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Abstract 

The ability to correctly estimate the probability of  one’s choices being correct is fundamental to 

optimally re-evaluate previous choices or to arbitrate between different decision strategies. 

Experimental evidence nonetheless suggests that this metacognitive process -referred to as a 

confidence judgment- is susceptible to numerous biases. We investigate the effect of  outcome 

valence (gains or losses) on confidence while participants learned stimulus-outcome associations by 

trial-and-error. In two experiments, we demonstrate that participants are more confident in their 

choices when learning to seek gains compared to avoiding losses. Importantly, these differences in 

confidence were observed despite objectively equal choice difficulty and similar observed 

performance between those two contexts. Using computational modelling, we show that this bias is 

driven by the context-value, a dynamically updated estimate of  the average expected-value of  choice 

options that has previously been demonstrated to be necessary to explain equal performance in the 

gain and loss domain. The biasing effect of  context-value on confidence, also recently observed in 

the context of  incentivized perceptual decision-making, is therefore domain-general, with likely 

important functional consequences. 
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Introduction 

 

Simple reinforcement learning algorithms efficiently learn by trial-and-error to implement decision 

policies that maximize the occurrence of  rewards and minimize the occurrence of  punishments 

(Sutton and Barto, 1998). Such basic algorithms have been extensively used in experimental 

psychology, neuroscience and economics, and seem to parsimoniously account for a large amount of  

experimental data at the behavioral (Erev and Roth, 1998; Rescorla and Wagner, 1972) and neuronal 

levels (Daw et al., 2006; O’Doherty et al., 2004; Schultz et al., 1997), as well as for learning 

abnormalities due to specific pharmacological manipulations (Frank et al., 2004; Pessiglione et al., 

2006) and neuro-psychiatric disorders (Palminteri et al., 2012). Yet, ecological environments are 

inherently ever-changing, volatile and complex, such that organisms need to be able to flexibly adjust 

their learning strategies or to dynamically select among different learning strategies. These more 

sophisticated behaviors can be implemented by reinforcement-learning algorithms which compute 

different measures of  environmental uncertainty (Courville et al., 2006; Mathys et al., 2011; Yu and 

Dayan, 2005) or strategy reliability (Collins and Koechlin, 2012; Daw et al., 2005; Doya et al., 2002).  

To date, surprisingly little research has investigated if  and how individuals engaged in learning by 

trial-and-error can actually compute such reliability estimates or related proxy variables. One way to 

experimentally assess such reliability estimates is via eliciting confidence judgments. Confidence is 

defined as a decision-maker’s estimation of  her probability of  being correct (Adams, 1957; Pouget et 

al., 2016; Sanders et al., 2016). It results from a meta-cognitive operation (Fleming and Dolan, 2012), 

which according to recent studies could be performed automatically even when confidence 

judgments are not explicitly required (Lebreton et al., 2015). In the context of  predictive-inference 

tasks, individuals’ subjective confidence judgments have been shown to track the likelihood of  

decisions being correct in changing environments with remarkable accuracy (Heilbron and Meyniel, 

2018; Meyniel et al., 2015a). Confidence could therefore be employed as a meta-cognitive variable 

that enables dynamic comparisons of  different learning strategies and ultimately, decisions about 

whether to adjust learning strategies. Despite the recent surge of  neural, computational and 

behavioral models of  confidence estimation in decision-making and prediction tasks (Fleming and 

Daw, 2017; Meyniel et al., 2015b; Pouget et al., 2016), how decision-makers estimate their confidence 

in their choices in reinforcement-learning contexts remains poorly investigated. 

Crucially, although confidence judgments have been reported to accurately track decision-makers 

probability of  being correct (Meyniel et al., 2015a; Sanders et al., 2016), they are also known to be 
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subject to various biases. Notably, it appears that individuals are generally overconfident regarding 

their own performance (Lichtenstein et al., 1982), and that confidence judgments are modulated by 

numerous psychological factors including desirability biases (Giardini et al., 2008), arousal (Allen et 

al., 2016), mood (Koellinger and Treffers, 2015), and emotions (Jönsson et al., 2005) such as anxiety 

(Massoni, 2014). Given the potential importance of  confidence in mediating learning strategies in 

changing environments, investigating confidence and confidence biases in reinforcement-learning 

appears crucial.  

Here, following the recent demonstration that confidence in a decision is biased by the value at stake 

in a perceptual decision-making task (Lebreton et al., 2018), we simultaneously investigated the 

learning behavior and confidence estimations of  individuals engaged in a reinforcement-learning 

task where the valence of  the decision outcomes was systematically manipulated (gains versus losses) 

(Palminteri et al., 2015; Pessiglione et al., 2006). We hypothesized that individuals would exhibit 

lower confidence in their choices while learning to avoid losses compared to seeking gains, despite 

similar performance and objectively equal difficulty between these two learning contexts. In addition, 

we anticipated that this bias would be generated by the learned context-value associated with 

decision states (Klein et al., 2017; Palminteri et al., 2015). 

Our results, which confirm this hypothesis, illustrate the generalizability of  the confidence bias 

induced by the valence of  incentives and outcomes (Lebreton et al., 2018), and suggest that –despite 

apparent similar behavior- profound asymmetries might exists between learning to avoid losses and 

learning to seek gains (Palminteri and Pessiglione, 2017), with likely important functional 

consequences. 
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Results 

Experiment 1. We invited 18 participants to partake in our first experiment, and asked them to 

perform a probabilistic instrumental-learning task adapted from a previous study (Palminteri et al., 

2015, 2016). Participants repeatedly faced pairs of  abstract symbols probabilistically associated with 

monetary outcomes. Symbol pairs were fixed, and associated with two levels of  two outcome 

features, namely valence and information, in a 2×2 factorial design. Therefore, pairs of  symbols 

could be associated with either gains or losses, and with partial or complete feedback (Methods and 

Figure 1.A-B). Participants could maximize their payoffs by learning to choose the most 

advantageous symbol of  each pair, i.e., the highest expected gain or the lowest expected loss. At each 

trial, after their choice but before receiving feedback, participants were also asked to report their 

confidence in their choice on a Likert scale from 0 to 10. Replicating previous findings (Palminteri et 

al., 2015, 2016), we found that participants correctly learned by trial-and-error to choose the best 

outcomes, (average correct choice rate 76.50 ± 2.38, t-test vs chance t17 = 11.16; P = 3.04×10-9), and 

that learning performance was marginally affected by the information factor, but unaffected by the 

outcome valence (ANOVA; main effect of  information F1,17 = 4.28; P = 0.05; main effect of  valence 

F1,17 = 1.04; P = 0.32 ; interaction F1,17 = 1.06; P = 0.32; Figure 1.C). In other words, participants 

learned equally well to seek gains and to avoid losses. However, and in line with our hypothesis, the 

confidence ratings showed a very dissimilar pattern, as they were strongly influenced by the valence 

of  outcomes (ANOVA; main effect of  information F1,17 = 2.00; P = 0.17; main effect of  valence 

F1,17 = 33.11; P = 2,33×10-11; interaction F1,17 = 7.58; P = 0.01; Figure 1.D). Similar to the valence 

bias reported in perceptual decision-making tasks (Lebreton et al., 2018), these effects were driven 

by the fact that participants were more confident in the gain than in the loss condition when 

receiving partial feedback (6.86 ± 0.28 vs 4.66 ± 0.39; t-test t17 = 7.20; P = 1.50×10-6), and that this 

difference was still very significant although smaller in the complete feedback condition (6.58 ± 0.35 

vs 5.24 ± 0.37; t-test t17 = 3.52; P = 2.65×10-3). 

