
SciReader*: A Cloud-based Recommender System for Biomedical
Literature

Priya Desai
Stanford Center for Genetics
and Personalized Medicine

Stanford University
Palo Alto, CA

prd@stanford.edu

Natalie Telis
Department of Biomedical

Informatics
Stanford University

Palo Alto, CA
natalie.telis@gmail.com

Ben Lehmann
Department of Physics

University of Santa Cruz
Santa Cruz, CA

blehmann@ucsc.edu

Keith Bettinger
Stanford Center for Genetics
and Personalized Medicine

Stanford University
Palo Alto, CA

bettingr@stanford.edu

Jonathan K. Pritchard
Department of Genetics and

Biology
Stanford University

Palo Alto, CA
pritch@stanford.edu

Somalee Datta
Stanford Center for Genetics
and Personalized Medicine

Stanford University
Palo Alto, CA

somalee@stanford.edu

Abstract— With the growing number of biomedical papers
published each year, keeping up with relevant literature has
become increasingly important, and yet more challenging.
SciReader (www.scireader.com) is a cloud-based personalized
recommender system that specifically aims to assist biomedical
researchers and clinicians identify publications of interest
to them. SciReader uses topic modeling and other machine
learning algorithms to provide users with recommendations that
are recent, relevant, and of high quality1.

I. INTRODUCTION

Today’s researchers have access to large online scientific
repositories of literature and face the monumental challenge
of sifting through the vast amounts of available information
to find articles relevant to their interests. These digital
archives are growing rapidly as new articles are put online
and old publications are scanned, indexed, and made digitally
available. While keeping up with the ongoing work in their
discipline is an essential task for scientists, it can be tedious
and time-consuming. Furthermore, with the growing number
of publications, it is nearly impossible to access and track the
most relevant and promising research articles. This points to
the need for new technology solutions that enable researchers
to access publications central to their disciplines, understand
the current trends, and collect references for their own
research. While, historically, researchers have found articles
by following citations in other articles of interest, today’s
fast-paced research world makes that method cumbersome
and insufficiently comprehensive. Today, the most common
strategies for finding relevant articles are through keyword-
based web searches, Google Scholar searches, or by scanning
through RSS feeds from popular journals. Sites like CiteU-
Like[11] and Mendeley[17] allow researchers to create their

* www.scireader.com
1 SciReader codebase will soon be released as open-source code.

own reference libraries for articles they are interested in and
enable sharing with peers[13]. These shareable libraries and
vast amounts of literature makes this field ripe for using a fil-
tration system—and a good recommender system[9] (which
filters out the least relevant articles) could be invaluable.

Recommender systems have long been widely used in
e-commerce as valuable tools for personalizing purchase
recommendations. Amazon and Netflix suggest products and
movies based on each user’s profile, previous purchase
history, and online behavior. Facebook and Google news
recommend news articles based on user profiles and behavior.
As the amount of information available grows, personalized
recommendation systems have become crucial tools for find-
ing useful content.

II. BACKGROUND AND RELATED WORK

While an explosion of available scientific literature is
occurring in many fields, we focus specifically on the area
of biomedical literature (Fig 1). In the burgeoning field of
biomedicine, a staggering 3,000-5,000 papers are published
every day (Fig 2). It is not practical to browse through so
many articles to identify those that may be relevant. For
newcomers to the field, it is hard to establish a baseline
understanding of seminal work. New journals are popping up
on a regular basis[27]. Good recommender systems can play
a valuable role in winnowing down publications of interest.

There are primarily two kinds of recommender systems:
1) Content-based recommender systems, and
2) Collaborative filtering-based recommender systems.

Content-based filtering methods are usually based on a
description of the item and a profile of the user’s preferences.
They utilize discrete characteristics (attributes) of an item in
order to recommend additional items with similar properties.
These algorithms recommend items that are similar to those

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2018. ; https://doi.org/10.1101/333922doi: bioRxiv preprint 

https://doi.org/10.1101/333922
http://creativecommons.org/licenses/by/4.0/


Fig. 1. Number of Papers Uploaded to PubMed per Year.

Fig. 2. Number of Papers Uploaded to PubMed per day between 3-20-2018
and 4-20-2018.

that the user liked in the past. An important drawback of
content-based filtering is that the system is unable to interpret
user preferences in one context and use them across other
content types. It tends to recommend only similar items and
the recommendations have very little novelty factor. Rotten
Tomatoes[14] and Pandora Radio[16] are popular content-
based recommendation systems.

