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Abstract

Motivation: Recent sequence-based analyses have identified a lot of gene variants that may contribute
to neurogenetic disorders such as autism spectrum disorder and schizophrenia. Several state-of-the-
art network-based analyses have been proposed for mechanical understanding of genetic variants in
neurogenetic disorders. However, these methods were mainly designed for modeling and analyzing single
networks that do not interact with or depend on other networks, and thus cannot capture the properties
between interdependent systems in brain-specific tissues, circuits, and regions which are connected each
other and affect behavior and cognitive processes.
Results: We introduce a novel and efficient framework, called a “Network of Networks” (NoN) approach,
to infer the interconnectivity structure between multiple networks where the response and the predictor
variables are topological information matrices of given networks. We also propose Graph-Oriented SParsE
Learning (GOSPEL), a new sparse structural learning algorithm for network graph data to identify a subset
of the topological information matrices of the predictors related to the response. We demonstrate on
simulated data that GOSPEL outperforms existing kernel-based algorithms in terms of F-measure. On
real data from human brain region-specific functional networks associated with the autism risk genes, we
show that the NoN model provides insights on the autism-associated interconnectivity structure between
functional interaction networks and a comprehensive understanding of the genetic basis of autism across
diverse regions of the brain.
Availability: Our software is available from https://github.com/infinite-point/GOSPEL.
Contact: kawakubo@med.nagoya-u.ac.jp, shimamura@med.nagoya-u.ac.jp
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Neurodevelopmental disorders are characterized by impaired functions
of the central nervous system that can appear early in development
and often persist into adulthood (Tollefsbol, 2017). The spectrum of
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developmental impairment varies and includes intellectual disabilities,
communication and social interaction challenges, and attention and
executive function deficits (American Psychiatric Association, 2013).
Prototypical examples of neurodevelopmental disorders are intellectual
disability, autism spectrum disorder (ASD), epilepsy, and schizophrenia.

Recent sequence-based analyses have unraveled a complex, polygenic,
and pleiotropic genetic architecture of neurodevelopmental disorders, and
have identified valuable catalogs of genetic variants as genetic risk factors
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Fig. 1. Overview of GOSPEL, an example for the case where n = 4, p = 8. Assume that we are given the human brain region-specific networks associated with a disease. As input,
GOSPEL requires p adjacency matrices generated from p network graphs withn nodes, where n and p indicate the number of nodes (genes) and features (brain regions) respectively. Block
‘A’ shows that GOSPEL estimates the brain regions which are related to ‘Brain region 1’ by performing a graph oriented sparse regression. In this example, ‘Brain region 2’ and ‘Brain
region 8’ are related to ‘Brain region 1’. Block ‘B’ illustrates that a regression is performed on each of the brain regions. As with block ‘A’, block ‘B’ estimates the relationship between the
target brain region and the other brain regions. Block ‘C’ expresses that the output of GOSPEL, the "Network of Networks" (NoN) model related to the disease genes, is constructed from
the obtained regression coefficients.

for neurodevelopmental disorders (Gratten et al., 2014). However, it
remains unknown if and how genetic variants interact with environmental
and epigenetic risk factors to impart brain dysfunction or pathology.

For a mechanical understanding of specific genetic variants in
neurodevelopmental disorders, integrative network approaches have
attracted much attention in recent years due to their interdisciplinary
applications. Several state-of-the-art network-based analyses provide an
organizational framework of functional genomics and demonstrate that
they will enable the investigation of relationships that span multiple levels
of analysis (Parikshak et al., 2013; Krishnan et al., 2016; Gandal et al.,
2018). These methods were mainly designed for modeling and analyzing
single networks that do not interact with or depend on other networks.
However, the brain consists of a system of multiple interacting networks
and must be treated as such. In multiple interacting networks, the failure
of nodes in one network generally leads to the failure of dependent nodes
in other networks, which in turn may cause further damage to the first
network, leading to cascading failures and catastrophic consequences
(Gao et al., 2012). It is known, for example, that different kinds of
brain-specific tissues, circuits, and regions are also coupled together and
affect behavior and cognitive processes, and thus dysfunctions of the
central nervous system in neurodevelopmental disorders have been the
result of cascading failures between interdependent systems in the brain.
However, no systematic mathematical framework is currently available for
adequately modeling and analyzing the consequences of disruptions and
failures occurring simultaneously in interdependent networks.

We address this limitation by developing a novel and efficient
framework, called the "Network of Networks" (NoN) approach, that
will provide useful insights on the properties and topological structure of
the inter-correlations between functional interaction networks (Figure. 1).
Motivated by a perspective on structural equation models, we model the
topological information of each network as a weight sum of the topological
information of all other networks. Our NoN model enables the exploitation
of the interconnectivity structure between complex systems. It has shown
to be effective in aiding the comprehensive understanding of the genetic

basis of neurodevelopmental disorders across diverse tissues, circuits, and
regions of the brain.