 

Experiment 2. While the results of  the first experiment are strongly suggestive of  an effect of  

outcome valence on confidence in reinforcement learning, they cannot formally characterize a bias, as 

the notion of  cognitive bias depends on the optimal reward-maximizing strategy (Marshall et al., 

2013). In other terms: does this bias persist in situations where a truthful and accurate confidence 

report is associated with payoff  maximization? We addressed this limitation of  experiment 1 by 
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directly incentivizing reports of  confidence accuracy in our follow-up experiment. In this new 

experiment, confidence was formally defined as an estimation of  the probability of  being correct, 

and participants could maximize their chance to gain an additional monetary bonus (3×5 euros) by 

reporting their confidence as accurately and truthfully as possible on a rating scale ranging from 50% 

to 100% (Figure 2.A). Specifically, confidence judgments were incentivized with a Matching 

Probability (MP) mechanism, a well-validated method from behavioral economics adapted from the 

Becker-DeGroot-Marschak auction (Becker et al., 1964; Ducharme and Donnell, 1973). Briefly, the 

MP mechanism considers participants’ confidence reports as bets on the correctness of  their 

answers, and implements comparisons between these bets and random lotteries (Figure 3.A). Under 

utility maximization assumptions, this guarantees that participants maximize their earnings by 

reporting their most precise and truthful confidence estimation (Schlag et al., 2015; Schotter and 

Trevino, 2014). This mechanism and the dominant strategy were explained to the 18 new 

participants before the experiment (Methods). In addition, because the neutral and non-informative 

outcome was more frequently experienced in the punishment partial than in the reward partial 

context in experiment 1, we replaced the neutral 0€ with a 10c gain or loss (see Methods and 

Figure 2.B).  

Replicating the results from the first experiment, we found that learning performance was affected 

by the information factor, but unaffected by the outcome valence (ANOVA; main effect of  

information F1,17 = 18.64; P = 4.67×10-4; main effect of  valence F1,17 = 1.33×10-3; P = 0.97; 

interaction F1,17 = 0.77; P = 0.39; Figure 2.C). Yet, the confidence ratings were again strongly 

influenced by the valence of  outcomes (ANOVA; main effect of  information F1,17 = 4.92; P = 0.04; 

main effect of  valence F1,17 = 15.43; P = 1.08×10-3; interaction F1,17 = 4.25; P = 0.05; Figure 2.D). 

Similar to Experiment 1, these effects were driven by the fact that participants were more confident 

in the gain than in the loss conditions (85.25 ± 1.23 vs 76.96 ± 2.38 (in %); t-test t17 = 3.93; P = 

1.08×10-3). 

Importantly, the changes in the experimental design also allowed us to estimate the bias in 

confidence judgments (sometimes called calibration, or “overconfidence”), by contrasting individuals’ 

average reported confidence (i.e. estimated probability of  being correct) with their actual average 

probability of  being correct. A positive bias therefore indicates that participants are overconfident 

reporting a higher probability of  being correct than their objective average performance. Conversely, 

a negative bias indicates reporting a lower probability of  being correct than the true average 

(“underconfidence”). These analyses revealed that participants are, in general marginally 
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overconfident (4.07 ± 2.37 (%); t-test vs 0: t17 = 1.72; P = 0.10). This overconfidence, which was 

maximal in the gain-partial information condition (14.00 ± 3.86 (%)), was nonetheless mitigated by 

complete information (gain-complete: 2.53 ± 2.77 (%); t-test vs gain-partial: t17 = 2.72; P = 0.01) 

and losses (loss-partial: 1.56 ± 3.35 (%); t-test vs gain-partial: t17 = 2.76; P = 0.01). These effects of  

outcome valence and counterfactual feedback information on overconfidence appeared to be simply 

additive (ANOVA; main effect of  information F1,17 = 8.40; P = 0.01; main effect of  valence F1,17 = 

7.03; P = 0.02 ; interaction F1,17 = 2.05; P = 0.17; Figure 3.B). 

 

Context-dependent learning. While the results from our two first experiments provide convincing 

support for our hypotheses at the aggregate level (i.e. averaged choice rate and confidence ratings), 

we aimed at providing a finer description of  the dynamical processes at stake, and therefore turned 

to computational modelling. Standard reinforcement-learning algorithms (Rescorla and Wagner, 

1972; Sutton and Barto, 1998) typically give a satisfactory account of  learning dynamics in stable 

contingency tasks as ours, but recent studies (Klein et al., 2017; Palminteri et al., 2015, 2016) have 

demonstrated that human learning is highly context (or reference)-dependent. This context 

dependency, by allowing neutral or moderately negative outcomes to be reframed as relative gains, 

provides an effective and parsimonious solution to the punishment-avoidance paradox. In addition, 

context dependency accounts for “irrational choices” observed in a transfer task performed after 

learning: participants express higher preference for mildly unfavorable items to objectively better 

items, because the former were initially paired with unfavorable items and hence acquired a higher 

“relative” subjective value (Klein et al., 2017; Palminteri et al., 2015, 2016). As in these previous 

studies, the participants from our two experiments also performed the transfer test after the learning 

task. The typical behavioral signature of  context-dependent learning is a preference reversal in the 

complete information contexts, where symbols associated with small losses (L25) becomes preferred 

to symbols associated with small gains (G25), despite having objectively lower expected value (Klein 

et al., 2017; Palminteri et al., 2015, 2016). This pattern was present in both our experiments (% 

choices; experiment 1: L25: 59.52 ± 4.88, G25: 38.89 ± 5.04; t-test t17 = 2.46; P = 0.02; experiment 2: 

L25: 67.26 ± 5.35, G25: 28.37 ± 4.46; t-test t17 = 5.27; P = 6.24×10-5, see Figure 4 A-B, middle 

panels). 

To confirm these observations, we adopted a model-fitting and model-comparison approach, where 

a standard learning model (ABSOLUTE) was compared to context-dependent learning model 

(RELATIVE) in their ability to account for the participant choices (Methods). Replicating previous 
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findings (Palminteri et al., 2015, 2016), the context-dependent model provided the best and most 

parsimonious account of  the data collected in our 2 experiments (Table 1), and a satisfactory 

account of  choice patterns in both the learning (average likelihood per trial in experiment 1: 0.72 ± 

0.03; in experiment 2: 0.72 ± 0.02; see Figure 4 A-B, top panels) and transfer tasks (average 

likelihood per trial; experiment 1: 0.71 ± 0.02; experiment 1: 0.70 ± 0.02; see Figure 4 A-B, middle 

panels). Please also note that the model estimated free-parameters (Table 2) are very similar to what 

was reported in the previous studies (Palminteri et al., 2015, 2016). 

