
Designing Genomes using Design-Simulate-Test Cycles 

Joshua Rees 1,2* ̂
, Oliver Chalkley 1,3,4* ̂

, Oliver Purcell 5, 
Lucia Marucci 1,3,6+, Claire Grierson 3,5+^ 

 

1
BrisSynBio,University of Bristol, Bristol BS8 1TQ, UK; 

2
School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, 24 

Tyndall Avenue, Bristol, BS8 1TQ, UK; 

3
Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK;  

4
Bristol Centre for Complexity Science,Department of Engineering Mathematics, University of 

Bristol, Bristol BS8 1UB, UK; 

5
Prospect Bio, 150 N Hill Drive, Ste 14, Brisbane, CA 94005, USA; 

6
School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1UB, UK;  

 

*Co-first authors + Co-last authors ^ Corresponding authors  
Corresponding authors: Prof. Claire Grierson (claire.grierson@bristol.ac.uk), Dr Lucia 

Marucci (lucia.marucci@bristol.ac.uk), Oli Chalkey (o.chalkley@bristol.ac.uk), Joshua Rees 

(joshua.rees@bristol.ac.uk. 

 

Abstract 

In the future, entire genomes tailored to specific functions and environments 

could be designed using computational tools. However, computational tools to 

design cells are scarce. Here we present work implementing computational 

design-simulate-test cycles for genome optimisation based on whole cell 

modelling. Similar approaches could be adapted to any goal in genome design, 

but to demonstrate feasibility, we selected the identification of minimal 

genomes as a proof of concept, using the first (and currently only published) 

whole cell model, which is for the bacterium Mycoplasma genitalium. Minimal 
genomes are an ideal goal to test our ideas because there is a very simple 

functional assay - the cell can either replicate or not. Our computational 

design-simulate-test cycles produced novel in-silico minimal genomes smaller 
than JCVI-Syn3.0, the smallest genome ever synthesised in the lab, and 
identified 11 redundant essential genes. This work brings computational 

genome design a step closer. 

 

Introduction 

One of the goals of synthetic biologists is to be able to design genomes to 

produce cellular products via optimised cell factories 1 , which are more 
robust, energy efficient, and controllable. The by-product of this research 

is a greater understanding of the essentials for cellular life, which many 

hypothesise could provide insight into early life on earth 2 . 
 

The largest scale efforts in genome editing to date include JCVI-Syn3.0, a 
50% reduction from the wild-type Mycoplasma mycoides 3 , several strains of 
E.coli reduced by 38.9% 4  and 35% 5  in-vivo and a reduction of 77.6% as a 
free-genome inside S.cerevisiae 6 , and two strains of B.subtilis reduced by 
36% 7 . These were produced by trial and error laboratory approaches rather 
than intentional design, using very cost and time intensive techniques that 

are only available to select laboratories. This results in laboratories 

following a small number of research avenues with limited ability to 

backtrack 8 . Although the methodology of reducing existing genomes has 
drawbacks, attempting to build novel organisms from scratch is currently 
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infeasible, due to technology constraints causing the cost per base pair 

printed to be incredibly large at the microbial genome scale. 

 

When designing genomes the identification of minimal genomes is understood to 

be a good proof of concept 8 . Minimal genomes are defined as reduced genomes 
containing only the genetic material essential for survival, presuming that 

an appropriately rich medium is present 3  8  and in the absence of external 
stresses. An individual cell is usually defined as “living” if it can 

reproduce successfully, so a gene is “essential” if it is indispensable for 
enabling the cell to survive until successful reproduction and its removal 

prevents a cell from successfully dividing. A “non-essential” gene can be 
removed with division still possible 8  9 . This is classically tested by 
knocking out or suppressing genes individually and observing the impact on 

the cell.  

 

Genome design is currently made difficult by a lack of biological knowledge 

about which genes are essential, due to conservation of function and dynamic 

classifications. 

Gene function is conserved over genes, with functionally equivalent genes 

having independent evolutionary origins resulting in differing genetic code. 

These are labelled as non-orthologous gene displacements 8  and prevent 
genomic insights being shared across species.  