Our main contributions are summarized as follows:

1. We define a statistical framework of structural equation models for
inferring the interconnectivity structure between multiple networks
where the response and the predictor variables are given networks
which have topological information. Structural equation modeling is
a statistical method used to test the relationships between observed
and latent variables (Civelek, 2018). We extend the structural equation
models for modeling the effects of network-network interactions.

2. In order to accomplish this, we propose a sparse learning algorithm
for network graph data, called Graph-Oriented SParcE Learning
(GOSPEL), to find a subset of the topological information matrices
of the predictor variables (networks) related to the response variable
(network). More specifically, we propose to use particular forms
of diffusion kernel-based centered kernel alignment (Cortes et al.,
2012) as a measure of statistical correlation between graph Laplacian
matrices, and solve the optimization problem with a novel graph-
guided generalized fused lasso. This new formulation allows the
identification of all types of correlations, including non-monotone
and non-linear relationships, between two topological information
matrices.

3. We use a Bayesian optimization-based approach to optimize the
tuning parameters of the graph-guided generalized fused lasso and
automatically find the best fitting NoN model with an acquisition
function. The software package that implements the proposed method
in the R environment is available from https://github.com/

infinite-point/GOSPEL.

We describe our proposed framework and algorithm, and discuss
properties in Section 2. Section 3.1 contains a simulation study which
demonstrates the performance of the proposed method. We use human
brain-specific functional interaction networks and known risk genes with
strong prior genetic evidence of ASD and identify the interconnectivity
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between these networks in Section 3.2. Section 4 provides concluding
remarks.

2 Method
Our goal is to infer the interconnectivity structure between multiple
networks from topological information matrices of given networks. To
do this, we make the assumption that each topological information matrix
for a given network can be expressed by the linear combination of the
topological information matrices of the other given networks. Sparse
regression is performed on each of the given networks in order to identify
a subset of the topological information matrices of the predictors related
to the response. After this computation, NoN model is constructed from
the obtained regression coefficients. In this section, we first explain the
problem setting, and then present our method, GOSPEL.

2.1 Problem Setting

Suppose that we are given p undirected network graphs consisting of
n vertices (nodes) V (i) = {v(i)1 , . . . , v

(i)
n } (i = 1, . . . , p) linked by

edges. The i-th adjacency matrixA(i) ∈ Rn×n associated with the i-th
undirected network graph is defined as

A
(i)
j,k =

{
w

(i)
j,k if j 6= k and vj links with vk,

0 otherwise,

where w(i)
j,k ∈ [0, 1] denotes the probability of connectivity between the

vj and vk in the i-th network graph. Here, we compute graph Laplacian
matrix L(i):

L
(i)
j,k =


deg
(
v
(i)
j

)
if j = k,

−w(i)
j,k if j 6= k and vj links with vk,

0 otherwise,

where deg
(
v
(i)
j

)
denotes the degree of v(i)j . Then let us kernelize the

graph Laplacian matrix. LetK(i) be the diffusion kernel matrix forL(i):

K(i) = exp{−L(i)/γ(i)},

where γ(i) is a kernel parameter. This kernel matrix is centered and
normalized as follows:

K̃(i) = K
(i)
/‖K(i)‖F ,

K
(i)

= HK(i)H,

where ‖ · ‖F denotes the Frobenius norm, H indicates the centering
matrixH = In − 1

n
1n1>n , In is an n× n identity matrix and 1n is an

n-dimensional vector with all ones.
We assume that the diffusion kernel matrix of the i-th network graph

can be represented by the linear combinations of the diffusion kernel
matrices of the other network graphs as follows:

K(i) =

p∑
j=1

β
(i)
j K(j) + ε(i),

where
{
β
(i)
j

∣∣∣ j = 1, . . . , p, β
(i)
i = 0

}
denotes a regression coefficient

corresponding to predictor K(j) and response K(i), and ε(i) ∈ Rn×n

is a Gaussian noise matrix whose elements follow N(0, σ2
i ).

The estimation for the network structure of the given networks is
available by applying GOSPEL to all the cases where i = 1, . . . , p. Note
that, in an ordinary regression problem for n samples and p predictors,
both the predictors and the response are given as n-dimensional vectors.
In our problem setting, however, they are given as n× n network graphs.

Table 1. Behavior of β(i)
j and β(i)

k in GOSPEL optimization. When K(j) and

K(k) are uncorrelated, i.e.R(i)
j,k = 0, the value of β(i)

j is estimated depending
on the correlation between response K(i) and predictor K(j). Similarly, the
value of β(i)

k is computed depending on the correlation between the response
and the k-th predictor. On the other hand, when K(j) and K(k) are correlated,
i.e. R(i)

j,k = 1, β(i)
j and β(i)

k tend to take similar values depending on the

correlation between the response and the i-th predictor.

