distributions in the colorectal adenocarcinoma
tissue (COAD, 11.6%-82.3%-6.1%) strongly deviate from those of the two normal tissues by having far more
advantageous mutations and far fewer deleterious ones (P < 0.001 by G-test).

The distribution of SN'Vs progressively deviates from the random pattern going down Table 1, as positive
selection becomes more potent in fixing good mutations and negative selection becomes more effective in
eliminating bad ones. This is also the pattern portrayed in Fig. 1. We should also note that SNVs of each gene in
Table 1 are a mixture of all three types of sites, but with biases toward one type, while Eq. (1) models pure
types of sites.

Rate of phenotypic evolution (i.e., cancer risk)

Between the CO and Sml, the ratios of advantageous/deleterious mutations are different. One therefore
expects the crypts in the CO to evolve the proliferative phenotype more speedily. Indeed, the evolution rate (or
cancer risk) in the CO is more than 70-fold higher than in the SmI (https://seer.cancer.gov). This difference is
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another line of evidence supporting quasi-neutral cancer evolution as strictly neutral evolution, by definition,

should not have a fitness-altering consequence. The two predictions may potentially help explain how normal
CO and SI accumulate similar numbers of age-related mutations (25) but have very different cancer rates (see
below).

IV. Strength of selection under quasi-neutrality
It is now feasible to estimate the strength of selection. By considering both sequence evolution and
phenotypic evolution, our estimation is very different from previous attempts (8, 11, 22, 23).

Efficacy of positive selection as a function of N

The strength of selection (S1 of Eq. (1)) is the rate of accumulating advantageous mutations relative to the
neutral rate. S1 can also be expressed as the function of the cancer risk (Cr = the proportion of the population
with the cancer) and the R value (see Methods for details). Hence,

SI=NTf(N,si)~(RCr+ 1/m)/(Cr+ 1/m) Eq. (2)

where m is a relative measure of Ks in cancer vs. normal tissues, usually falling between 3 and 5. Both R and m
can be obtained from the TCGA data and studies of normal tissues (see Methods).

For the fastest evolving gene, P53, we use R ~ 152, m~4 and Cr = 0.048 (the latter from
https://seer.cancer.gov) to obtain S1 = 25 for colorectal tumors. Substituting S1 = 25 into Eq. (1”), we obtain s;
=0.896 and 0.347 when N is 30 and 50, respectively. (When N is smaller than 30, s; would be even larger).
This level of selection is never attained in species evolution although some estimates of artificial selection are
larger (24, 25). Given that P53 is the only gene in the genome that is mutated in more than 40% of all cancer
cases, selection has been known to be exceptionally strong.

We also use the top 1% of genes with the highest R values (R > 4) to estimate s. For a gene with R=4, S1 =
1.48. Substituting this number into Eq. (1”), we obtain s; = 0.048, 0.015 and 0.0086 for N = 10, 30 and 50,
respectively. These s; numbers are perhaps the first estimation of selection that takes into account the rate of
phenotypic evolution in a stochastic framework. By these estimates, the most strongly selected 1% of genes in
the normal CO experience a selective advantage of 1% - 5%. In populations with N <= 20 (as is likely in Sml),
selection of this intensity is effectively neutral because s is no larger than 1/N. For that reason, the normal tissue
in Sml is not expected to accumulate more advantageous mutations than random accumulations, a suggestion
corroborated by Table 1.

Efficacy of negative selection as a function of N

We now address deleterious mutations. In general, deleterious mutations are eliminated, rather than fixed.
The exception would be in small populations or species that have large non-recombining genomes. Under such
circumstances, deleterious mutations would accumulate by a one-way degenerative process referred to as the
“Muller’s ratchet”(26). The ratchet moves a notch whenever the population fixes a new deleterious mutation
and eventually saddles the population with defects, thus reducing its fitness. Since SmI has a much smaller N in
the crypt, deleterious mutations would accumulate at a faster rate there than that in the colon (S2) (see dotted
lines of Fig. 1A). Thus, Muller’s ratchet moves faster in the Sml than in the CO.

Fig. 1 shows that the selection efficacy for N =2 and N=20 is 0.99 and 0.82, respectively, when s> =-0.01.
The rates become 0.900 and 0.083 when s> = -0.1 with an 11-fold difference. The difference increases as the
effect of negative selection getting stronger. Since the normal tissues accumulate fewer than 100 coding
mutations per genome (Table 2), the number on the Y-axis of Fig. 1A needs to be > 0.01 to have at least one
deleterious mutation (above the horizontal orange line). Thus, in reference to Fig. 1A, selection against
deleterious mutations should be |sz| < 0.2. At this strength, N between 15 and 20 would permit deleterious
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mutations to be fixed with a probability of 0.01 but, when N is around 5, the probability would be 21-fold
higher. It is thus plausible that the Sml would have a much higher load of deleterious mutations than the CO,
which was observed in the data (Table 1).