 

The model-free and model-based determinants of  confidence and performance. We next 

used latent variables from this computational model, along with other variables known to inform 

confidence judgments, to inform a descriptive model of  confidence formation. We propose 

confidence to be under the influence of  three main variables, entered as explanatory variables in 

linear mixed-effect regressions (FULL model). The first explanatory variable is choice difficulty, a 

feature captured in value-based choices by the absolute difference between the expected value of  the 

two choice options (De Martino et al., 2013; Folke et al., 2016), and indexed by the absolute 

difference between the option Q-values calculated by the RELATIVE model. The second 

explanatory variable is the confidence expressed at the preceding trial. Confidence judgments indeed 

exhibit a strong auto-correlation, even when they relate to decisions made in different tasks (Rahnev 

et al., 2015). Note that in our task, where the stimuli are presented in an interleaved design, this last 

term captures the features of  confidence which are transversal to different contexts such as aspecific 

drifts due to attention fluctuation and/or fatigue. The third and final explanatory variable is V(s), the 

approximation of  the average expected-value of  a pair of  stimuli (i.e., the context value from the 

RELATIVE model) (Palminteri et al., 2015). The context value, initialized at zero, gradually becomes 

positive in the reward-seeking conditions and negative in the punishment-avoidance conditions. This 

variable is central to our hypothesis that the decision frame (gain vs. loss) influences individuals’ 

estimated confidence about being correct (Lebreton et al., 2018). Crucially, in the FULL model, all 

included explanatory variables were significant predictors of  confidence ratings in both experiments 

(see Table 3). As a quality check, we also verified that the confidence ratings estimated under the 

FULL model satisfactorily capture the evolution of  observed confidence ratings across the course 

of  our experiments (Figure 4 A-B, bottom panels).  

On the contrary, when attempting to predict the trial-by-trial correct answers (i.e. performance) 

rather than confidence judgments with the same explanatory variables, the choice difficulty and the 
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confidence expressed at the preceding trial were significant predictors in the two experiments, while 

the context value was not (Table 4). This again captures the idea that the context value might bias 

confidence judgments, above and beyond the variation in performance. Finally, because decision 

reaction times are known to be (negatively) correlated with subsequent confidence judgments - the 

more confident individuals are in their choices, the faster their decisions (De Martino et al., 2013; 

Kiani et al., 2014; Lebreton et al., 2015)-, we anticipated and verified that the same explanatory 

variables which are significant predictors of  confidence also predict reaction times (although with 

opposite signs – see Table 4). 

 

Context values explain the confidence bias. 

In this last section, we aimed at demonstrating that the context values are necessary and sufficient to 

explain the difference in confidence observed between the reward seeking and the loss avoidance 

conditions. We therefore built a REDUCED model, which was similar to the FULL model, but 

lacked the context value (see Table 3). First, because the REDUCED model is nested in the FULL 

model, a likelihood ratio test statistically assesses the probability of  observing the estimated fitting 

difference under the null hypothesis that the FULL model is not better than the REDUCED model. 

In both experiments, this null hypothesis was rejected (both P<0.001), indicating that the FULL 

model provides a better explanation of  the observed data. Hence confidence is critically modulated 

by the context value.  

Then, to demonstrate that the biasing effect of  outcome valence on confidence is operated through 

the context value, we show that the REDUCED model, which lacks the context value as an 

explanatory variable, cannot reproduce the critical pattern of  valence-induced confidence biases 

observed in our data, while the FULL model can (Figure 5) (Palminteri et al., 2017). Overall, these 

results provide additional evidence for the importance of  context value as an important latent 

variable in learning, not only explaining irrational choices in transfer tests, but also confidence biases 

observed during learning (Figure 6). 

 

Assessing the specific role of  context values in biasing confidence. 

So far, our investigations show that including context values (V(s)) as a predictor of  confidence is 

necessary and sufficient to reproduce the bias in confidence induced by the decision frame (gain vs. 

loss). However, it remains unclear how specific and robust the contribution of  context-values in 

generating this bias is, notably when other valence-sensitive model-free and model-based variable are 
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accounted for. To address this question, we run two additional linear models: one including the sum 

of  the two q-values (∑Q), which also track aspects of  the valence of  the context; the second 

including RTs, which were also predicted by both ∆Q and V(s) (see previous paragraph). In both 

experiments and for both linear models, the residual effect of  V(s) on trial-by-trial confidence 

judgments remained positive and (marginally) significant (see Table 5), thus indicating a specific role 

of  our model-driven estimate of  V(s) above and beyond other related variables.  
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Discussion 

In this paper we investigated the effect of  context-value on confidence during reinforcement-

learning, by combining well-validated tasks: a probabilistic instrumental task with monetary gains 

and losses as outcomes (Palminteri and Pessiglione, 2017; Palminteri et al., 2015; Pessiglione et al., 

2006), and two variants of  a confidence elicitation task (Hollard et al., 2015; Schlag et al., 2015): a 

free elicitation of  confidence (experiment 1), and an incentivized elicitation of  confidence called 

matching probability (experiment 2). Behavioral results from two experiments consistently show a 

clear dissociation of  the effect of  decision frame on learning performance and confidence 

judgments: while the valence of  decision outcomes (gains vs. losses) had no effect on the learning 

performance, it significantly impacted subjects’ confidence in the very same choices. Specifically, 

learning to avoid losses generated lower confidence reports than learning to seek gains regardless of  

the confidence elicitation methods employed. These results extend prior findings (Lebreton et al., 

2018) by demonstrating a biasing effect of  incentive valence in a reinforcement learning context. 

They are also consistent with other decision-making studies reporting that positive psychological 

factors and states, such as joy or desirability, bias confidence upwards, while negative ones, such as 

worry, bias confidence downwards (Giardini et al., 2008; Jönsson et al., 2005; Koellinger and Treffers, 

2015; Massoni, 2014). 

 

Based on the current design and results, we can rule out two potential explanation for the presence 

of  this confidence bias. First, and similarly to our previous study (Lebreton et al., 2018), we used 

both a free confidence elicitation method (experiment 1) and an incentivized method (experiment 2) 

and clearly replicate our results across these two methods. This indicates that the confidence bias 

cannot be attributed to the confidence elicitation mechanism. This is also supported by the fact that 

the confidence bias is observed despite the incentives in the primary task (gain and loss) being 

orthogonalized from the ones used to elicit confidence judgments (always framed as a gain). Second, 

an interesting feature of  the present experiments is that, in contrast to our previous study (Lebreton 

et al., 2018), monetary outcomes are displayed after –rather than before- confidence judgments. At 

the time of  decision and confidence judgments, the value of  decision-contexts is implicitly inferred 

by participants and not explicitly displayed on the screen. Combined with the fact that loss and gain 

conditions were interleaved and that previous studies indicate that in a similar paradigm subjects 

remain largely unaware of  the contextual manipulations (Bavard et al., 2018), this suggests that the 

biasing effect of  the valence of  monetary outcomes demonstrated in previous reports (Lebreton et 
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al., 2018) is not due to a simple framing effect, created by the display of  monetary gains or losses 

prior to confidence judgments. 