Gene essentiality is no longer thought of as static and binary, the 

requirement for specific genes changing dependent on the combined effect of 

the external cellular environment and the genomic context.8  The genomic 
context changes each time a gene is removed or suppressed. Some essential 

genes become dispensable with the removal of a particular gene (i.e. the 

former removing a toxic byproduct of the latter) 8 . 
Likewise some non-essential genes become essential when a functionally 

equivalent gene is removed, leaving only a single pathway to a required 

cellular metabolite. These are called redundant essential genes, and the 

cellular death that occurs when redundant essentials are removed together is 

referred to as synthetic lethality 3  17 . 
This results in a “gradient” of gene essentiality, with some essential genes 

being essential in fewer contexts than other essential genes, and some 

non-essential genes being dispensable less frequently than others. A recent 

review 8  suggested genes could be assigned quantitatively to four categories: 
no essentiality (dispensable in all contexts), low essentiality (dispensable 

in some contexts), high essentiality (indispensable in some contexts), and 

complete essentiality (indispensable in all contexts).  

 

Design is further challenged by the fact that the number of potential genome 

designs is a factorial. If we consider an organism with 500 genes, the number 

of possible genomes that we could search through numbers 1.22x101134  (for 
comparison the age of universe in seconds is n x 1017 ). This is an amount 
that we do not currently have the computational power to investigate in full, 

so how do we investigate this number of solutions, using only the currently 

available knowledge, and within a reasonable time frame? 

By using a single bacterial species with a small genome, keeping the external 

environment constant while considering the genetic context of the cell, and 

cross comparing experimental results at scale, we increase our chances of 
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producing successful genome designs and identifying redundant essential 

genes; however, as previously noted, this scale of work is not currently 

possible in the laboratory. 

 

We propose to use a computational methods to attempt to solve this problem. 

We used the Mycoplasma genitalium whole-cell model 10 , the currently only 
existing model that fully considers genomic context, describing the smallest 

natural culturable self-replicating organism 11 . This formalism models a 
single Mycoplasma genitalium cell from random initial conditions until the 
cell successfully divides or reaches a time limit of 13.89 hours (simulated 

time). It combines 28 cellular submodels, accounts for  401 of the 525 

M.genitalium genes, with parameters based on 900 publications and more than 
1,900 experimental observations, resulting in a reported accuracy of 79% 1 . 
Outside of the single gene knockout simulations conducted in the original 

paper, it has been used to make novel biological discoveries by investigating 

discrepancies between the model and real world measurements 10,12 , to model 
genetic circuits in the context of the cell 13 , and to make predictions about 
the use of existing antibiotics against new targets 14 .  
 

Here, we used the whole cell model to design in-silico minimal genomes: our 
computational genome design tools (named  LEGO and GAMA) found possible 

reduced M.genitalium genomes smaller than the currently smallest genome 
produced in the laboratory (JCVI-Syn3.0). Simulation analysis identified 11 
redundant essential genes, one redundant essential pair, and 29 high 

essentiality genes. We believe that our computational design-simulate-test 

cycles can be used in the future for designing and engineering genomes for a 

broad spectrum of uses and are applicable to current subcellular models and 

future whole-cell models across species and applications. 

 

Results 

Genome Design Tools: LEGO & GAMA 

We produced two methods (LEGO and GAMA) which both use the Mycoplasma 
genitalium whole-cell model to generate minimal genome designs (Table 1). 
They do this by conducting cycles of whole-cell model simulations in three 

steps: Design (select possible gene deletions), Simulate (the genome minus 

those deletions), Test (analyse the in-silico cell produced). Those 
simulations that produce successfully dividing cells are used to inform the 

next cycle of simulations. The number of gene deletions is increased in each 

subsequent simulation cycle (while maintaining cellular division), thereby 

producing a smaller and smaller genome. LEGO and GAMA differ in their design 

steps but use the same simulate and test steps.  

LEGO and GAMA generated 1000s of genome designs, for brevity the designs 

presented in this paper are those with the most genes deleted. 

 

LEGO is a genome design tool that uses a divide and conquer algorithm, with 

an initial design step breaking down a problem into sub-problems that can be 

solved, and subsequent combination steps combining the sub-problem solutions 

to solve the original problem. This is inspired by current laboratory methods 

and can generate genome designs within two days (see Methods). It is a coarse 

grained method producing deletion segments of groups of genes rather than 

individual genes (see Table 1). It currently uses only genes defined as 
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non-essential by single gene knockouts (see Initial Input), to enable manual 

simulation management and data storage. 

 

GAMA is a genome design tool that uses a modification of a genetic algorithm. 