Correlations Regression Coefficients

K(i),K(j) K(j),K(k) β
(i)
j β

(i)
j , β

(i)
k

correlated uncorrelated a real value except zero –
uncorrelated uncorrelated zero –

correlated correlated – real values except zero
uncorrelated correlated – zeros

2.2 Graph Oriented Sparse Learning (GOSPEL)

The optimization problem of GOSPEL is as follows:

min
β
(i)
1 ,...,β

(i)
p

‖K̃(i) −
p∑
j=1

β
(i)
j K̃(j)‖2F

+ λ
(i)
1

p∑
j,k=1

R
(i)
j,k |β

(i)
j − β

(i)
k |+ λ

(i)
2

p∑
j=1

|β(i)
j |, (1)

where λ(i)1 , λ
(i)
2 are regularization parameters and | · | indicates the `1

norm. R(i) ∈ Rp×p (i = 1, . . . , p) expresses a matrix whose elements
consist of correlations between predictors, where

R
(i)
j,k =

{
1 if |CKA(K̃(j), K̃(k))| ≥ τ (i) and j 6= k,

0 otherwise.

CKA(K(j),K(k)) denotes a correlation between kernel matricesK(j)

and K(k); this measure is called the Centred Kernel Alignment (CKA)
(Cortes et al., 2012), and τ (i) indicates a threshold. CKA captures the
non-linear relationship between two matrices if such a relationship exists.

The definition of CKA is as follows:

CKA(K(j),K(k)) =
〈K(j)

,K
(k)〉F

‖K(j)‖F ‖K
(k)‖F

,

where 〈·, ·〉F indicates the Frobenius inner product. The Frobenius inner
product can be interpreted as an inner product of two vectorized matrices,
and thus we can apply the properties of Pearson’s correlation coefficient
(Sharma, 2005) to CKA. Unless the elements of K(j) or K(k) are all
zero (we omit such cases in the computation of GOSPEL), this definition
implies that the value of CKA becomes zero whenK(j) andK(k) have
no correlation and the CKA value takes ±1 when the two matrices are
strongly correlated. In practice, the value of the diffusion kernel based
CKA ranges from−1 to 1 because of the positive semi-definiteness of the
diffusion kernel matrix (Lafferty and Kondor, 2002).

GOSPEL optimization Eq. (1) consists of the squared Frobenius norm
term, the graph-guided-fused-lasso regularization term (Chen et al., 2012)
and the lasso regularization term (Tibshirani, 1996). IfR(i)

j,k of the graph-
guided-fused-lasso regularization term is zero, the equation becomes
solely dependant on the lasso regularization term. Table 1 summarizes
the behavior of β(i)

j and β(i)
k in GOSPEL optimization. The table shows

that GOSPEL estimates all the relevant predictor networks to the response
network, and also eliminates irrelevant predictor networks to the response
network. For more detail on the behavior of the regression coefficients, see
section 1 in the supplement. The sparsity of the elements of β(i) helps to
facilitate the interpretation of the computation results. By extension, the
interpretation of the network structure of given networks is also facilitated.
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Finally, we construct a NoN model utilizing the obtained regression
coefficients

{
β̂
(i)
j

}p
i,j=1

. Let E ⊆ Γ(p) × Γ(p) be an edge set for a

NoN model, where Γ = {1, . . . , p} is a node set. We employ the edge set
estimation defined by Meinshausen and Bühlmann (2006):

E =
{

(i, j)
∣∣∣ β̂(i)

j 6= 0 ∨ β̂
(j)
i 6= 0

}
,

where (i, j) indicates the pair of the i-th and the j-th nodes. Based on the
graphical modelG = (Γ, E), the NoN model is constructed as the output
of GOSPEL.

2.3 Computation of GOSPEL

To solve the GOSPEL optimization problem, Eq. (1), we first vectorize all
the kernel matrices. This produces an n2-dimensional vector associated
with the response network, and n2-dimensional vectors corresponding to
p − 1 predictor networks. This form is the same problem setting of the
graph guided generalized fused lasso (Chen et al., 2012), G3FL, with
n2 samples and p features. Therefore, we employ G3FL to solve our
optimization problem.

Regularization parameters λ
(i)
1 , λ

(i)
2 , threshold τ (i) and kernel

parameter γ(i) are decided by the Bayesian Optimization (Mockus, 2012).
We apply the Bayesian Information Criterion (BIC) (Schwarz, 1978) as an
acquisition function of the Bayesian Optimization. The BIC score for the
case where the response is the i-th network graph is defined as

BIC(i) = −2L̂L
(i)

+ d̂f
(i) × log(n2),

where L̂L
(i)

is the log-likelihood function:

L̂L
(i)

=
n2

2

(
log
(2π

n2
‖K̃(i)−

p∑
j=1

β̂
(i)
j K̃(j)‖2F

)
+ 1

)
,

and d̂f
(i)

is the degree of freedom of the fused lasso (Tibshirani et al.,
2005):

d̂f
(i)

= p− ]
{
β̂
(i)
j = 0

}
− ]
{
β̂
(i)
j − β̂

(i)
k = 0

∣∣∣ j < k, β̂
(i)
j , β̂

(i)
k 6= 0

}
.