Collaborative filtering-based approaches[10] typically
build models based on user profiles, user’s past behaviors
(items previously purchased or selected and/or numerical
ratings given to those items), and the behavior of similar
users to recommend items[15]. A key advantage of the col-
laborative filtering approach is that it does not require a large
number of item attributes. However, it suffers from the cold
start problem – it typically requires a large amount of user
data to make meaningful recommendations. Last.fm[30] is a
music station that primarily uses the collaborative filtering
approach.

Modern recommenders often follow a hybrid[6] approach,
employing both content-based and collaborative-filtering-
based techniques. Netflix[18] is a good example of a hybrid
recommender system.

In recent years, a number of websites that can provide
scientific recommendations have been developed: e.g. Scien-
stein[6], Google Scholar[32], PubChase[20], Mendeley[13],
[17], Sparrho[31] and others. Many of these sites focus
mainly on citation counts and classic text mining strategies,
each of which has advantages and potential pitfalls, thus
limiting its general usability. For example, citation databases
are often incomplete, and have issues disambiguating homo-
graphs. They may also be subject to the Matthew Effect[21],
[27] which is the sociological phenomenon that eminent

scientists will often get more credit than a comparatively
unknown researcher, even if their work is similar. Text-
based recommenders often have trouble with synonyms and
context-based words, and often cannot identify papers that
may be related.

III. SCIREADER

A. An Overview

SciReader is a hybrid recommender system and takes
advantage of both the representation of the content as well as
the similarities among users. While most biomedical recom-
mender systems like PubChase focus on finding new items,
we believe that sharing, discussing, and reviewing papers are
an integral part of a scientist’s professional activities, and
these motivations are reflected in our requirements for the
SciReader site. Our general goals for SciReader are:

(i) The articles recommended should be relevant to the
user.

(ii) The articles should be fairly recent. While we believe
it is important to be able to recommend older relevant
articles, our immediate motivation is to address the
problem of current data deluge.

(iii) Users should be able to view, comment, and share via
email and social media, articles they find relevant and
interesting.

(iv) Users should be able to bookmark articles they like or
plan to read and should be able to organize articles
from different projects.

(v) Twitter, which is increasingly used to announce new
results and publications, should be integrated into
SciReader.

(vi) It should be to useful to newcomers in the field –
not just established scientists with many publications.
It should allow users to easily navigate the extensive
body of biomedical literature.

The two main parts of this system:
(i) Recommendation Algorithm

(ii) User-system Interaction
are discussed in the following sections. Fig 3 below is an
overview of the SciReader recommender system.

Fig. 3. The Recommendation system:An Overview

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2018. ; https://doi.org/10.1101/333922doi: bioRxiv preprint 

https://doi.org/10.1101/333922
http://creativecommons.org/licenses/by/4.0/


B. Recommendation Algorithm

Generating recommendations is a multi-step matching
and filtering process that combines multiple algorithmic
approaches as described below.

1) Probabilistic Topic Models: Topics can be thought of
as ”recurring patterns of co-occurring words”[28], and a topic
model is a type of statistical model often used to discover
abstract topics that occur in a collection of documents[1],
[2]. Topic models are frequently used to discover hidden
semantic structures in a large text body[7], [8]. One of
the most commonly used topic models is latent Dirichlet
allocation (LDA)[2]. LDA is a matrix factorization technique
and assumes documents are produced from a mixture of
topics. Unlike a clustering algorithm, where each document
would be assigned to one cluster, LDA allows documents
to belong to multiple topics with varying probability. Given
a dataset of documents, LDA backtracks and tries to figure
out what topics would create those documents in the first
place. LDA specifies a generative process, an imaginary
probabilistic recipe that produces both the hidden topic
structure and the observed words of the texts. Those topics
then generate words based on their probability distribution.

For example: Assume there are K topics β= β1:K , each
of which is a distribution over a fixed vocabulary. The
generative process of LDA is as follows:
For each article wj in the corpus,

1) Draw topic proportions θj ∼ Dirichlet(α).
2) For each word n, (a)

a) Draw topic assignment zjn ∼ Mult(θj).
b) Draw word wjn ∼ Mult(βzjn).

This process reveals how the topic proportions are document-
specific, but the set of topics is shared by the corpus.