It uses genes defined as non-essential by single gene knockouts in the guess 

and add steps, but incorporates essential genes in the mate step. It is a 

granular method, producing deletion segments of groups of genes and 

individual genes, making it capable of producing a greater number of 

predictions but takes two months to generate genome designs. It also requires 

multiple supercomputers to handle the number of simulated genome designs, and 

custom management code to the coordinate multiple supercomputers and store 

the resulting data. 

 

 LEGO GAMA 

Methodology Divide and Conquer Algorithm Genetic Algorithm 

Computing Requirements Supercomputer Supercomputers 

Restrictions Non-essential genes only* Management code 

Deletion Segment Size 

(Genes) 
100s - 10s 100s - 1s 

First Genome Designs 2 days 2 months 

Predictions 10s 1000s 

 

TABLE 1  Differences between LEGO and GAMA genome design tools Both tools 
use the Mycoplasma genitalium whole-cell model and computational 
design-simulate-test cycles to design genomes. They differ in their design 

approach, with the resulting differences outlined above. Details on algorithm 

implementation, as well as calculations for first genome designs timings are 

provided in the methods and supplementary information. *LEGO uses a subset of 

the genes within the model to enable manual simulation management and data 

storage. 

 

Initial Input 

The Mycoplasma genitalium whole-cell model takes a list of genes as input, 
that tells the model which genes are available for that particular 

simulation. The output is thousands of data streams about the cell, from 

which we graph six categories to display cell division, replicated DNA, 

produced RNA, produced Protein, and growth (increase in mass). 

To generate input for our methods, and to provide background data on gene 

essentiality absent of any other genomic changes, we simulated single gene 

knockouts in an otherwise unmodified Mycoplasma genitalium in-silico genome 
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(previously reported by Karr et al10 . Each of the 359 protein-coding genes 
was simulated individually, with a minimum of six replicates for each gene. 

We found that, when knocked out individually, 147 genes were non-essential 

(producing a dividing simulated cell) and 212 genes were essential; their 

removal resulting in the cell being unable to divide.  

Overall, our single gene knockout simulations agree 99% with Karr et.al’s 10 
findings, with disagreements over the essentiality classifications of 4 

genes. It is to be expected that the majority of the Mycoplasma genitalium 
genome would be essential (212/359, 59%) as Mycoplasmas have reduced 
evolutionary redundancy due to their obligate parasitic nature, genetic 

history, and lack of need for adaptability 15 
 

LEGO Method and Results 

The initial design step of LEGO divides the input into 36 deletion segments 

(A,B,..,Z,aa,..,jj) ranging in size from 100% of the input (147 genes) to 

6.25% of the input (10 genes) (see Supplementary information). The build and 

test steps are then conducted: in individual simulations each of the 36 

deletion segments were removed from the genome, and the reduced genomes 

simulated. The deletion segments that successfully produced a dividing 

in-silico cell were carried forward to the next step.  
The combination step starts with the largest successful deletion segment 

(e.g. Segment A), which was then matched with all other non-overlapping and 

successful deletion segments (which reduces the number of segments 

dramatically) to create the largest deletion design (e.g. Segment A + 5 

segments). Following this, smaller deletion designs were generated by 

comprehensively matching the non-overlapping deletion segments in all 

possible iterations of smaller combinations (e.g. Segment A + all 

combinations of 4 smaller segments, Segment A + all combinations of 3 smaller 

segments, Segment A + all combinations of 2 smaller segments, Segment A + all 

combinations of 1 smaller segment). This matching process was then repeated 

with the second largest deletion segment, and subsequent deletion segments 

until the first 6.25% deletion segment was reached.  

All of these designs were built and tested, and the resulting in-silico 
cells analysed to inform the next cycle of simulations (see Figure 1A for an 

example). This combination step was repeated until no further segments could 

be removed without preventing division. Once the combination step was 

exhausted, simulation results were cross compared to identify single gene 

deletions that were candidates for removal, which were then simulated. 

 

LEGO produced results quickly, the first combination step producing a genome 

design that deleted 120 genes (a 30% reduction) comparable to current lab 

based efforts in other species. 4,5,7  The subsequent addition of single gene 
deletions increased the number of deletions.  