In the Bayesian Optimization, we select the set of parameter values which
minimizes the BIC score.

3 Results

3.1 Simulations

We generate synthetic data and evaluate the performance of GOSPEL in
order to gain insight into feature selection in the regression problem for
network graph data. As synthetic data, we prepare three representative
complex network models which have different structures: random
networks (Erdös and Rényi, 1959), scale-free networks (Barabási and
Albert, 1999) and small-world networks (Watts and Strogatz, 1998). For
each network model, 30 predictor networks are prepared so that the first
15 predictors have the following non-linear relationships:

A
(j)
k,l =


sin
(
A

(j−5)
k,l

)
j = 6, . . . , 10 and k 6= l,

exp
{
−2.5A

(j−10)
k,l

}
j = 11, . . . , 15 and k 6= l,

0 j = 1, . . . , 30 and k = l.

Using the 15 predictors, we generate the following two signal types of
response networks with signal-to-noise ratio equal to 1.

• Additive type:A(i) =
15∑
j=1

A(j) + ε(i),

• Non-additive type:A(i) =

5∑
j=1

A(j) +

10∑
j=6

A(j) ◦A(j+5) + ε(i),

where ◦ indicates the element-wise product.
We run the simulations 100 times for each combination of the network

model and the signal type, varying the number of vertices as n =

{500, 1000, 2000}. We compare GOSPEL to HSIC Lasso (Yamada et al.,
2014), one of the feature selection methods by the feature-wise kernelized
lasso. We note that HSIC Lasso is not designed for network graph data and
cannot be directly applied. In these simulations, HSIC lasso is applied to
the centered and normalized kernel matrices as follows:

min
α
‖K̃(i)−

p∑
j=1

α
(i)
j K̃

(j)‖2F + λ

p∑
j=1

|α(i)
j |, (2)

where
{
α
(i)
j

∣∣∣ i, j = 1, . . . , p, α
(i)
i = 0

}
.

To assess each method’s ability to obtain true fractions of predictors
related with the response, we compare true predictors to the predictors with
non-zero coefficients estimated by GOSPEL and HSIC Lasso. The results
were analyzed for precision, recall and F-measure. Table 2 shows the F-
measures calculated for the 18 different settings with varying sample size
and network types. Regarding the precision and the recall of the simulation
results, see Tables 1 and 2 in the supplement, respectively. The results
highlight the efficacy of the graph-guided fused-lasso regularization.

In the cases of random networks, GOSPEL’s estimation performance
remains high regardless of the sample size or the signal type. This
result may come from the fact that the random network is the simplest
network of the three. Compared with the random network, the scale-free
and small-world networks are difficult to estimate. Since the scale-free
and small-world networks have distinctive structures, all the predictor
networks are similar to each other within their group. In the case of the
scale-free network, when the signal type is additive, the performance of
GOSPEL becomes better as n grows. On the other hand, when the signal
type is non-additive, GOSPEL and the variant of HSIC Lasso perform
almost at the same level. The reason for this is that most elements of
the response network take similar values due to the element-wise product
operationA(j)

k,l ◦A
(j+5)
k,l . Since the operation tends to break the structure

of the response network in spite of the predictor networks keeping their
structures, estimation becomes excessively difficult. Interestingly, the
performance of the non-additive cases is better than that of the additive
cases in the simulations of small-world networks. In the non-additive cases,
the operation of the element-wise product may work to emphasize the
structure of the response network, and this may improve performance here
while leading to opposite results in the scale-free cases.

Our simulation results demonstrate that GOSPEL is able to recover the
true network structure from given network graph data, and outperforms
HSIC Lasso in terms of precision, recall and F-measure in the different
settings with varying sample size and network types.

3.2 Real data

ASD is a complex neurodevelopmental disorder driven by a multitude of
genetic variants across the genome that appear as a range of developmental
and functional perturbations, often in specific tissues and cell types
(Vorstman et al., 2017). To construct human brain region-specific networks
associated with the ASD risk genes, we adopt a manner of data-
construction introduced in recent studies (Krishnan et al., 2016; Duda
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Table 2. The F-measure of the simulations. (·) denotes the standard deviation of the F-measure.
The predictor networks are generated according to the representative three network models. n
indicates the number of vertices, and the response network is generated based on the signal type.
‘HSIC Lasso’ does not mean the original one but the variant one.