 

We offer two interpretations for the observed effects of  gains versus losses on confidence. In the 

first interpretation, we propose that loss prospects simply bias confidence downward. In the second 

interpretation, we propose that loss prospects improve confidence calibration over gain prospects, 

thereby correcting overconfidence. Following the first interpretation, the apparent improvement in 

confidence calibration observed in our study does not correspond to a confidence judgment 

improvement per se, but is a mere consequence of  participants being overconfident in this task. 

Accordingly, in a hypothetical task where participants would be underconfident in the gain domain, 

while the loss prospects would aggravate this underconfidence under the first interpretation, they 

would improve confidence calibration (hence correct this underconfidence) under the second 

interpretation. Future research is needed to distinguish between the two potential mechanisms. 

 

Regardless of  the interpretation of  the reported effects, we showed that confidence can be modelled 

as a simple linear and additive combination of  three variables: previous confidence rating, choice 

difficulty and the context value inferred from the context-dependent reinforcement learning model. 

The critical contribution of  the present study is the demonstration that confidence judgments are 

affected by the value of  the decision-context, also referred to as context value. The context value is a 

subjective estimate of  the average expected-value of  a pair of  stimuli: in our experimental paradigm, 

the context value is therefore neutral (equal to 0) at the beginning of  learning, and gradually 

becomes positive in the reward-seeking conditions and negative in the punishment-avoidance 

conditions (Palminteri et al., 2015). The fact that the context-value significantly contributes to 

confidence judgments therefore complements our model-free results showing that outcome valence 

impacts confidence, while embedding it in the learning dynamics. The fact that the context value is a 

significant predictor of  confidence judgments also suggests that context-dependency in 

reinforcement learning is not only critical to account for choice patterns but also to account for 

additional behavioral manifestations, such as confidence judgments and reaction times. This result 

therefore provides additional support for the idea that context values are explicitly represented 

during learning (Palminteri et al., 2015). Crucially, context-dependency has been shown to display 

locally adaptive (i.e. successful punishment-avoidance in the learning test) and globally maladaptive 

(i.e. irrational preferences in the transfer test) effects (Bavard et al., 2018). Whether the context-
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dependence of  confidence judgments is adaptive or maladaptive remains to be elucidated and will 

require teasing apart the different interpretation of  this effect discussed above. 

 

Our findings are also consistent with a growing literature showing that in value-based decision-

making, choice-difficulty, as proxyed by the absolute difference in expected subjective value between 

the available (Lebreton et al., 2009; Milosavljevic et al., 2010; Shenhav et al., 2014) is a significant 

predictor of  confidence judgments (De Martino et al., 2013; Folke et al., 2016). Finally, the notion 

that confidence judgments expressed in preceding trials could inform confidence expressed in 

subsequent trails is relatively recent, but has received both theoretical and experimental support 

(Navajas et al., 2016; Rahnev et al., 2015) and intuitively echoes findings of  serial dependence in 

perceptual decisions (Fischer and Whitney, 2014). In interleaved experimental designs like ours, 

successive trials pertain to different learning contexts. Therefore, the significant serial dependence 

of  confidence judgments revealed by our analyses captures a temporal stability of  confidence, which 

is context-independent. This result is highly consistent with the findings reported in Rahnev and 

colleagues (2015), which show that serial dependence in confidence can even be observed between 

different tasks. 

 

Overall, our results outline the importance of  investigating confidence biases in reinforcement-

learning. As outlined in the introduction, most sophisticated RL algorithms assume representation 

of  uncertainty and/or strategy reliability estimates, which allow them to flexibly adjust learning 

strategies or to dynamically select among different learning strategies. Yet, despite their fundamental 

importance in learning, these uncertainty estimates have, so far, mostly emerged as latent variables, 

computed from individuals’ choices under strong computational assumptions (Behrens et al., 2007; 

Collins and Koechlin, 2012; Daw et al., 2005; Donoso et al., 2014; Iglesias et al., 2013; Lee et al., 

2014; Vinckier et al., 2016). In the present paper we propose that confidence judgments could be a 

useful experimental proxy for such estimates in RL. Confidence judgments indeed possess important 

properties, which suggest that they might be an important variable mitigating learning and decision-

making strategies. First, confidence judgments accurately track the probability of  being correct in 

stochastic environments, integrating expected and unexpected uncertainty in a close-to-optimal 

fashion (Heilbron and Meyniel, 2018; Meyniel et al., 2015a). Second, subjective confidence in one’s 

choices impacts subsequent decision processes (Braun et al., 2018) and information seeking 

strategies (Desender et al., 2018). Finally, confidence acts as a common currency and therefore can 
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be used to trade-off  between different strategies (de Gardelle and Mamassian, 2014; de Gardelle et 

al., 2016). With this in mind, biases of  confidence could have critical consequences on 

reinforcement learning and reveal important features about the flexibility of  learning and decision-

making processes in different contexts. For instance, lower confidence in the loss domain – as 

demonstrated in the present report - could play an adaptive function, by allowing rapid behavioral 

adjustments under threat. 
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Material and Methods 

 

Subjects 

All studies were approved by the local Ethics Committee of  the Center for Research in 

Experimental Economics and political Decision-making (CREED), at the University of  Amsterdam. 

All subjects gave informed consent prior to partaking in the study. The subjects were recruited from 

the laboratory's participant database (www.creedexperiment.nl). A total of  36 subjects took part in 

this study: 18 took part in experiment 1 (8/10 MF, age = 24.6±8.5), 18 in experiment 2 (8/10 MF, 

age = 24.6±4.3). They were compensated with a combination of  a base amount (5€), and additional 

gains and/or losses depending on their performance during the learning task: experiment 1 had an 

exchange rate of  1 (in-game euros = payout); experiment 2 had an exchange rate of  0.3 (in game 

euros = 0.3 payout euros). In addition, in experiment 2, three trials (one per session) were randomly 

selected for a potential 5 euros bonus each, attributed based on the confidence incentivization 

scheme (see below). 

 

Power analysis and sample size determination 

Power analysis were performed with GPower.3.1.9.2 (Faul et al., 2007). The sample size was 

determined prior to the start of  the experiments based on the effects of  incentives on confidence 

judgments in Lebreton et al. (2018). Cohen’s d was estimated from a GLM d = .941 t23 = 4.61, P = 

1.23e-4). For a similar within-subject design, a sample of  N=17 subjects was required to reach a 

power of  95% with a two-tailed one-sample t-test. 

 

Learning task 

All tasks were implemented using MatlabR2015a® (MathWorks) and the COGENT toolbox 

(http://www.vislab.ucl.ac.uk/cogent.php). In both experiments, the main learning task was adapted 

from a probabilistic instrumental learning task used in a previous study (Palminteri et al., 2015). 