In total, the smallest LEGO designed genome managed to delete 140 genes 

(Figure 1B), leaving a total genome size in-silico of 261 genes (named 
LEGO_261), producing a simulated cell which replicates DNA, produces RNA and 

protein, grows, and divides.   
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Figure 1  LEGO Method for Genome Design: Example and Results (A) Using the 
Mycoplasma genitalium whole-cell model an initial 36 gene deletion segments, 
ranging in size from 10 to 147 genes, were selected and individually 

simulated (A, B, C). Those producing a dividing in-silico cell were 
combined, simulated, and analysed (B + C). This process is repeated until no 

more genes can be deleted. (B) The smallest LEGO designed genome removed 140 

protein-coding genes resulting in an in-silico genome of 261 genes 
(LEGO_261, 100 replicates). Details of simulations completed and settings are 

available in the methods and supplementary information.  

 

GAMA Method and Results 

The GAMA process is summarised in Figure 2. GAMA performs two sequential 

design steps (guess and add) followed by repeated cycles of mate steps 

(referred to as generations). 

During the guess step all of the non-essential genes are segmented into 4 

sets of ~50 random genes (A, B, C, D in Figure 2). Each is split into 400 

subsets, ranging between 50 - 100% of the ~50 gene set. These subsets of 

genes are knocked-out, and the remaining genome simulated. If a cell 

successfully divides, its genome is carried forward to the next step. 

 

During the add step one viable subset is randomly selected from each of 2, 3 

or 4 of the sets of ~50 genes. These viable subsets are combined into one new 
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genome and simulated. 3000 new subsets are created and tested, and those that 

produce a dividing cell are taken forward to the mate step.  

 

The mate step refers to mating in the sense of a genetic algorithm. Only 

individuals that divided are included and these are assigned a “fitness” 

based on an objective function (i.e. ranked by the number of genes deleted). 

A genetic algorithm is traditionally ‘seeded’ in the first generation, by 

randomly guessing values of the input parameters, to produce an initial set 

of fittest individuals. Instead, GAMA selects the fittest 50 viable knockout 

sets produced by the add stage.  

Two of these viable genomes are randomly picked, such that smaller genomes 

with a larger number of knockouts are more likely to be picked, and labelled 

parent1 and parent2. A random number of genes (2 to 358) are selected from 

parent1. The name of the gene and it’s deletion status are recorded. The 

genes not selected in parent1 are identified in parent2 and their deletion 

status also recorded. The combined list of genes and their deletion status in 

parents 1 and 2 is used to create a child genome, with some additional random 

gene knockouts selected from a pool of all protein-coding genes (including 

essential genes). One thousand children are created per generation (iteration 

of the mate step). Once all of the children are simulated the list of 50 

fittest individuals is updated to take into account new results and carried 

forward to the next generation.  

The stopping criteria of the mate step is once 10 generations have completed 

without producing a smaller genome. 

 

In total, the smallest GAMA designed genome deleted a maximum of 165 genes, 

leaving a reduced in-silico genome of 236 genes (named GAMA_236), surpassing 
the results found by the LEGO method and producing a simulated cell which 

replicates DNA, produces RNA and protein, grows, and divides.   
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Figure 2  GAMA Method for Genome Design: Example and Results (A) Using the 
Mycoplasma genitalium whole-cell model to test for genome viability, GAMA 
reduced the in-silico genome in three stages, Guess, Add and Mate. Guess: 
split all non-essential genes into 4 groups of roughly 38 genes and randomly 

pick 400 subsets of greater than 24 genes from each group to knockout 

in-silico. Add: between two and four of the groups are randomly selected and 
then one viable knockout combination is taken from each of them. The union of 

all these knockout sets is taken to create one larger knockout set which can 

then be tested in-silico. This is repeated 3,000 times. Mate: takes the top 
50 smallest genomes that produce a viable cell from the “add” stage and mates 

them. This mating is done by randomly selecting two parents from the 50 

fittest individuals such that smaller genomes are more likely to picked. A 

new genome is created by randomly combining parts of the two parent genomes. 

Finally a number of genes are randomly mutated which creates a child genome 

to test. One generation of the mate stage consists of 1,000 children and once 

the viability is known the top 50 fittest individuals is updated to take into 

account the new results. This is repeated to create new generations of child 

genomes until no smaller genomes are found for 10 generations. Details of 

simulations completed and settings are available in the methods and 

supplementary information. (B) A comparison of genome size between the 

unmodified Mycoplasma genitalium whole-cell model genome and the GAMA_236 
genome. 