Network Model
Random Scale-free Small-world

n Signal type GOSPEL HSIC Lasso GOSPEL HSIC Lasso GOSPEL HSIC Lasso
500 Additive 0.987 0.737 0.883 0.516 0.893 0.789

(0.017) (0.069) (0.085) (0.024) (0.078) (0.039)
Non-additive 0.986 0.589 0.674 0.639 0.927 0.688

(0.024) (0.034) (0.015) (0.023) (0.047) (0.045)
1000 Additive 0.985 0.746 0.894 0.541 0.973 0.703

(0.019) (0.058) (0.145) (0.032) (0.022) (0.061)
Non-additive 0.988 0.588 0.678 0.604 0.988 0.540

(0.029) (0.038) (0.020) (0.028) (0.024) (0.023)
2000 Additive 0.985 0.787 0.932 0.510 0.900 0.800

(0.018) (0.054) (0.135) (0.016) (0.057) (0.006)
Non-additive 0.995 0.592 0.688 0.635 0.962 0.721

(0.014) (0.038) (0.036) (0.015) (0.031) (0.056)

Table 3. The mean value of enrichment score
and the community ID for each subregion.
Enrich.score and Com.ID indicate the mean value
of enrichment score and the community ID,
respectively.

Subregion Enrich.score Com.ID
Temporal lobe 10.322 1

Hippocampus 10.320 1

Hypophysis 10.261 1

Caudate nucleus 9.890 1

Thalamus 9.386 1

Amygdala 9.259 1

Substantia nigra 7.967 1

Subthalamic nucleus 7.955 1

Frontal lobe 8.130 2

Occipital lobe 7.212 2

Caudate putamen 5.476 2

Cerebellar cortex 5.402 3

Dentate gyrus 3.879 3

Hypothalamus 3.485 3

Nucleus accumbens 3.290 3

Pons 2.849 3

Parietal lobe 1.318 3

et al., 2018). We use 17 human brain region-specific functional interaction
networks (Greene et al., 2015) and 1030 known risk genes with strong
genetic evidence of ASD association annotated in the Human Gene
Mutation Database (HGMD) Professional 2017.1 (http://hgmd.cf.
ac.uk/) to evaluate our proposed method. The purpose of our analysis is
to investigate how the ASD risk genes may be coupled in each of the brain
region-specific networks and what inter-connectivity structure between
these networks can be formed.

The 17 human brain regions are taken from the whole brain: the
frontal lobe (the cerebral cortex), the parietal lobe (the cerebral cortex), the
temporal lobe (the cerebral cortex), the occipital lobe (the cerebral cortex),
the subthalamic nucleus (the basal ganglia), the caudate nucleus (the basal
ganglia), the caudate putamen (the basal ganglia), the amygdala (the limbic
system), the nucleus accumbens (the limbic system), the hippocampus (the
limbic system), the dentate gyrus (the limbic system), the hypothalamus
(the diencephalon), the thalamus (the diencephalon), the hypophysis (the
diencephalon), the substantia nigra (the brain stem), the pons (the brain
stem), and the cerebellar cortex (the cerebellum).

These 17 human brain region-specific functional interaction networks
are built by integrating thousands of gene expressions, protein-protein
interactions, and regulatory-sequence data sets using a regularized
Bayesian integration approach (Greene et al., 2015). Once built, they
are used as reference networks in our analysis. This network information
can be downloaded from the Genome-scale Integrated Analysis of
gene Networks in Tissues (GIANT) web site (http://giant.
princeton.edu/).

We first calculate local enrichment scores for the ASD risk genes across
all nodes (25825 genes) in the network by using the Spatial Analysis
of Functional Enrichment (SAFE) algorithm (Cerebral, 2016), which
measures the proximity of the ASD risk genes in the neighborhood of
each node. Next, in order to reconstruct the 17 human brain region-
specific networks associated with the ASD risk genes, 4756 genes with
highly significant local enrichment scores for the ASD risk genes (p-value
< 0.001) in any of the 17 networks are selected as the nodes, and the
interactions between these genes are given. We apply GOSPEL to the
4756 × 4756 adjacency matrices of the 17 brain-specific regions and
construct the NoN model related to the ASD risk genes.

Figure. 2 shows a NoN model related to the ASD risk genes. It
illustrates the relation between the functional networks of the subregions.
This result suggests the existence of the topological structure of the
inter-correlation between the functional interaction networks associated

with ASD. For the interpretation of the resulting model, we perform a
community extraction method based on random walks (Pons and Latapy,
2006). Table 3 indicates the mean value of enrichment score and the
community ID for each subregion, and shows that the resulting model
is divided into 3 communities. The first group is characterized by the
amygdala and the thalamus. The amygdala has the largest number of
the thickest edges and the thalamus is the hub in this group. The second
group is small, however, it has the interesting feature that two out of the
three subregions belong to cerebral cortex. The third group consists of the
subregions which have low enrichment sores, and thus we consider this
group as not relating to ASD and ignore it here.