Topic modeling algorithms perform what is called
probabilistic inference. Given a collection of texts, they
reverse the imaginary generative process to answer the
question: ”What is the likely hidden topical structure
that generated my observed documents?” The posterior
distribution (or maximum likelihood estimate) of the topics
reveals the K topics that likely generated its documents
[23], [24].

2) PubMed Topic Model: The cornerstone of
SciReader is its topic model of PubMed. PubMed
(http://www.ncbi.nlm.nih.gov/pubmed) is a free search
engine maintained by the NIH primarily accessing the
MEDLINE database of references and abstracts on life
sciences and biomedical topics. It provides a fairly
comprehensive coverage of all articles published in
biomedicine. Metadata information about each article,
including authors, title, institution, and abstract, is freely
available. We used titles, abstracts, and keywords from all
articles available in PubMed and published in 2012 to create
our document collection (or text corpus) and then generate
topics. Only abstracts (not full text) were chosen because
they are freely available for all articles. Full texts are not

available for most publications.
We use MALLET (Machine Learning for Language

Toolkit)[5], [22], a Java-based package for statistical nat-
ural language processing developed at the University of
Massachusetts at Amherst, to run an implementation of
LDA. The corpus from PubMed that we used contained
approximately one million unique articles, and for each
article, we concatenated its title, abstract, and keywords.
We applied heuristics to clean up the data, like removing
standard English stop words (like ”a”, ”do”, and ”these”)and
word stemming. To generate topics, we used the vector space
model representation of the corpus[33]. The final training
corpus had approximately 650,000 distinct words and was
used to generate a topic inferencer which classified biomed-
ical papers into 150 topic areas. The number of topics was
determined after much manual parameter adjustments and
based on multiple factors including Silhouette clustering[26]
and perplexity[25].

For ease of use, we manually examined the LDA output to
provide an informative name for each automatically defined
topic. This inspection was done by examining the most fre-
quent words in the topic, the typical journals where articles
with a high probability of this topic were published, and
the actual articles containing a high probability of that topic.
Some topics which seemed to capture a large number of non-
english words and had a noticeably fewer documents with
high probabilities were dropped in the final topic display(Fig
7a). Fig 4 displays the most frequent words of a topic as a
word cloud along with the curated topic name. The size of
the word in the word cloud is proportional to the relative
frequency of the word in that topic. The topic names are
human-curated.

(a) Obstetrics (b) Blood Cancers (c) Population Genetics

Fig. 4. Examples of Topics generated by LDA:

For better navigation on the website, we further grouped
these topics manually into twenty supertopics. Fig 5 is an
example where Genetics and Genomics is the supertopic
created to contain seven sub-topics, each of which were
generated by the algorithm.

Fig. 5. Supertopics and Corresponding sub-topics

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2018. ; https://doi.org/10.1101/333922doi: bioRxiv preprint 

https://doi.org/10.1101/333922
http://creativecommons.org/licenses/by/4.0/


The topic inferencer was stored and is used to infer topics
for all new documents. All the older articles in PubMed
have also been processed using this inferencer, and stored
in terms of their topics. Thus, each paper is classified into
one or more topics by using the same LDA inferencer
model with fixed topic definitions. This topic model can
be considered to be an interpretable, low-dimensional
representation of PubMed and we exploit this representation
to find topically similar papers.

3) Tf-idf and cosine similarity: As part of preprocessing,
all articles or documents are converted into a vector space
representation matrix. The documents are tokenized using
the same ≈ 650,000 word dictionary that was generated
while creating the LDA inferencer. We then apply the tf-idf
normalization[34], [35] to the matrix of documents and use
that representation to calculate the cosine distance between
the documents. The tf-idf weight is a statistical measure used
to evaluate how important a word is to a document in a
collection or corpus by assigning a higher weight to rarer
words in a collection of documents. It can be expressed as:

tft,d ∗ idf t = (1 + log tft,d) · log
N

dft
(1)

where tft,d is the number of occurrences of term t in
document d, N is the total number of documents in a
collection and dft is the document frequency of term t.