We note that “Muller’s rachet” in the crypts has been addressed previously (27, 28) but the emphasis and
conclusion are quite different from those of this study. Here, we conclude that quasi-neutrality has significant
phenotypic and clinical consequences. Cancer risks are very different between the colon and small intestine due
to different efficacies of selection.

V. Selection or mutation driving the divergent cancer risks?

In this study, the cancer risk, Cg, is assumed to be selection-driven as Fig. 1 depicts. However, many
studies in the cancer literature used to, and still do, assume that Cr is mutation-driven (29, 30). In this view, the
greater cancer risk in the CO than in the Sml is due to the divergent rates of somatic mutation. If that is true, Cr
should be strongly correlated with each normal tissue’s mutation accumulation (referred to as U). Such a
correlation has been claimed and disputed (30-32) in the absence of the direct measurement of U’s in somatic
tissues.

Direct measurements were first reported by Blokzijl ef a/ (21). As shown in Table 2, U ranges between 0.5
— 1.3 per Mb, about half of the variation could be attributed to age (50 — 80 yrs). These U estimates are not far
from the median U value at 1-5/Mb in many human cancers (9, 10). This raises the possibility that U might have
been over-estimated in the culturing of single stem cells. Because measuring the mutation burden of a single
cell, or a single DNA molecule, requires a step of amplification, single cell measurements may be biased
upwards by errors in the first few rounds of amplifications(33). Our organoid sequencing data thus provide a
confirmation of single cell measurements.

The results of Table 2 show that whole-crypt mutation numbers are only 20 — 25% smaller than the
numbers from single-cell culturing (P > 0.05). Note that, unless the clonality is 100% and all stem cells in a
crypt are identical, the U values of whole crypts are expected to be lower than the single cell measurements.
This small difference indicates that single cell culturing does not substantially inflate the mutation number, if at
all. The finding that cancer risk does not depend on U has turned out to be general (21, 34-37). The conjecture
of Cairn (6) that the tissue architecture reduces the long-term accumulation of mutations can be generalized:
mutation accumulations across tissues converge into a small range. Thus, the variation in Cr across tissues is
not directly attributable to the variation in mutation number.

Discussion

Tumor progression has been accepted as a process of evolution since Nowell’s (7) and Cairn’s (6) seminal
papers. Somatic-cell evolution, however, often appears to show different evolutionary patterns from organismal
evolution (8). Even the basic concept of random genetic drift is perceived very differently (38). The most
dramatic difference between somatic-cell and organismal evolution is, of course, their divergent evolutionary
rates as shown in Fig. 3b.

The issue is whether the two evolutionary processes can be unified conceptually using the same
framework but different parameter values. Alternatively, one might suggest that two distinct models are
necessary. For genetic drift, a simple reformulation of the concept should work for both processes (38). For
natural selection, the pattern in Fig. 3b is usually interpreted to mean distinct actions of selection; for example
the near absence of negative selection in somatic-cell evolution (15) whereas it dominates organismal evolution.
In this view, cancer cells would be unique complex systems that are robust in the face of random perturbations
(Chen QJ et al.; see Appendix). Other scenarios in the literature amount to group selection, reciprocal altruism,
spite behavior as well as other unusual modes of selection (8, 39-41) may entail a drastically modified
framework.
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In this study, we found that the effective population size (N) alone may be sufficient to explain the distinct
evolutionary patterns between somatic-cell and organismal evolution under the same framework (Fig. 3).
Classical population genetic theory assumes a sufficiently large N (>> 100). In contrast, because stem cell
niches usually have very small population sizes (N < 50), the proportion of mutations under positive and
negative selection can be very sensitive to small variations in N. Organismal and somatic-cell evolution can
thus be understood using the same framework. In this sense, somatic-cell evolution can be a new testing ground
of evolutionary theories that have eluded empirical tests for want of suitable organisms.

Methods
Processing of tissue Samples

The patient was a 44-year-old female with no detectable cancer or other intestinal disease. Informed
consent was obtained from the patient. Biopsy samples from the small intestine, ascending colon, and distal
colon were isolated with an enteroscope, followed by organoid culture for 2 weeks. Single crypts were made up
of fewer than 2000 cells. Crypts from the small intestine were composed of fewer cells than colon as the ratio of
crypt sizes is about 1:5. (Fig. S1). DNA was extracted when the single organoid grew to around 10,000 cells
(Fig. S2) using the QIAamp DNA Micro extraction Kkit.