 

Comparing GAMA and LEGO 

To analyse whether GAMA and LEGO identify similar minimal genomes created a 

dendrogram showing the distance between genomes of all of the available 

genomes of 261 genes produced by GAMA (122) and the smallest LEGO genome 

LEGO_261 (Figure 3). This showed a significant difference between the two 

types of reduced genomes, demonstrated by the ARI distances between them (see 

details in Supplementary Information). As additional evidence to support this 

divergence, we found four genes removed in LEGO_261 whose individual 

deletions (in addition to the 165 deletions) in GAMA_236 did not produce 

8 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 12, 2018. ; https://doi.org/10.1101/344564doi: bioRxiv preprint 

https://doi.org/10.1101/344564
http://creativecommons.org/licenses/by-nc-nd/4.0/


viable in silico cells, and six genes removed in GAMA_236 whose individual 
deletions (in addition to the -140 deletions) in LEGO-261 were not tolerated. 

 

We were interested in how consistently LEGO_261 and GAMA_236 produced a 

successfully dividing in-silico cell. We ran 100 simulations each of an 
unmodified Mycoplasma genitalium whole-cell model, a single gene knockout of 
a known essential gene (MG_006), LEGO_261, and GAMA_236, and analysed the 

results to see if they produced a dividing in-silico cell (or no division in 
the case of MG_006) and we used the results to assign a phenotypic penetrance 

score (how often an expected phenotype occurred). The unmodified Mycoplasma 
genitalium whole-cell model demonstrated a consistent phenotype (99% 
divided), as did MG_006 (0% divided). LEGO_261 was slightly less consistent 

(92% divided). GAMA_236 was less consistent, producing a dividing in-silico 
cell 18.5% of the time. This is not unexpected given the greater number of 

gene deletions, including 29 high essentiality genes (see below).  

 

We were also interested in looking at the range of behaviour displayed by 

GAMA_236 and LEGO_261. 100 simulations for each genome were simulated, 

graphed (Figure 4), and analysed. The unmodified Mycoplasma genitalium 
whole-cell model (Figure 4, top row) shows the range of expected behaviour 

for a healthy cell that successfully divides (in line with previous results 

10 
). Growth is generally up and to the right throughout the simulation, with 

most simulations stopping around 10 hours as they divide. Protein production 

and cellular mass increase over time. RNA production is constantly 

fluctuating but increases over time. DNA replication (plotted as chromosome) 

follows a relatively steep gradient, with some simulations delaying the 

initiation of DNA replication past ~9 hours. The simulation that does not 

divide is a random wild type cell that did not successfully replicate, 

presumably due to its particular set of initial conditions. Division occurs 

as the cell diameter rapidly shrinks, occurring between 6 - 11 hours. 

 

By comparison, LEGO_261 (Figure 4, middle row) displays slower growth over 

time, which additionally seems to be capped to a lower maximum than wild 

type. Protein production and cellular mass are generated more slowly and show 

some erratic behaviour. Protein production begins after a delay of one hour. 

The range of RNA production is narrower, but the rate is increased. DNA 

replication takes longer and initiation can occur later (at 11 hours). The 

simulations that reach a DNA replication value of 2 and continue to 13.89 

hours have division defects. Cell division time is shifted to the right, 

occurring between 8 and 13.889 hours, with a number of simulations failing 

during DNA replication and cell division and some simulated cells maintaining 

a constant cellular diameter. 

 

Compared to the unmodified genome, GAMA_236 (Figure 4, bottom row) shows a 

much greater range of growth rates. Some grow at a faster rate than the 

unmodified genome, a middle range is comparable to LEGO_261, and a lower 

range show very low / decreasing growth. GAMA_236 shows a greater delay in 

the start of protein production, ranging between 2 - 5 hours. TSome 

simulations show similar behaviour to LEGO_261, while others show a slower 

rate of protein production. Cellular mass falls into two groups, similar to 

LEGO_261 and slower, as well as displaying a large number of metabolic 
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defects that do not produce any growth in mass over period of the simulation 

(these defects can also be seen in DNA replication and cell division). A 

reduced range of behaviour is displayed in RNA production, which progresses 

at a much slower rate. There are two classes of DNA replication phenotype: 

one group replicates DNA within the timeframe of the unmodified genome; the 

second group replicates more slowly, some simulations successfully completing 

the process of DNA replication, others failing to replicate before the 

simulation ends. Cell division occurs across a greater range of times (6 - 

13.889 hours). Metabolically defective cells and cells that do not complete 

DNA replication can be seen maintaining a constant cell diameter. 