Invited participants were first provided with written instructions, which were reformulated orally if  

necessary. They were explained that the aim of  the task was to maximize their payoff  and that gain 

seeking and loss avoidance were equally important. In each of  the three learning session, 

participants repeatedly faced four pairs of  cues - taken from Agathodaimon alphabet. The four cue 

pairs corresponded to four conditions, and were presented 24 times in a pseudo-randomized and 

unpredictable manner to the subject (intermixed design). Of  the four conditions, two corresponded 
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to reward conditions, and two to loss conditions. Within each pair, and depending on the condition, 

the two cues of  a pair were associated with two possible outcomes (1€/0€ for the gain and -1€/0€ 

for the loss conditions in Exp. 1; 1€/0.1€ for the gain and -1€/-0.1€ for the loss conditions in Exp. 

2) with reciprocal (but independent) probabilities (75%/25% and 25%/75%). 

The reason for replacing the neutral outcome (0 euro) with a 10c gain or loss in Experiment 2 was 

to neutralize an experimental asymmetry between the gain and loss conditions, present in 

Experiment 1, which could have contributed to the valence impact on confidence in the partial 

information condition: when learning to avoid losses, subjects increasingly selected the symbol 

associated with a neutral outcome (0 euro), hence were provided more often with this ambiguous 

feedback1. It is worth noting that this asymmetry was almost absent in the complete feedback case 

where the context value can be inferred in both gains and losses thanks to the counterfactual 

feedback (e.g. a forgone loss), and nonetheless showed lower reported confidence. Yet, replacing the 

ambiguous neutral option with small monetary gains and losses in experiment 2 completely 

corrected the imbalance between the partial information gain and loss conditions. 

At each trial, participants first viewed a central fixation cross (500-1500ms). Then, the two cues of  a 

pair were presented on each side of  this central cross. Note that the side in which a given cue of  a 

pair was presented (left or right of  a central fixation cross) was pseudo-randomized, such as a given 

cue was presented an equal number of  times on the left and the right of  the screen. Subjects were 

required to select between the two cues by pressing the left or right arrow on the computer keyboard, 

within a 3000ms time window. After the choice window, a red pointer appeared below the selected 

cue for 500ms. Subsequently, participants were asked to indicate how confident they were in their 

choice. In Experiment 1, confidence ratings were simply given on a rating scale without any 

additional incentivization. To perform this rating, they could move a cursor –which appeared at a 

random position- to the left or to the right using the left and right arrows, and validate their final 

answer with the spacebar. This rating step was self-paced. Finally, an outcome screen displayed the 

outcome associated with the selected cue, accompanied with the outcome of  the unselected cue if  

the pair was associated with a complete-feedback condition.  

 

Matching probability and incentivization 

In Experiment 2, participant’s reports of  confidence were incentivized via a matching probability 

                                                 
1 Note that, despite this asymmetry, there was no detectable difference in performance between gain and loss 

performance in the partial information in the Experiment 1. 
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procedure that is based on the Becker-DeGroot-Marshak (BDM) auction (Becker et al., 1964) 

Specifically, participants were asked to report as their confidence judgment their estimated 

probability (p) of  having selected the symbol with the higher average value, (i.e. the symbol offering 

a 75% chance of  gain (G75) in the gain conditions, and the symbol offering a 25% chance of  loss 

(L25) in the loss conditions) on a scale between 50% and 100%. A random mechanism, which draws 

a number (r) in the interval [0.5 1], is then implemented to select whether the subject will be paid an 

additional bonus of  5 euros as follows: If  p ≥ r, the selection of  the correct symbol will lead to a 

bonus payment; if  p < r, a lottery will determine whether an additional bonus is won. This lottery 

offers a payout of  5 euros with probability r and 0 with probability 1-r. This procedure has been 

shown to incentivize participants to truthfully report their true confidence regardless of  risk 

preferences (Hollard et al., 2015; Karni, 2009).  

Participants were trained on this lottery mechanism and informed that up to 15 euros could be won 

and added to their final payment via the MP mechanism applied on one randomly chosen trial at the 

end of  each learning session (3×5 euros). Therefore, the MP mechanism screens (Figure 3.A) were 

not displayed during the learning sessions. 

 

Transfer task. 

The 8 abstract stimuli (2×4 pairs) used in the third (i.e. last) session were re-used in the transfer task. 

All possible pair-wise combinations of  these 8 stimuli (excluding pairs formed by two identical 

stimuli) were presented 4 times, leading to a total of  112 trials (Frank et al., 2004; Klein et al., 2017; 

Palminteri et al., 2015; Wimmer and Shohamy, 2012). For each newly formed pair, participants had 

to indicate the option which they believed had the highest value, by selecting either the left or right 

option via button press in a manner equivalent to the learning task. Although this task was not 

incentivized, which was clearly explained to participants, they were nonetheless encouraged to 

respond as if  money was at stake. In order to prevent explicit memorizing strategies, participants 

were not informed that they would have performed this task until the end of  the fourth (last) 

session of  the learning test.  

 

Model-free statistics 

All model-free statistical analyses were performed using Matlab R2015a. All reported p-values 

correspond to two-sided tests. T-tests refer to a one sample t-test when comparing experimental data 

to a reference value (e.g. chance: 0.5), and paired t-tests when comparing experimental data from 
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different conditions. ANOVA are repeated measure ANOVAs. 

 

Computational modelling 

Reinforcement-learning model 

The approach for the reinforcement-learning modelling is identical to the one followed in Palminteri 

and colleagues (2015). Briefly, we adapted two models inspired from classical reinforcement learning 

algorithms (Sutton and Barto, 1998): the ABSOLUTE and the RELATIVE model. In the 

ABSOLUTE model, the values of  available options are learned in a context-independent fashion. In 

the RELATIVE models, however, the values of  available options are learned in a context-

independent fashion. 

 

In the ABSOLUTE model, at each trial t, the chosen (c) option value of  the current context s is 

updated with the Rescorla-Wagner rule (Rescorla and Wagner, 1972): 

𝑄𝑡+1 (𝑠, 𝑐) = 𝑄𝑡(𝑠, 𝑐) +  𝛼𝑐 𝛿𝑐,𝑡 

𝑄𝑡+1(𝑠, 𝑢) = 𝑄𝑡(𝑠, 𝑢) +  𝛼𝑢 𝛿𝑢,𝑡 

Where 𝛼𝑐 is the learning rate for the chosen (c) option and 𝛼𝑢 the learning rate for the unchosen (u) 

option, i.e. the counterfactual learning rate. 𝛿𝑐  and 𝛿𝑢  are prediction error terms calculated as 

follows : 

𝛿𝑐,𝑡 = 𝑅𝑐,𝑡 − 𝑄𝑡(𝑠, 𝑐) 

𝛿𝑢,𝑡 = 𝑅𝑢,𝑡 − 𝑄𝑡(𝑠, 𝑢) 

𝛿𝑐 is updated in both partial and complete feedback contexts and 𝛿𝑢 is updated in the complete 

feedback context only. 

 

In the RELATIVE model, a choice context value (𝑉(𝑠)) is also learned and used as the reference 

point to which an outcome should be compared before updating option values. 