Whole-genome sequencing, alignment, point mutation calling, and filtering

We used the Ovation® Ultralow System (V2 1-16, NuGEN) to prepare standard NGS libraries. The
libraries were sequenced in paired-end (2 % 151 bp) runs using [llumina HiSeq X-Ten. Sequence reads were
mapped to the human reference genome GRCh37 using the Burrows—Wheeler Aligner v0.7.15(42). Raw
variants were called using the GATK HaplotypeCaller v3.7.0 with default settings and some additional options
(see Supporting Information). Mutations called from different samples were combined into a single VCF file
using GATK GenotypeGVCFs v3.7.0. A comprehensive filtering procedure was applied to obtain high quality
somatic point mutations (see Supporting Information).

Comparison of stem cell number in the CO vs. in the Sml

The data presented in Table S1 and Fig. S3 have led to the interpretation that the number of stem cells in a
niche in the Sml is less than 5 and the corresponding number in the CO is great than 10. Let us first assume that
the oganoid sequencing data come equally from n stem cells that are also genealogically equi-distant to one
another (i.e., the genealogical tree of these n cells being a “star phylogeny”). In that case, the distribution of
VAF (variant allele frequency) would have two peaks — a main peak at 0.5 for variants shared by all cells and a
smaller peak at 1/2n.

Based on the data of Blokzijl et al.(21), the relative size of the two peaks should be about 20:1. (The
mutation numbers shared by stem cells of the same niche is about ~2500 while each individual stem cell has
100 — 150 private mutations.) In reality, the minor peak is broader than the main peak because the n cells may
not contribute equally to the data; neither would they come from a star-phylogeny. In addition, due to
sequencing errors, even a single stem cells would yield a small minor peak (e.g., see Ling et al. ref (43)). The
contribution of sequencing error would be increasingly prominent when n becomes larger. When n > 10, the
minor peak would consist mainly of sequencing errors.

VAF clustering of Fig. S3 was performed by SciClone (44), which uses the Bayesian beta mixture model
to estimate the clonal composition in each sequencing sample. The analysis confirms a major peak at VAF~ 0.5
and a minor peak near VAF of 0.2 in the SmlI sample. For the CO samples, there is only one major peak at VAF
of 0.5. Because Fig. S3 shows a minor peak between 0.15 and 0.25 in the SmlI data, we roughly estimate n to be
between 2 and 4. If we factor in the process of organoid culturing, it would be reasonable to suggest Nsmi < 5.
Given the sequencing depth of > 90X (with an average of ~ 97X), simple simulations show that the absence of a
minor peak in the CO sample would suggest Nco > 10. Based Table S1 and Fig. S3, the private/shared mutation
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numbers, delineated by VAF of 0.3, are 335/1863 for Sml1, 173/2491 in the ascending CO, and 146/2224 in the
distal CO.

Population genetic theory in relation to somatic-cell evolution.

Because the evolution of somatic cells differs from that of species in many respects, notably the absence of
sexual reproduction and recombination, biologists have sometimes question the validity of the theory for
understanding cancer evolution. A detailed discussion is hence presented in Supporting Information.

Deduction from efficacy of selection to the formulation of KA/KS in cancer and cancer risk

The efficacy of selection is ST =Nu f(N, s1) /u=N f (N, s1), where N u f (N, s1) is the rate of
accumulation advantageous mutations. This numerator is KA (the number of nonsynonymous substitutions in
cancer driver genes), while the denominator, u, is KS (the number of synonymous substitutions these genes).
Let Ka and Ka’ designate the number of nonsynonymous substitutions in cancer patients and non-cancer
individuals, respectively. Similarly, let Ks and Ks’ be the number of synonymous substitutions those individuals.