Document similarity or distance between documents is a
standard method used in information retrieval to measure
how semantically similar two documents are[33], [35]. While
there are different distance metrics (Jaccardean, Euclidean,
Manhattan) that can be used, cosine measure, which is the
Euclidean dot product between the vector representation of
the two documents, is frequently used as a measure of
document similarity and the metric that gave us the best
results.

similarity = cos(θ) =
A ·B
‖A‖‖B‖

=

∑n
i=1(AiBi)√∑n

i=1(Ai)
2
√∑n

i=1(Bi)
2

distance = 1− similarity

The smaller the distance, the more similar the documents.
To make recommendations, we generate matrices: one using
the articles in the user’s library, and the other using the
articles in the corpus, and then we find the papers most
similar to the user’s library in the corpus.

C. User-System Interaction

Since SciReader is focused on providing personalized
recommendations in the biomedical literature space, we need
to gather a variety of different kinds of information about the
user to understand their specific research interests. When a
user initially registers with the site, they are led through a

series of questions and asked to provide at least one of the
following:

1) topics of interest from the predefined list of ≈150
topics. These are the topics generated by the topic
modeling algorithm as discussed above (Fig 7b).

2) keywords that describe their research interests(entered
as free-format text) (Fig 7b).

3) authors of interest.
4) an existing reference library/bibliography (Fig 7c).
5) a personal publication list (Fig 7c).
All users are provided with a couple of basic libraries:

Reading List and My Publications. These libraries are meant
to serve as placeholders for the users (yet to be populated)
reading list and publications. As useful papers from the
recommendation list are found, they can be added to the
reading list. The users are free to create as many more
libraries as they need to organize their recommendations and
references. The site has a built-in interface with PubMed, so
a user can easily search for their own and other publications
and add them to their libraries. The central idea is that
newcomers to the field can get a general flavor of the cur-
rent publications by providing only topics and keywords of
interest. They can then peruse the recommendations by topic
which are updated daily, and slowly build their digital library.
Established practitioners of the field who may already have
personal reference libraries can upload them right away (Fig
7c) in addition to providing basic keywords and topics. All
this information gives the recommender more data to work
with and helps provide more personalized recommendations.

A user can interact with the site by liking, upvoting, shar-
ing or commenting on an article. These modes of feedback
provide the recommender with valuable information about
the user’s current interests. Our philosophy is that a small
amount of initial information can assist us with identifying
general areas of interest, but after that, the user’s behavior
within the site will be most helpful for fine-tuning the recom-
mendations. For example, we encourage users to create sepa-
rate libraries for different projects, because separate libraries
allow the recommender to tailor its recommendations to each
project. Recommendations are created for each individual
library and an Overall recommendation set is compiled of
the recommendations from all the libraries. SciReader tracks
every time a recommended paper is uploaded into one of the
user’s libraries and records all interactions the user has with
the site.

In addition to paper recommendations, SciReader also
provides users with regular Twitter updates relating to papers
in their topics of interest. We monitor Twitter accounts from
most prominent journals and publications and crosslink them
with articles from PubMed. Tweets that refer to publications
are then displayed as part of the users recommendation feed.
Fig 6 describes the typical user workflow and Figs 7(a-c)
show different aspects of the user portal.

D. Finding relevant papers

We assume that a user k has a library L of n papers,
and that we want to compare these against a corpus C,

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2018. ; https://doi.org/10.1101/333922doi: bioRxiv preprint 

https://doi.org/10.1101/333922
http://creativecommons.org/licenses/by/4.0/


Fig. 6. Typical user workflow.

(a) User keyword preferences view

(b) User topic preferences view

(c) User libraries and upload view

Fig. 7. Different facets of the User portal

containing m new papers. We use a filtering step to prepare
recommendation set R, in which we only include papers in C
if they have substantial topic overlap with papers in L. This
intersection is done by comparing the topic representations
of papers in the user’s library versus the corpus. Next, we
compute a word similarity matrix Wi,j between each paper
li ∈ L and cj ∈ C. The entries in W are in [0, 1] with
1 indicating complete similarity, and 0 indicating complete
difference. We then identify papers in C that are especially
close to at least some papers in L. We use the following
distance function to assign a score to each paper cj as
follows:

Sj =
1

n

n∑
i=1

d(li)W
α
i,j

where d(li) is a function of the date of publication of paper
li such that similarity to older papers in the library is down
weighted (since those may reflect less recent user interests),
and α ≤ 1 is a constant that upweights high similarities.
Our rationale here is that medium values of α ≤ 1 result in
upweighting of papers which are overall similar to clusters
of papers in the library, rather than picking either papers that
have similarity to everything but not very similar to anything,
or papers that are extremely similar to one paper only.