Context value is also learned via a delta rule: 

𝑉𝑡+1 (𝑠) = 𝑉𝑡(𝑠) +  𝛼𝑉 𝛿𝑉,𝑡 

Where 𝛼𝑉 is the context value learning rate and 𝛿𝑉 is a prediction error-term calculated as follows: if  

a counterfactual outcome 𝑅𝑈,𝑡 is provided 

𝛿𝑉,𝑡 = (𝑅𝑐,𝑡 + 𝑅𝑈,𝑡)/2 − 𝑉𝑡(𝑠), 

If  a counterfactual outcome 𝑅𝑈,𝑡 is not, provided, its value is replaced by its expected value 𝑄𝑡(𝑠, 𝑢), 
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hence  

𝛿𝑉,𝑡 = (𝑅𝑐,𝑡 + 𝑄𝑡(𝑠, 𝑢))/2 − 𝑉𝑡(𝑠). 

The learned context values are then used to center the prediction-errors, as follow:  

𝛿𝑐,𝑡 = 𝑅𝑐,𝑡 − 𝑉𝑡(𝑠) − 𝑄𝑡(𝑠, 𝑐) 

𝛿𝑢,𝑡 = 𝑅𝑢,𝑡 − 𝑉𝑡(𝑠) − 𝑄𝑡(𝑠, 𝑢) 

In both models, the choice rule was implemented as a softmax function: 

𝑃𝑡(𝑠, 𝑎) = (1 + exp (𝛽(𝑄𝑡(𝑠, 𝑏) − 𝑄𝑡(𝑠, 𝑎))))−1, where 𝛽 is the inverse temperature parameter. 

 

Model fitting 

Model parameters were estimated by finding the values which minimized the negative log likelihood 

(LLmax) and (in a separate optimization procedure) the negative log of  posterior probability (LPP) 

of  the observed choice given the considered model and parameter values. Note that the observed 

choices include both choices expressed during the learning test and choices observed during the 

transfer test, which were modelled using the option’s Q-values estimated at the end of  learning. The 

parameter search was implemented using Matlab’s fmincon function, initialized at multiple starting 

points of  the parameter space (Daw, 2011). Negative log-likelihoods (LLmax) were used to compute 

classical model selection criteria. The LPP was used to compute the exceedance probability and the 

expected frequencies of  the model. 

 

Model comparison 

We computed at the individual level (random effects) the Akaike’s information criterion (AIC),  

𝐴𝐼𝐶 = 2𝑑𝑓 + 2 × 𝐿𝐿𝑚𝑎𝑥 ; 

the Bayesian information criterion (BIC),  

𝐵𝐼𝐶 = 2 log(𝑛𝑡𝑟𝑖𝑎𝑙𝑠) × 𝑑𝑓 + 2 × 𝐿𝐿𝑚𝑎𝑥 

and the Laplace approximation to the model evidence (LPP);  

𝐿𝑃𝑃 = log (𝑃(𝐷|𝑀, 𝜃)) 

where 𝐷 , 𝑀  and 𝜃  represent the data, model and model parameters respectively. Following 

(Palminteri et al., 2015), 𝑃(𝜃)  is calculated based on the parameters value retrieved from the 

parameter optimization procedure, assuming learning rates beta distributed 

(betapdf(parameter,1.1,1.1)) and softmax temperature gamma-distributed (gampdf(parameter,1.2,5)).  

Individual LPPs were fed to the mbb-vb-toolbox (https://code.google.com/p/mbb-vb-toolbox/) 
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(Daunizeau et al., 2014). This procedure estimates the expected frequencies of  the model (denoted 

PP) and the exceedance probability (denoted XP) for each model within a set of  models, given the 

data gathered from all subjects. Expected frequency quantifies the posterior probability, i.e., the 

probability that the model generated the data for any randomly selected subject. 

 

Confidence model 

To model confidence ratings, we used the parameter and latent variables estimated from the best 

fitting Model (i.e. the RELATIVE model) under the LPP maximization procedure. Note that for 

Experiment 1, confidence ratings were linearly transformed from 1:10 to 50:100%. 

Following the approach taken with the RL models, we designed two models of  confidence: the 

FULL and the REDUCED confidence models. 

In the FULL confidence model, confidence ratings at each trial 𝑡 (𝑐𝑡) were modelled as a linear 

combination of  the choice difficulty –proxied by the absolute difference between the two options 

expected value (𝑑𝑄𝑡), the learned context value (𝑉𝑡), and the confidence expressed at the preceding 

trial (𝑐𝑡−1).  

𝑐𝑡 =  𝛽0 + 𝛽𝑑𝑄 × ∆𝑄𝑡 + 𝛽𝑉 × 𝑉𝑡 + 𝛽𝑐1 × 𝑐𝑡−1, 

where 

∆𝑄𝑡 =  𝑎𝑏𝑠(𝑄𝑡(𝑠, 𝑏) −  𝑄𝑡(𝑠, 𝑎)) 

and 𝛽0, 𝛽𝑑𝑄, 𝛽𝑉 and 𝛽𝑐1 represents the linear coefficients of  regression to be estimated. 

In the REDUCED confidence model, we omitted the learned context value (𝑉𝑡), leading to  

𝑐𝑡 =  𝛽0 + 𝛽∆𝑄 × ∆𝑄𝑡 + 𝛽𝑐1 × 𝑐𝑡−1, 

Those models were encapsulated in a generalized linear mixed-effect (glme) model, including subject 

level random effects (intercepts and slopes for all predictor variables). The model was estimated 

using Matlab’s fitglme function, which maximize the maximum likelihood of  observed data under the 

model, using the Laplace approximation. 

Modelled confidence ratings (i.e. confidence model fits) were estimated using Matlab’s predict 

function. 

Because the REDUCED model is nested in the FULL model, a likelihood ratio test can be 

performed to assess whether the FULL model gives a better account of  the data, while being 

penalized for its additional degrees-of-freedom (i.e. higher complexity). This test was performed 

using Matlab’s compare function. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 7, 2018. ; https://doi.org/10.1101/339382doi: bioRxiv preprint 

https://doi.org/10.1101/339382
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

 

To assess the specificity of  V(s) we run two additional glmes including ∑𝑄𝑡 =  𝑄𝑡(𝑠, 𝑏) + 𝑄𝑡(𝑠, 𝑎) and 

the reaction time, respectively as model-based and model-free variables affected by the valence 

factor . We tested whether in these glmes V(s) still predicted confidence rating despite sharing 

common variance with these variables.  
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Figures 

 

Figure 1. Experiment 1 Task Schematic, Learning and Confidence Results 

A. Behavioral task. Successive screens displayed in one trial are shown from left to right with 
durations in ms. After a fixation cross, participants viewed a couple of  abstract symbols 
displayed on both sides of  a computer screen and had to choose between them. They were 
thereafter asked to report their confidence in their choice on a numerical scale (graded from 0 to 
10). Finally, the outcome associated with the chosen symbol was revealed. 