 

 

Figure 3  Dendrogram showing the similarity of genomes produced by LEGO and 
GAMA  There were 122 viable genomes found by GAMA that have the same genome 
size as LEGO_261. The distance metric, ARI distance, between two genomes is 

1-ARI which is in the range [0, 2], where ARI is the adjusted rand index. The 

adjusted rand index (ARI) is a metric that measures the similarity of two 

sets of elements and is in the range [-1, 1]. 
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Figure 4  Behavioural Comparison of unmodified Mycoplasma genitalium 
whole-cell model, LEGO_261, and GAMA_236 Unmodified and designed genomes 
were simulated in the Mycoplasma genitalium whole-cell model (100 
replicates). Here second-by-second data for six cellular variables is 

aggregated for the 100 replicates and plotted, giving a phenotypic range for 

each in-silico genome. The unmodified genome shows the range of expected 
phenotypes for a cell that successfully divides. LEGO_261 and GAMA_236 show 

deviations in phenotype caused by gene deletions.  

 

Redundant Essential and High Essentiality Genes 

As previously stated, we found 4 genes removed by LEGO_261 and 6 genes 

removed by GAMA_236, that could not be removed from the other without 

preventing division. We confirmed that these 10 genes (MG_289, MG_290, 

MG_291, MG_298, MG_310, MG_427, MG_033, MG_410, MG_411, MG_412) could be 

removed individually from an unmodified Mycoplasma genitalium in-silico 
genome (independently repeating work done by Karr et al.10 ). These results 
suggest that in single gene knockout studies these would be classified as 

non-essential. However, our results reported here demonstrate that these are 

actually redundant essential genes. One additional gene, MG_305, was found to 

be redundantly essential in both GAMA_236 and LEGO_261.  

 

As a step towards identifying genes that can functionally compensate for 

these 10 genes we searched prior simulations to find additional genomes from 

which any of the 10 had successfully been removed. A -79 deletion set deleted 

the six genes removed by GAMA_236, and a -15 deletion set removed one of the 

4 genes (MG_412) removed by LEGO_261, inferring that compensatory genes are 

not deleted in these sets. We initially focused on MG_412 and the other three 

genes removed by LEGO_261 (MG_033, MG_410, MG_411), to search for genes with 

matching biological functions removed by GAMA_236 and the -79 set.  

 

We could not find any matches for MG_033 (named glpF, and involved in the 

glycerol metabolic process), suggesting that it is being compensated for by 

seemingly unrelated biological functions 8 . Further research is required to 
understand why this gene has become essential in the context of the GAMA_236 

genome. 

 

MG_411, named pstA, is involved in the phosphate ion transmembrane transport 

process. MG_410, named pstB, does not have an associated GO term, nor does 

MG_412. Of the six genes deleted by GAMA_236, two have associated GO terms, 

MG_289 and MG_291.  

 

We conducted combinatorial gene knockouts between this subset of five genes 

(MG_289, MG_291, MG_410, MG_411, MG_412) in an unmodified Mycoplasma 
genitalium whole-cell model genome, to see if we could induce synthetic 
lethality through knocking out redundant essential genes. 

 

MG_289 and MG_291 were found to form a functional group, as were MG_410, 

MG_411, MG_412. These genes could be deleted individually and in functional 

groups from an otherwise unmodified Mycoplasma genitalium whole-cell genome, 
still producing a dividing in-silico cell. However, any double gene deletion 
combination that involved one gene from each functional group resulted in a 
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cell that could not produce RNA, produce protein, replicate DNA, grow or 

divide.  

 

This suggests possible explanations for the results seen in GAMA_236 and the 

-79 deletion set, (previously deleting MG_291 and being unable to delete 

MG_410, MG_411 or MG_412), as well as  the results seen in LEGO_261 and the 

-15 deletion set (previously deleting MG_412 and being unable to delete 

MG_289 or MG_291). 

  

We are currently investigating the other genes identified as redundantly 

essential (MG_033, MG_290, MG_298, MG_305, MG_310, MG_427). 

 

Interestingly, we found 29 genes knocked out in GAMA_236 that were defined as 

essential by single knockout in silico, in the genomic context of the 
unmodified Mycoplasma genitalium whole-cell model (see Supplementary 
Information for gene list). These could be removed in the genomic context of 

GAMA_236 without preventing division, demonstrating that some essential genes 

are less essential than others. These would be classed as having high 

essentiality on Rancati et al’s8  quantitative essentiality scale. 
Interactions within the remaining genome must be compensating for their 

removal which requires further research to understand fully.  