The impact factor of a journal is frequently used as a
proxy for the relative importance of a journal within its
field. We upweight papers from journals with higher impact
factors, as well as journals which published the papers in
the user’s library and contain the keywords provided by the
user. Furthermore, we would like our recommendations to
be strongly biased towards more recent papers. We have
developed a function that models these characteristics which
we use to rank papers. ‘’

Mentions of papers in social media such as Twitter or
blogs can be a leading indicator of the future importance of
a paper. We search Twitter accounts for URLs that link to
scientific papers and match these to papers in our database.
For each paper, we record all tweets that are positively
matched as referring to that paper. These data are currently
summarized simply as the number of tweets referring to
any given paper, but, in the future, we will consider more
complicated weighting schemes, such as estimates of the
tweeter quality based on past performance at identifying
good papers.

We are further refining our prediction algorithm to in-
corporate a variety of features to predict how important
a paper is likely to become. Currently, the key features
used by our prediction algorithm include journal impact
factor and Tweet+Like counts. Citation counts are frequently
used as a measure of the importance of papers. However,
it usually takes more than a year before a paper starts to
accumulate citations, rendering this approach inapplicable for
recommending new literature. We are working on developing
an author and institution quality score based on citation count
data and author position.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2018. ; https://doi.org/10.1101/333922doi: bioRxiv preprint 

https://doi.org/10.1101/333922
http://creativecommons.org/licenses/by/4.0/


E. Putting it all together: Creating recommendations

We routinely download new papers from PubMed to a
local database. All new papers are then processed through
the LDA inferencer and stored in a separate table. As part
of pre-processing, a current corpus matrix of all the papers
published the last 90 days is generated, using both the
topic-model representation, as well as the tf-idf normalized
form. There are typically between 275,000 - 400,000 papers
in the current corpus. The dictionary used to tokenize the
papers is the same one that was used in generating the LDA
inferencer and is thus common for all papers. This current
corpus is then used to generate all the daily and immediate
recommendations.

All the user libraries are similarly processed and stored
using the topic-model representation as well as the tf-idf
normalized matrix representation using the same word vo-
cabulary (dictionary). Whenever a user adds/removes papers
from any of their libraries, or creates a new library, the
matrices are updated accordingly. When a user uploads a new
library, the immediate recommendations function is triggered.
The user library is pre-processed and topic comparison is
done between the library papers and current corpus. We filter
out papers from the current corpus that don’t pass a minimum
threshold of similarity with the user’s library, thus ensuring
that only topically similar papers are further considered for
recommendation. We then compute the word-similarity ma-
trix between the user’s library and this filtered current corpus
and generate a score for each paper. The top n (typically
a few hundred) papers are taken and only these will be
used to generate the final recommendations. These n papers
are then re-scored using the weighting function that factors
in the date of publication, journal impact factor, journals
included in the user’s library, keywords, etc., and re-ranked.
The papers are sorted by this new ranking and then displayed
as the user’s recommendations. Overall recommendations are
a compilation of recommendations from all the libraries for a
specific user, re-ranked using certain criteria. The process for
generating daily recommendations is similar except that we
run this recommendation for all libraries and for all users. Fig
8 shows a schematic workflow and Fig 9 shows a screenshot
of a typical users library recommendations.

Fig. 8. Recommendation workflow

Fig. 9. Individual library recommendations.

In addition to paper recommendations, we also provide a
daily updated tweet feed. As stated earlier, we have created
a database linking tweets and the digital object identifier
(doi) of the publications and keep track of how many times
a publication is tweeted or re-tweeted about. Since the
publication has been through our topic inferencer, we know
the main topics in the publication, and thus can assign the
tweet the corresponding topic(s). The tweet is thus labeled
as belonging to a certain topic. The tweet feed is a list of
tweets that refer to papers that refer to the users preferred
topics and had the highest number of tweets. Tweets that
do not refer to a specific topic, but are tweeted about very
frequently are labeled as ”General”. Thus, each user gets a
Twitter feed uniquely personalized to them. Fig 10 shows a
typical Twitter feed.

We also generate a weekly digest of recommendations
which emailed to each user. This digest is comprised of the
papers that were at the top of their recommendation feed
for that week. All the data processing on the backend is
done using python and the web interface uses the Django
1.7 framework.