We now denote the lifetime risk of being diagnosed with a certain type of cancer as Cr. Thus, KA = Ka Cr
+ Ka’ (1- Cr) and KS=Ks Cr +Ks’ (1- Cr) where Ka and Ks can be obtained from the TCGA database
(https://portal.gdc.cancer.gov). The KA /KS of any cancer driver gene in a cancer tissue is R (R= Ka/Ks).
Method of calculating R values of cancer tissues is described in Supporting Information. In normal tissues,
Ka’/Ks’=1 (8) (Tablel). m = Ks/Ks’ is the ratio of the average mutation numbers in cancerous and normal
tissues. We estimate m ~ 4, based on data from cancerous and normal tissues, where Ks~35 and Ks’~ 8 - 9.
Therefore, Eq. 2 of the main text can be written as follows:

S1=KA/KS = (Ka Cr +Ka’ (1- Cr)) / (Ks Cr +Ks’ (1- Cr)) = (RCr +1/ m) / (Cr +1/m)

Classification of genes according to selection intensity

COAD mutation data were downloaded from the TCGA open portal (https://portal.gdc.cancer.gov). For
each data entry, TCGA implemented four mutation calling pipelines. We retained mutations called by at least
two of these pipelines. To avoid super-mutated genomes, patients with more than 500 mutations in the exome
were removed. The aggregated data comprise 324 COAD cases with 28788 mutations in their exomes. Normal
CO and SmI mutation data are from Blokzijl et al. (21). Genes are classified in Table 1 as positively selected,
neutral, or negatively selected according to each gene’s KA/KS ratio (> 4, between 4 and 0.5 and <0.5) as
described in Wu et al. (8). In calculating KA and KS, the underlying mutation pattern is obtained from the data
in order to give weight to different nucleotide substitutions. We analyzed the single-nucleotide substitution
matrix in four-fold degenerate sites of protein-coding genes. The mutation spectrum comprised 12 basic
mutation types. Mutations in CpG sites (CpG -> TpG or CpA) were also separately considered. As suggested in
Wu et al. (8), genome-wide Ks value was used in lieu of the value from each individual gene which fluctuates
wildly due to the small number of mutations at each locus. KA included nonsense mutations, equivalent to
KAX in Wu et al. (8).
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selective pressure experienced by each gene in the tumors.

Non-synonymous changes (A) in each class

Synonymous
) ) ) changes, S
. Genes driven by | Neutrally-evolving | Genes driven by A/S
Tissue L . . . (A/S)
positive selection genes negative selection | Total
(Ka/Ks > 4) (Ka/Ks =0.5-4) (Ka/Ks <0.5) | (100%)
Normal Sml 53
5(4.3%) 86 (73.5%) 26 (22.2%) 117 22)
o o o 148
Normal CO 15 (5.0%) 235 (78.6%) 49 (16.4%) 299 (2.02)
Cancer 10647
(COAD) 3344 (11.6%) 23691 (82.3%) 1753 (6.1%) 28788 @2.7)
Number of genes in each category
448 (3.6%) 9028 (72.7%) 2944 (23.8%) 12420
Table 2. Mutation accumulation, U (Number of mutations per Mb), in normal tissues
Normal tissue
Method Liver Colon Small intestine Average
Single cell 0.58 0.93 0.84
) [0.48 — 0.68, [0.78 — 1.20, [0.56 — 1.28,
cloning (Ref. 25) n=8] n=16] n=6] 0.80
0.77 0.64
Cgfi’g gtll‘;g“)lg - [0.79. 0.871 [0.63, 0.65] 0.71
Y [0.63,0.77]"

2 Ascending colon
b Distal colon
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Figures

Fig. 1. The rate of molecular evolution as a function of N. (A) Log (S1) and Log(S2) (solid and dashed lines, respectively) on
the Y axis designate the efficiency of selection (Eq. 1°). It represents the rate of accumulating advantageous or deleterious
mutations relative to the neutral rate, as a function of N (population size). The orange horizontal line indicates S2 = 0.01 above

which fixation is detectable. The speed of fixing mutations in small vs. large population is contrasted by the blue vs. green oval.
(B) A higher resolution plot for advantageous mutations. The scale of the Y-axis is in the linear scale.

Fig. 2. Heatmap of R (Ka/Ks) ratios according to Eq. (1) under different combinations of p’s and q’s on the X and Y axis.
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Fig. 3. (A, inset) Stages of somatic cell evolution. Stage I, starting in a stem cell and ending in the c-MRCA (the most recent
common ancestor of all cancer cells of a tumor), is the focus of this study. DNA sequences of tumors (9, 10) reflect the
evolution in this stage. Stage II represents the diversification within tumors (22, 43, 45, 46) and Stage III is the further evolution
in cell lines (47). (B) The distributions of R* (genome-wide Ka/Ks ratio) for natural species and for somatic tissues (both
normal and cancerous samples) are shown. Sequenced genomes of natural species from a wide range of taxa (vertebrates,
insects, nematodes and plants) generally have an R* ratio between 0.05 and 0.3 (clustered on the left). In contrast, across 19
cancer types and 3 normal tissues (21), the R* values are clustered between 0.95 and 1.15. The tissue types are given in the
Supporting Information.
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