Table 4 shows the consistency between our resulting model and the
abnormal functional connections in Table 1 of Yahata et al. (2016), and
samples of the evidence associated with each subregion and ASD. See
Table 3 in the supplement for further information. For the classification of
ASD and typically developed (TD) persons, Yahata et al. (2016) identified
the 16 abnormal functional connections using fMRI. We investigate the
consistency of the subregions studied in Yahata et al. (2016) and those
in our experiment. There are five connections corresponding to our
experiment: the caudate nucleus and the amygdala, the frontal lobe and
the occipital lobe, the temporal lobe and the frontal lobe, the hippocampus
and the frontal lobe, and the frontal lobe and the parietal lobe. As shown
in Table 4, four out of the five connections are shared.

In the first group, the amygdala has the largest number of the thickest
edges, and thus the amygdala is suggested to be the center of functional
abnormality in this group, whereas the thalamus acts as the hub. Table 4
supports this suggestion; the amygdala is not only included in the abnormal
functional connection in Yahata et al. (2016) but is also well studied as a
subregion strongly related to ASD. As stated, the hub of the first group is
the thalamus, and this result is analogous to the medical knowledge that
the thalamus is an information relay station (hub) between the subcortical
areas and the cerebral cortex (Gazzaniga et al., 2009). In addition, some
links in the first group, such as the hippocampus and the temporal lobe,
and the caudate nucleus and the thalamus, are physically close even though
we did not consider locational information in this experiment.

The subregion which seems to be representative of the second group
is the frontal lobe. As shown in Table 4, the frontal lobe is a well-studied
subregion in ASD research. In addition, four out of the five abnormal
connections corresponding to our experiment shown above include the
frontal lobe. It is remarkable that the resulting model shares three out of
the four abnormal connections.
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Cerebral cortex

Limbic system

Basal ganglia
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Cerebellum
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NoN model related to the ASD risk genes

Fig. 2. NoN model related to the ASD risk genes. The size of the node expresses the mean value of the enrichment score associated with the brain subregion (node). The smallest, middle
and the largest sized nodes express below the 70-th percentile, between the 70-th and the 85-th percentile and above the 85-th percentile of the enrichment score, respectively. The color
of the node indicates the anatomical classification. The thickness of the edge denotes the strength of the relation between two brain subregions. The thinnest, middle and the thickest egdes
express the 70-th to the 80-th percentile, the 80-th to the 90-th percentile and above the 90-th percentile of the whole coefficients obtained by performing GOSPEL, respectively. For details
on edge thickness (edge weight), see Table 4 in the supplement.

Table 4. Consistency between our resulting model and the abnormal functional connections in Table 1 of Yahata et al. (2016), and samples of the evidence for a
single brain subregion associated with ASD. ‘©’ and ‘4’ denote a direct and a proximate connection, respectively.

Com.ID Subregion Consistency Samples of the evidence for a single brain subregion
1 Temporal lobe © Zilbovicius et al. (2000); Lee et al. (2007); Neeley et al. (2007).

Hippocampus 4 Schumann et al. (2004); Endo et al. (2007); Conturo et al. (2008).
Hypophysis Iwata et al. (2011); Ćurin et al. (2003).
Caudate nucleus © Silk et al. (2006); Turner et al. (2006); Voelbel et al. (2006); Langen et al. (2007).
Thalamus Tsatsanis et al. (2003); Hardan et al. (2006); Hardanet al. (2008); Tamura et al. (2010).
Amygdala © Schumann et al. (2004); Schumann and Amaral (2006); Endo et al. (2007); Conturo et al. (2008);

Schumann et al. (2009); Kleinhans et al. (2010); Nordahl et al. (2012); Kliemann et al. (2012).
Substantia nigra Caria et al. (2011).
Subthalamic nucleus Rojas et al. (2014).

2 Frontal lobe © © 4 Hardan et al. (2004); Schmitz et al. (2007); Scott-Van Zeeland et al. (2010); Jeong et al. (2011).
Occipital lobe © Hardanet al. (2009).
Caudate putamen Kumra et al. (2000).

The analysis with a real example thus shows that GOSPEL is able
to identify the ASD-associated interconnectivity structure between given
functional interaction networks.

4 Discussion
In order to improve understanding of brain-specific complex systems
related to a disease and to break through the limitation of the network-
based analyses which estimate functional single networks, we proposed a
"Network of Networks" (NoN) approach inspired by structural equation
models. In this paper, we sought to estimate the topological structure of
the correlations between functional interaction networks of human brain
region-specific networks associated with ASD risk genes.

To the best of our knowledge, the sparse regression for network graphs
in GOSPEL is the first feature selection method where the features are not
vectors but instead are network graphs. In order to construct a NoN model,
GOSPEL estimates all the predictor networks relevant to the response
network even when they have non-linear correlations. All the parameters

in GOSPEL are automatically optimized by the Bayesian Optimization
based on the BIC. Though there is room for improvement in that GOSPEL
can not reflect the information of the vertices (nodes), the outputted NoN
model is interpretable by combining the information on the vertices and
the result of community extraction, as shown in Section 3.2.