B. Task design and contingencies.  
C. Performance. Trial by trial percentage of  correct responses in the partial (left) and the complete 

(middle) information conditions. Filled colored areas represent mean ± sem; Right: Individual 
averaged performances in the different conditions. Connected dots represent individual data 
points in the within-subject design. The error bar displayed on the side of  the scatter plots 

indicate the sample mean ± sem. 
D. Confidence. Trial by trial confidence ratings in the partial (left) and the complete (middle) 

information conditions. Filled colored areas represent mean ± sem; Right: Individual averaged 
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performances in the different conditions. Connected dots represent individual data points in the 
within-subject design. The error bar displayed on the side of  the scatter plots indicate the sample 

mean ± sem. 
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Figure 2. Experiment 2 Task Schematic, Learning and Confidence Results 

A. Behavioral task. Successive screens displayed in one trial are shown from left to right with 
durations in ms. After a fixation cross, participants viewed a couple of  abstract symbols 
displayed on both sides of  a computer screen, and had to choose between them. They were 
thereafter asked to report their confidence in their choice on a numerical scale (graded from 50 
to 100%). Finally, the outcome associated with the chosen symbol was revealed. 

B. Task design and contingencies.  
C. Performance. Trial by trial percentage of  correct responses in the partial (left) and the complete 

(middle) information conditions. Filled colored areas represent mean ± sem; Right: Individual 
averaged performances in the different conditions. Connected dots represent individual data 
points in the within-subject design. The error bar displayed on the side of  the scatter plots 

indicate the sample mean ± sem. 
D. Confidence. Trial by trial confidence ratings in the partial (left) and the complete (middle) 

information conditions. Filled colored areas represent mean ± sem; Right: Individual averaged 
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performances in the different conditions. Connected dots represent individual data points in the 
within-subject design. The error bar displayed on the side of  the scatter plots indicate the sample 

mean ± sem. 
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Figure 3. Incentive mechanism and overconfidence 

A. Incentive mechanism. In Experiment 2, for the payout-relevant trials a lottery L is 
randomly drawn in the 50-100% interval and compared to the confidence rating C. If  L > C, 
the lottery is implemented. A wheel of  fortune, with a L% chance of  losing is displayed, and 
played out. Then, feedback informed participants whether the lottery resulted in a win or a 
loss. If  C > L, a clock is displayed together with the message “Please wait”, followed by 
feedback which depended on the correctness of  the initial choice. With this mechanism, 
participant can maximize their earning by reporting their confidence accurately and truthfully. 

B. Overconfidence. Individual averaged calibration, as a function of  Experiment 2 
experimental conditions (with a similar color code as in Figure 1-2). Connected dots 
represent individual data points in the within-subject design. The error bar displayed on the 

side of  the scatter plots indicate the sample mean ± sem. 
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Figure 4. Modelling results: fits. 

Behavioral results and model fits in Experiments 1(A) and 2 (B). Top: Learning performance (i.e. 

percent correct). Middle: Choice rate in the transfer test. Symbols are ranked by expected value (L75: 

symbol associated with 75% probability of  losing 1€; L25: symbol associated with 25% probability of  

losing 1€; G25: symbol associated with 25% probability of  winning 1€; G75: symbol associated with 

75% probability of  winning 1€;) Bottom: Confidence ratings. In all panels, colored dots and error 

bars represent the actual data (mean ± sem), and filled areas represent the model fits (mean ± sem). 

Model fits were obtained with the RELATIVE reinforcement learning model for the learning 

performance (top) and the choice rate in the transfer test (middle), and with the FULL glme for the 

confidence ratings (bottom). Dark grey diamonds in the Preference panels (middle) indicate the 

expected preference probability given the symbols objective expected value (L75: -0.75€; L25: -0.25€; 

G25: 0.25€; G75: 0.75€); 
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Figure 5. Modelling results: lesioning approach 

Two nested models are compared in their ability to reproduce the pattern of  interest observed in 
averaged confidence ratings, in experiment 1 (A) and experiment 2 (B). In the FULL model, 
confidence is modelled as a function of  three factors: the absolute difference between options values, 
the confidence observed in the previous trial, and the context value. In the REDUCED model, 
confidence is modelled as a function of  only two factors: the absolute difference between options 
values and the confidence observed in the previous trial. Hence, the REDUCED model omits the 
context-value as a predictor of  confidence.  
Left: pattern of  confidence ratings observed in the behavioral data. Middle: pattern of  confidence 
ratings estimated from the FULL model. Right: pattern of  confidence ratings estimated from the 
REDUCED model. In red are reported statistics from a repeated-measure ANOVA where the 
alternative model fails to reproduce important statistical properties of  confidence observed in the 
data. 
Connected dots represent individual data points in the within-subject design. The error bar displayed 

on the side of  the scatter plots indicate the sample mean ± sem. 
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Figure 6. Summary of  the modelling results. 

The schematic illustrates the computational architecture that best account for the choice and 
confidence data. In each context (or state) ‘s’, the agent tracks option values (Q(s,:)), which are used 
to decide amongst alternative courses of  action, together with the value of  the context (V(s)), which 
quantify the average expected value of  the decision context. 
In all contexts, the agent receives an outcome associated with the chosen option (Rc), which is used 

to update the chosen option value (Q(s,c)) via a prediction error (δc) weighted by a learning rate (αc). 
In the complete feedback condition, the agent also receive information about the outcome of  the 
unselected option (Ru), which is used to update the unselected option value (Q(s,u)) via a prediction 

error (δu) weighted by a learning rate (αu). The available feedback information (Rc and Ru, in the 
complete feedback contexts and Q(s,u) in the partial feedback contexts) is also used to update the 

value of  the context (V(s)), via a prediction error (δV) weighted by a specific learning rate (αV). 
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E
x
p

. 
1 Model DF -2*LLmax 2*AIC BIC -2*LPP EF XP 

ABSOLUTE 3 385±20 392±20 404±20 391±20 0.12 0.0 

RELATIVE 4 345±24 353±24 369±24 354±24 0.88 1.0 

E
x
p

. 
2
 Model DF -2*LLmax 2*AIC BIC -2*LPP EF XP 

ABSOLUTE 3 411±15 417±15 429±15 416±15 0.05 0.0 

RELATIVE 4 355±16 363±16 379±16 362±16 0.95 1.0 

Table 1. Reinforcement-learning. Model comparison. AIC, Akaike Information Criterion 
(computed with LLmax); BIC, Bayesian Information Criterion (computed with LLmax); DF, degrees 
of  freedom; LLmax, maximal log likelihood; LPP, log of  posterior probability; PP, posterior 
probability of  the model given the data; XP, exceedance probability (computed from LPP). The table 
summarizes for each model its fitting performances. 
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 LL Maximization LPP Maximization 