 

 

Discussion  

We have created two genome design tools (LEGO and GAMA) that used 

computational design-simulate-test cycles to successfully produce in-silico 
minimal genomes. Even including the genes of unknown function that are 

currently not modelled, our minimal genome designs are smaller than 

JCVI-syn3.0 (the currently smallest genome produced in the laboratory)3   and 
28 - 53 genes smaller than the most recent predictions for a reduced 

Mycoplasma genome 17 . Additionally, we identified 11 redundant essential 
genes, one redundant essential gene pairing, and 29 high essentiality genes. 

We intend to test these results and minimal genome predictions experimentally 

to ascertain the accuracy of the model and the functionality of our designed 

genomes.  

 

It was already known that single gene knockout studies are likely to 

inherently underestimate minimal genome size: redundant genes will be scored 

in single gene knockouts as non-essential 3,16,17 . The removal of even a single 
redundant essential pair will prevent your designed genome from surviving. We 

found 11 redundant essential genes within 359 protein-coding genes, giving a 

3% chance of errors in genome design in even this evolutionarily reduced 

genome. Additionally, reliance on single gene knockout studies narrows the 

scope of genome design. A broader scope enables unforeseen discoveries, such 

as the 29 high essentiality genes identified by GAMA, which would not have 

been targeted for deletion by traditional laboratory methods. We believe that 

single gene knockout classifications are unreliable for minimal genome 

design, as essentiality classifications have to take into account genomic 

context.  

 

13 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 12, 2018. ; https://doi.org/10.1101/344564doi: bioRxiv preprint 

https://paperpile.com/c/E4OO5p/A1Y2
https://paperpile.com/c/E4OO5p/i9Jj6
https://paperpile.com/c/E4OO5p/CWw2o+i9Jj6+ql5Ai
https://paperpile.com/c/E4OO5p/CWw2o+i9Jj6+ql5Ai
https://doi.org/10.1101/344564
http://creativecommons.org/licenses/by-nc-nd/4.0/


There are limitations to our work. Models are not a perfect representation of 

reality. Our results could be biased by model assumptions and parameters, 

with some of the construction and validation of the model being based on data 

from other bacterial species 10 . Our conclusions are dependent on the 
accuracy of the model, we currently have to assume that the model is 

internally correct and will be externally generalisable.  

 

Additionally, multigenerational simulations of the whole-cell model (while 
maintaining genomic context) are currently unavailable. If our predictions 

are correct they may only be applicable to the first generation of cells.  

 

Finally, there are genes of unknown function that the model cannot account 

for. These genes may change the genomic context such that a gene that has 

already been removed would be required for an essential function, preventing 

our genome designs from being successful. We currently cannot know the impact 

of these genes until our predictions are tested in the lab.  

 

Here we establish methodologies for computational design-simulate-test cycles 

that could be applied to other models, including models of other species, 

and, with refinements, could be used to design genomes optimised for 

particular functions. Our computational design-simulate-test cycles could be 

extended to include experimental build and test steps in wet laboratories; 

the predictions produced by computational design-simulate-test cycles should 

produce quicker and cheaper laboratory results, which, in turn, will drive 

model refinements where needed, opening up this area of research to wide and 

interdisciplinary research communities.  

 

The tools we presented are adaptable to future whole-cell models. An E.coli 
whole-cell model is under development at the Covert Lab in Stanford, and 

would offer a good opportunity to conduct build and test steps in the lab.  

 

We believe computers and algorithms are the future of genome design and these 

methods in combination with whole-cell models and new gene editing techniques 

will allow us to produce cells designed for particular purposes with much 

greater efficiency and increasing functional understanding. 
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Statistics 

We are currently developing a custom bootstrap statistical method to test our 

simulation results. We will update this draft with those results when they 

are complete. 

 

Code Availability 

All of the code produced as part of this research will be freely available on 

Github, which will include a bundled version of the model with our analysis 

and runner scripts.  

 

Model Availability 

The Mycoplasma genitalium whole cell model is available for free from the 

Covert Lab’s Github:https://github.com/CovertLab/WholeCell. We run the model 

with the standard settings, though we use our own version of the 

SimulationRunner.m called MGGRunner.m.  
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