We demonstrated the effectiveness of GOSPEL in simulations, and
tackled the exploration of the NoN model of human brain region-specific
networks related to ASD. The result was the successful production of a
NoN model which shows the subregions of the brain which relate to ASD
and how they functionally relate to each other. This model is consistent
with previous ASD research. Although the accuracy of our model is yet
untested, we hope that it will provide useful insight for ASD researchers,
and that further research will prove its accuracy.

Finally, while this research was limited to the study of subregions of the
brain, we believe that GOSPEL will prove useful to other studies seeking
to find relationships between illness and bodily organs or regions, therefore
it may be of great use to those studying the systems of biology.
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Ćurin, J.M., et al (2003) Lower cortisol and higher ACTH levels in individuals with
autism, Journal of autism and developmental disorders, Vol.33, No.4 443-448.

Duda, M., et al (2018) Brain-specific functional relationship networks inform autism
spectrum disorder gene prediction, Translational psychiatry, Vol.8, No.1 56.

Endo, T., et al (2007) Altered chemical metabolites in the amygdala-hippocampus
region contribute to autistic symptoms of autism spectrum disorders, Biological
Psychiatry, Vol.62, No.9 1030-1037.

Erdös, P. and Rényi, A. (1959) On random graphs, I, Publicationes Mathematicae
(Debrecen), Vol.6, 290-297.

Gandal, M.J., et al (2018) Shared molecular neuropathology across major psychiatric
disorders parallels polygenic overlap, Science, Vol.359, No.6376 693-697.

Gao, J., et al (2012) Networks formed from interdependent networks, Nature physics,
Vol.8, No.1 40-48.

Gazzaniga, M., et al (2009) Cognitive neuroscience: the biology of the mind, MIT
press.

Gratten, J., et al (2014) Large-scale genomics unveils the genetic architecture of
psychiatric disorders, Nature neuroscience, Vol.17, No.6, 782.

Greene, C.S., et al (2015) Understanding multicellular function and disease with
human tissue-specific networks, Nature genetics, Vol.47, No.6 569-576.

Hardan, A.Y., et al (2004) Increased frontal cortical folding in autism: a preliminary
MRI study, Psychiatry Research: Neuroimaging, Vol.131, No.3 263-268.

Hardan, A.Y., et al (2006) Abnormal brain size effect on the thalamus in autism,
Psychiatry Research: Neuroimaging, Vol.147, No.2 145-151.

Hardan, A.Y., et al (2008) An MRI and proton spectroscopy study of the thalamus in
children with autism, sychiatry Research: Neuroimaging, Vol.163, No.2 97-105.

Hardan, A.Y., et al (2009) A preliminary longitudinal magnetic resonance imaging
study of brain volume and cortical thickness in autism, Biological psychiatry,
Vol.66, No.4 320-326.

Iwata, K., et al (2011) Investigation of the serum levels of anterior pituitary hormones
in male children with autism, Molecular autism, Vol.2, No.1 16.

Jeong, J-W., et al (2011) Sharp curvature of frontal lobe white matter pathways
in children with autism spectrum disorders: tract-based morphometry analysis,
American Journal of Neuroradiology, Vol.32, No.9 1600-1606.

Kliemann, D., et al (2010) The role of the amygdala in atypical gaze on emotional
faces in autism spectrum disorders, Journal of Neuroscience, Vol.32, No.28 9469-
9476.

Kleinhans, N.M., et al (2010) Association between amygdala response to emotional
faces and social anxiety in autism spectrum disorders, Neuropsychologia, Vol.48,
No.12 3665-3670.

Krishnan, A., et al (2016) Genome-wide prediction and functional characterization
of the genetic basis of autism spectrum disorder, Nature neuroscience, Vol.19,
No.11 1454.

Kumra, S., et al (2000) Childhood-onset psychotic disorders: magnetic resonance
imaging of volumetric differences in brain structure, American Journal of
Psychiatry, Vol.157, No.9 1467-1474.

Lafferty, R.I. and Kondor, J. (2002) Diffusion kernels on graphs and other discrete
structures, Machine Learning: Proceedings of the 19th International Conference,

315-322.
Langen, M., et al (2007) Caudate nucleus is enlarged in high-functioning medication-

naive subjects with autism, Biological psychiatry, Vol.62, No.3 262-266.
Lee, J.E., et al (2007) Diffusion tensor imaging of white matter in the superior

temporal gyrus and temporal stem in autism, Neuroscience letters, Vol.424, No.2
127-132.

Meinshausen, N. and Bühlmann, P. (2006) High-dimensional graphs and variable
selection with the lasso, The annals of statistics, 1436-1462.