E
x
p

. 
1 

Free Parameter ABSOLUTE RELATIVE ABSOLUTE RELATIVE 

Inverse temperature (𝛽) 6.29±0.63 54.04±38.8 6.07±0.61 12.65±1.47 

Factual learning rate (𝛼𝑐) 0.37±0.05 0.23±0.04 0.36±0.04 0.24±0.04 

Counterfactual learning rate (𝛼𝑢) 0.13±0.03 0.07±0.02 0.15±0.03 0.09±0.02 

Context learning rate (𝛼𝑉) - 0.46±0.10 - 0.46±0.10 

 LL Maximization LPP Maximization 

E
x
p

. 
2
 

Free Parameter ABSOLUTE RELATIVE ABSOLUTE RELATIVE 

Inverse temperature (𝛽) 102.00±99.49 83.05±73.15 2.65±0.29 6.86±0.81 

Factual learning rate (𝛼𝑐) 0.49±0.07 0.26±0.04 0.49±0.07 0.24±0.04 

Counterfactual learning rate (𝛼𝑢) 0.24±0.08 0.12±0.04 0.24±0.08 0.13±0.03 

Context learning rate (𝛼𝑉) - 0.41±0.09 - 0.40±0.09 

Table 2. Reinforcement-learning. Free parameters. ABSOLUTE, absolute value learning model; 
RELATIVE, relative value learning model (best-fitting model); LL maximization, parameters 
obtained when maximizing the negative log likelihood; LPP maximization, parameters obtained 
when maximizing the negative log of  the Laplace approximation of  the posterior probability. The 
table summarizes for each model the likelihood maximizing (best) parameters averaged across 
subjects. Data are expressed as mean±s.e.m. The values retrieved from the LPP maximization 
procedure are those used to generate the variable used in the confidence glme models. 
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 7, 2018. ; https://doi.org/10.1101/339382doi: bioRxiv preprint 

https://doi.org/10.1101/339382
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 

 

 

 GLME 

E
x
p

e
ri

m
e
n

t 
1 

Fixed-Effect REDUCED FULL 

Intercept (𝛽0) 
0.52±0.04 

t5079 = 14.46; P = 1.90×10-46 

0.53±0.04 

t5078 = 14.55; P = 4.92×10-47 

Choice difficulty (𝛽∆𝑄) 
0.33±0.06 

t5079 = 5.77; P = 8.43×10-9 

0.30±0.05 

t5078 = 5.96; P = 2.73×10-9 

Preceding confidence (𝛽𝑐1) 
0.28±0.04 

t5079 = 7.60; P = 3.62×10-14 

0.28±0.03 

t5078 = 7.39; P = 1.67×10-13 

Context value (𝛽𝑉) - 
0.47±0.14 

t5078 = 3.21; P = 1.35×10-3 

 GLME 

E
x
p

e
ri

m
e
n

t 
2
 

Fixed-Effect REDUCED FULL 

Intercept (𝛽0) 
0.53±0.03 

t5145 = 17.57; P = 3.77×10-67 

0.53±0.03 

t5144 = 17.12; P = 5.94×10-64 

Choice difficulty (𝛽∆𝑄) 
0.18±0.02 

t5145 = 6.33; P = 2.63×10-10 

0.17±0.03 

t5144 = 5.90; P = 3.85×10-9 

Preceding confidence (𝛽𝑐1) 
0.29±0.04 

t5145 = 7.01; P = 2.75×10-12 

0.30±0.04 

t5144 = 7.48; P = 8.54×10-14 

Context value (𝛽𝑉) - 
0.16±0.06 

t5144 = 2.51; P =1.19×10-2 

Table 3. Modelling confidence ratings. Estimated fixed-effect coefficients from generalized linear 
mixed-effect models. 
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 GLME 

E
x
p

e
ri

m
e
n

t 
1 

Fixed-Effect PERFORMANCE RT 

Intercept (𝛽0) 
-0.84±0.20 

t5078 = -4.15; P = 3.40×10-5 

1.90±0.09 

t5078 = 20.12; P = 1.12×10-86 

Choice difficulty (𝛽∆𝑄) 
9.90±1.67 

t5078 = 5.92; P = 3.32×10-9 

-0.65±0.20 

t5078 = -3.15; P = 1.63×10-3 

Preceding confidence (𝛽𝑐1) 
1.28±0.36 

t5078 = 3.60; P = 3.19×10-4 

-0.24±0.14 
t5078 = -1.78; P = 0.08 

Context value (𝛽𝑉) 
1.19±0.54 

t5078 = 2.19; P = 0.03 

-0.37±0.11 

t5078 = -3.48; P = 5.04×10-4 

 GLME 

E
x
p

e
ri

m
e
n

t 
2
 

Fixed-Effect PERFORMANCE RT 

Intercept (𝛽0) 
-0.71±0.22 

t5144 = -3.20; P = 1.37×10-3 

1.68±0.09 

t5144 = 17.93; P = 9.09×10-70 

Choice difficulty (𝛽∆𝑄) 
5.29±0.76 

t5144 = 6.94; P = 4.49×10-12 

-0.41±0.09 

t5144 = -4.50; P = 6.81×10-6 

Preceding confidence (𝛽𝑐1) 
1.21±0.33 

t5144 = 3.66; P = 2.57×10-4 

-0.54±0.10 

t5144 = -5.31; P = 1.08×10-7 

Context value (𝛽𝑉) 
0.30±0.28 

t5144 = 1.05; P = 0.29 

-0.17±0.05 

t5144 = -3.68; P =2.35×10-4 

Table 4. Modelling performance and reaction times. Estimated fixed-effect coefficients from 
generalized linear mixed-effect models (performance: logistic regression; reaction times: linear 
regression). 
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 GLME 

G
L

M
E

 1
 

Fixed-Effect Experiment 1 Experiment 2 

Intercept (𝛽0) 
0.58±0.05 

t5077 = 18.06; P = 1.01×10-70 

0.68±0.03 

t5143 = 21.74; P = 2.48×10-100 

Choice difficulty (𝛽∆𝑄) 
0.27±0.05 

t5077 = 5.55; P = 2.97×10-8 

0.13±0.03 

t5143 = 4.97; P = 6.76×10-7 

Preceding confidence (𝛽𝑐1) 
0.26±0.03 

t5077 = 7.56; P = 4.79×10-14 

0.24±0.04 

t5143 = 6.93; P = 4.69×10-12 

Context value (𝛽𝑉) 
0.43±0.14 

t5077 = 3.14; P = 1.68×10-3 

0.15±0.06 

t5143 = 2.36; P = 1.81×10-2 

Reaction times (𝛽𝑅𝑇) 
-0.03±0.01 

t5077 = -2.53; P = 1.15×10-2 

-0.09±0.01 

t5143 = -9.95; P = 4.04×10-24 

 GLME 

G
L

M
E

 2
 

Fixed-Effect Experiment 1 Experiment 2 

Intercept (𝛽0) 
0.53±0.04 

t5077 = 14.99; P = 9.36×10-50 

0.53±0.03 

t5143 = 16.83; P = 6.45×10-62 

Choice difficulty (𝛽∆𝑄) 
0.24±0.05 

t5077 = 4.59; P = 4.53×10-6 

0.14±0.03 

t5143 = 4.79; P = 1.75×10-6 

Preceding confidence (𝛽𝑐1) 
0.28±0.04 

t5077 = 7.50; P = 7.30×10-14 

0.30±0.04 

t5143 = 7.70; P = 1.60×10-14 

Context value (𝛽𝑉) 
0.10±0.05 

t5077 = 1.94; P = 5.22×10-2 

0.06±0.02 

t5143 = 3.96; P =7.50×10-5 

q-values sum (𝛽∑Q) 
0.22±0.09 

t5077 = 2.43; P = 1.52×10-2 

0.06±0.02 

t5143 = 2.65; P =7.98×10-3 

Table 5. Assessing the specific role of  context values on confidence. Estimated fixed-effect 
coefficients from generalized linear mixed-effect models. 
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