F. Optimizing Calculations

Providing on demand, instantaneous recommendations is
computationally intensive and input/output of data can time-
consuming. The actual word-similarity calculation often in-
volves multiplications between matrices of size ≈ 650,000
x 15,000 and, reading these in and performing the calcu-
lation can be both computationally and memory intensive.
However, since our vector space model matrices are sparse,
we can use the sparse matrix format to significantly reduce
the memory footprint. Hierarchical Data Format version 5
(HDF5) [36] is a great mechanism for storing large quantities
of numerical data which can be read in rapidly and allow
for sub-setting and partial I/O of datasets. We use the H5py
package/PyTables, a pythonic interface to the HDF5 binary
data format which allows easy manipulation of data. The
sparse tf-idf matrices are stored in the hdf5 format and
calculations done using Scipy are coded in C/C++, thus
significantly speeding performance. cPickle written in C is a

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2018. ; https://doi.org/10.1101/333922doi: bioRxiv preprint 

https://doi.org/10.1101/333922
http://creativecommons.org/licenses/by/4.0/


Fig. 10. Screenshot of a user’s Twitter feed.

python module that implements a fundamental, but powerful
algorithm for serializing and de-serializing a Python object
structure and is used to store the word token dictionary. We
pre-calculate as many of the computations as possible so the
recommendations can be generated efficiently.

Fig. 11. Library recommendations for a specific user.

G. Cloud Architecture

SciReader was initially developed on Amazon Web Ser-
vices (AWS) but has since been migrated to the Google
Cloud Platform. Fig 12 shows the system architecture on
Google Cloud. The user data as well as the PubMed metadata

is stored in a MySQL database on the cloud. Google buckets
store the precomputed matrices and the computations are
done on a Google Compute Engine virtual machine. The
website is hosted on a small virtual instance and an elastic
load balancer is used to spin up more instances based on
demand.

Fig. 12. A schematic diagram of the current SciReader architecture on
Google Cloud.

H. Discussion and Future Work

SciReader is a fully functional recommender system
for biomedical literature and it can be accessed at
http://www.scireader.com. It currently has ≈1500 unique
active users. We have conducted multiple informal focus
groups to better understand our user base, and based on
the feedback, we are working on improving and adding
certain features and functionalities to the site. We are also
planning on adding content from NIH RePORTER, arXiv,
and bioRxiv to the recommendations. Further, we are devel-
oping a SciReader API so that the highly annotated database
containing the topic representation for all biomedical articles
used by SciReader can be accessible to other researchers
for future bibliometric and longitudinal studies. In addition
to improving the speed to generating recommendations, we
hope to provide user-tunable recommendations where the
user could explicitly choose which criteria to use to generate
their personalized recommendations.

ACKNOWLEDGMENTS

This project was initially developed in the Pritchard Lab
and supported by funding from Stanford University and the
Howard Hughes Medical Institute. It is now maintained by
SCGPM. We thank Yonggan Wu for his help in building the
SciReader website.

REFERENCES

[1] Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of
population structure using multilocus genotype data. Genetics, 155(2),
945-959.

[2] Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet
allocation. Journal of machine Learning research, 3(Jan), 993-1022.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2018. ; https://doi.org/10.1101/333922doi: bioRxiv preprint 

https://doi.org/10.1101/333922
http://creativecommons.org/licenses/by/4.0/


[3] Blei, D. M. (2012). Probabilistic topic models. Communications of
the ACM, 55(4), 77-84.

[4] Wang, C., & Blei, D. M. (2011, August). Collaborative topic modeling
for recommending scientific articles. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data
mining (pp. 448-456). ACM.

[5] McCallum, Andrew Kachites. ”MALLET: A Machine Learning for
Language Toolkit.” http://mallet.cs.umass.edu. 2002.

[6] Gipp, B.,Beel, J., Christian Hentschel, Scienstein: A Research Paper
Recommender System

[7] D. Blei and J. Lafferty. Topic models. In A. Srivastava and M. Sahami,
editors, Text Mining: Theory and Applications. Taylor and Francis,
2009

[8] Park DH, Kim HK, Choi IY, Kim JK. A literature review and
classification of recommender systems research. Expert Systems with
Applications. 2012 Sep 1;39(11):10059-72.

[9] Adomavicius G, Tuzhilin A. Toward the next generation of rec-
ommender systems: A survey of the state-of-the-art and possible
extensions. IEEE transactions on knowledge and data engineering.
2005 Jun;17(6):734-49.