Mockus, J. (2012) Bayesian approach to global optimization: theory and applications,
Springer Science & Business Media.

Neeley, E.S., et al (2007) Quantitative temporal lobe differences: autism
distinguished from controls using classification and regression tree analysis, Brain
and Development, Vol.29, No.7 389-399.

Nordahl, C.W., et al (2012) Increased rate of amygdala growth in children aged 2 to
4 years with autism spectrum disorders: a longitudinal study, Archives of general
psychiatry, Vol.69, No.1 53-61.

Parikshak, N.N., et al (2013) Integrative functional genomic analyses implicate
specific molecular pathways and circuits in autism, Cell, Vol.155, No.5 1008-1021.

Pons, P. and Latapy, M. (2006) Computing communities in large networks using
random walks, J. Graph Algorithms Appl, Vol.10, No.2 191-218.

Rojas, D.C., et al (2014) Decreased left perisylvian GABA concentration in children
with autism and unaffected siblings, Neuroimage, Vol.86, 28-34.

Schmitz, N., et al (2007) Frontal anatomy and reaction time in Autism, Neuroscience
Letters, Vol.412, No.1 12-17.

Schumann, C.M., et al (2004) The amygdala is enlarged in children but not
adolescents with autism; the hippocampus is enlarged at all ages, Journal of
neuroscience, Vol.24, No.28 6392-6401.

Schumann, C.M. and Amaral, D.G. (2006) Stereological analysis of amygdala neuron
number in autism, Journal of Neuroscience, Vol.26, No.29 7674-7679.

Schumann, C.M., et al (2009) Amygdala enlargement in toddlers with autism related
to severity of social and communication impairments, Journal of Neuroscience,
Vol.66, No.10 942-949.

Schwarz, G. (1978) Estimating the dimension of a model, The annals of statistics,
Vol.6, No.2 461-464.

Sharma, A.K. (2005) Text book of correlations and regression, TDiscovery Publishing
House.

Silk, T.J., et al (2006) Visuospatial processing and the function of prefrontal-parietal
networks in autism spectrum disorders: a functional MRI study, The American
journal of psychiatry, Vol.163, No.8 1440-1443.

Scott-Van Zeeland, A.A., et al (2010) Altered functional connectivity in frontal lobe
circuits is associated with variation in the autism risk gene CNTNAP2, Science
translational medicine, Vol.2, No.56 56ra80-56ra80.

Subramanian, K., et al. (20017) Basal ganglia and autism–a translational perspective,
Autism Research.

Tamura, R., et al (2010) Reduced thalamic volume observed across different
subgroups of autism spectrum disorders, Psychiatry Research: Neuroimaging,
Vol.184, No.3 186-188.

Tibshirani, R. (1996) Regression shrinkage and selection via the lasso, Journal of the
Royal Statistical Society. Series B (Methodological), 16 267-288.

Tibshirani, R., et al (2005) Sparsity and smoothness via the fused lasso, Journal
of the Royal Statistical Society: Series B (Statistical Methodology, Vol.67, No.1
91-108.

Tollefsbol, T. (2017) Handbook of epigenetics, Second Edition: The New Molecular
and Medical Genetics, London: Elsevier Inc.

Tsatsanis, K.D., et al (2003) Reduced thalamic volume in high-functioning
individuals with autism, Biological psychiatry, Vol.53, No.2 121-129.

Turner, K.C., et al (2006) Atypically diffuse functional connectivity between caudate
nuclei and cerebral cortex in autism, Behavioral and Brain Functions, Vol.2, No.1
34.

Voelbel, G.T., et al (2006) Caudate Nucleus Volume and Cognitive Performance:
Are they related in Childhood Psychopathology?, Biol Psychiatry, Vol.60, No.9
942-950.

Vorstman, J.A.S., et al (2017) Autism genetics: opportunities and challenges for
clinical translation, Nature Reviews Genetics, Vol.18, No.6 362-376.

Watts, D.J. and Strogatz, S.H. (1998) Collective dynamics of âŁ˜small-
worldâŁ™networks, nature, Vol.393, No.6684 440-442.

Yahata, N., et al (2016) A small number of abnormal brain connections predicts adult
autism spectrum disorder, Nature communications, Vol.7, 11254.

Yamada, M., et al (2014) High-dimensional feature selection by feature-wise
kernelized lasso, Neural computation, Vol.26, No.1 185-207.

Zilbovicius, Mô., et al (2000) Temporal lobe dysfunction in childhood autism: a PET
study, American Journal of Psychiatry, Vol.157, No.12 1988-1993.

.CC-BY-ND 4.0 International licensethe author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) isthis version posted June 18, 2018. ; https://doi.org/10.1101/349969doi: bioRxiv preprint 

https://doi.org/10.1101/349969
http://creativecommons.org/licenses/by-nd/4.0/