[10] Herlocker JL, Konstan JA, Terveen LG, Riedl JT. Evaluating collabora-
tive filtering recommender systems. ACM Transactions on Information
Systems (TOIS). 2004 Jan 1;22(1):5-3.

[11] Bogers T, Van den Bosch A. Recommending scientific articles using
citeulike. InProceedings of the 2008 ACM conference on Recom-
mender systems 2008 Oct 23 (pp. 287-290). ACM.

[12] Griffiths TL, Steyvers M. Finding scientific topics. Proceedings of the
National academy of Sciences. 2004 Apr 6;101(suppl 1):5228-35.

[13] Zaugg H, West RE, Tateishi I, Randall DL. Mendeley: Creating
communities of scholarly inquiry through research collaboration.
TechTrends. 2011 Jan 1;55(1):32-6.

[14] Tomatoes, R. (2008). Rotten Tomatoes.
[15] Amatriain X, Lathia N, Pujol JM, Kwak H, Oliver N. The wisdom of

the few: a collaborative filtering approach based on expert opinions
from the web. InProceedings of the 32nd international ACM SIGIR
conference on Research and development in information retrieval 2009
Jul 19 (pp. 532-539). ACM.

[16] Layton J. How Pandora Radio works. HowStuffWorks. com. 2006
May.

[17] Henning V, Reichelt J. Mendeley-A Last. fm for research?. IneScience,
2008. eScience’08. IEEE Fourth International Conference on 2008 Dec
7 (pp. 327-328). IEEE.

[18] Adhikari VK, Guo Y, Hao F, Varvello M, Hilt V, Steiner M, Zhang
ZL. Unreeling netflix: Understanding and improving multi-cdn movie
delivery. InINFOCOM, 2012 Proceedings IEEE 2012 Mar 25 (pp.
1620-1628). IEEE.

[19] Adomavicius G, Tuzhilin A. Context-aware recommender systems.
InRecommender systems handbook 2015 (pp. 191-226). Springer,
Boston, MA.

[20] Website: ”www.pubchase.com”.
[21] Wang J. Unpacking the Matthew effect in citations. Journal of Infor-

metrics. 2014 Apr 1;8(2):329-39.
[22] Graham S, Weingart S, Milligan I. Getting started with topic modeling

and MALLET. The Editorial Board of the Programming Historian;
2012 Sep 2.

[23] Chang J, Gerrish S, Wang C, Boyd-Graber JL, Blei DM. Reading
tea leaves: How humans interpret topic models. InAdvances in neural
information processing systems 2009 (pp. 288-296)

[24] Blei DM, Lafferty JD. Topic models. Text mining: classification,
clustering, and applications. 2009 Jun 15;10(71):34.

[25] Blei DM, Lafferty JD. Correlated topic models. InProceedings of
the 18th International Conference on Neural Information Processing
Systems 2005 Dec 5 (pp. 147-154). MIT Press.

[26] Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. Journal of computational and applied
mathematics. 1987 Nov 1;20:53-65.

[27] Mabe M, (2003). The growth and number of journals . Seri-
als.16(2),pp.191197. DOI: http://doi.org/10.1629/16191.

[28] Merton RK. The Matthew effect in science: The reward and com-
munication systems of science are considered. Science. 1968 Jan
5;159(3810):56-63.

[29] Brett Megan, Topic Modeling: A Basic Introduction, Journal of Digital
Humanities, Vol 2,1

[30] Website: ”https://www.last.fm/”
[31] Website: ”https://www.sparrho.com/”

[32] Website: ”https://scholar.google.com/intl/en/scholar/about.html”
[33] Salton G, Wong A, Yang CS. A vector space model for automatic

indexing. Communications of the ACM. 1975 Nov 1;18(11):613-20.
[34] Larson RR. Introduction to information retrieval. Journal of the

American Society for Information Science and Technology. 2010
Apr;61(4):852-3.

[35] Larson RR. Introduction to information retrieval. Journal of the
American Society for Information Science and Technology. 2010
Apr;61(4):852-3.

[36] Folk M, Heber G, Koziol Q, Pourmal E, Robinson D. An overview of
the HDF5 technology suite and its applications. InProceedings of the
EDBT/ICDT 2011 Workshop on Array Databases 2011 Mar 25 (pp.
36-47). ACM.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2018. ; https://doi.org/10.1101/333922doi: bioRxiv preprint 

https://doi.org/10.1101/333922
http://creativecommons.org/licenses/by/4.0/

