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ABSTRACT 

The associations between diseases/traits and copy number variants (CNVs) have not been 

systematically investigated in genome-wide association studies (GWASs), primarily due to a lack 

of robust and accurate tools for CNV genotyping.  Herein, we propose a novel ensemble learning 

framework, ensembleCNV, to detect and genotype CNVs using single nucleotide polymorphism 

(SNP) array data.  EnsembleCNV a) identifies and eliminates batch effects at raw data level; b) 

assembles individual CNV calls into CNV regions (CNVRs) from multiple existing callers with 

complementary strengths by a heuristic algorithm; c) re-genotypes each CNVR with local 

likelihood model adjusted by global information across multiple CNVRs; d) refines CNVR 

boundaries by local correlation structure in copy number intensities; e) provides direct CNV 

genotyping accompanied with confidence score, directly accessible for downstream quality 

control and association analysis. Benchmarked on two large datasets, ensembleCNV 

outperformed competing methods and achieved a high call rate (93.3%) and reproducibility 

(98.6%), while concurrently achieving high sensitivity by capturing 85% of common CNVs 

documented in the 1000 Genomes Project.  Given this CNV call rate and accuracy, which are 

comparable to SNP genotyping, we suggest ensembleCNV holds significant promise for 

performing genome-wide CNV association studies and investigating how CNVs predispose to 

human diseases. 

Keywords: Copy number variation (CNV), ensemble machine learning approach, CNV 

genotype, CNV boundary, reproducibility, batch effect  
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INTRODUCTION 

As known GWAS loci only account for a fraction of disease/trait heritability (i.e., “Missing 

heritability”) (1), assessment of other types of human genetic variation besides single nucleotide 

polymorphisms (SNPs) is warranted.  The human genome is rich in structural diversity, where 

copy number variants (CNV) are the most common form. CNVs are individually rare but 

collectively common across the human population (2). In fact, an estimated 8% of the general 

population carries a large (>500 kb) deletion or duplication occurring at an allele frequency of 

<0.05% (1,2). Moreover, CNVs affect transcription in mouse (3) and human (4), and contribute to 

a variety of different diseases (5).  However, methods to genotype CNVs, particularly at the 

population level, are still in their infancy, lagging substantially behind genotyping of SNPs (6,7). 

Furthermore, the landscape of CNVs in the human genome is not fully characterized, including 

accurate assessments of CNV boundaries in terms of probes targeting each specific CNV on the 

SNP arrays.  Taken together, although many CNV analysis software tools exist, the performance 

(sensitivity and accuracy) is sub-optimal, making CNV characterization significantly more 

challenging than SNP genotyping.  

In general, existing CNV calling methods based on SNP array data can be categorized into two 

types: (i) individual-wise analysis and (ii) joint analysis of multiple individuals (see review by 

Pinto et al. (8)). Among individual-wise analysis, popular methods include hidden-Markov model 

(HMM)-based methods, such as PennCNV (9) and QuantiSNP (10), and segmentation-based 

methods, such as CBS (11) and fused-lasso methods (12,13).  These methods utilize various types 

of information derived from SNP (or CNV) probes such as total intensity (i.e. Log R Ratio; LRR) 

and allele fraction (i.e., B Allele Frequency; BAF) from Illumina platforms as well as external 

information, such as population frequencies of the B allele at each locus (9) and linkage-

disequilibrium (LD) structure between adjacent loci (14). Generally, these methods are good at 

detecting rare, large CNVs spanning at least ten probes on a SNP array. On the other hand, they 
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rely on the assumption that allele intensities are properly normalized such that they are 

comparable across probes throughout the genome, and are thus less tolerant to spatial noise (e.g. 

genomic wave related to GC content) and heterogeneity across different loci (15).  For example, 

at copy number polymorphism (CNP) loci with a high frequency of CNV alleles, the baseline 

LRR corresponding to a normal copy number may be distorted during normalization, and as a 

result, deviates from 0, making individual-based analysis error-prone. Moreover, from these 

methods, the individual-level CNV calls are frequently not aligned across individuals, adding 

additional difficulties in comparing CNVs in the downstream analysis. 

Joint analysis of multiple individuals, such as iPattern (8), Piet (16), and msscan (17), to name a 

few, takes advantage of consensus CNV signals across individuals, which are particularly useful 

for CNP detection. They often align CNVs called across individuals into CNV regions (CNVRs), 

making the downstream analysis more accessible than individual-based methods. However, the 

boundaries of such constructed CNVRs are not carefully recalibrated. Moreover, they mainly 

focus on signal patterns in total intensity and do not fully utilize other CNV-related information 

(e.g., BAF), and as a consequence, are less sensitive to detect rare CNVs than individual-based 

methods. Lastly, both individual-wise and joint analyses usually report CNV calls only, and do 

not perform direct genotyping (i.e., explicitly differentiating between normal copy number and 

missing genotype). This fact, we believe, creates additional barriers for quality control and 

downstream association analyses. 

In sum, many CNV calling methods have been proposed, each with various strengths and 

weaknesses. Thus, it is logical to aggregate multiple methods using an ensemble machine 

learning framework with the aim of achieving superior statistical performance. Herein, we 

propose a novel CNV detection and genotyping framework, ensembleCNV, which is primarily 

implemented in two phases: (1) the detection phase: initially locating CNVRs by assembling 

CNV calls from multiple methods with complementary advantages; (2) the re-genotyping phase: 
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refining the initial calls with local models tuned for each CNVR. The ensembleCNV framework 

also includes steps to identify and eliminate batch effect at raw data level, which are essential to 

generate high-quality CNV signals. By leveraging large empirical datasets, we compare and 

intensively evaluated the performance of ensembleCNV with existing methods. 

 

MATERIAL AND METHODS 

Food Allergy (FA) dataset 

In the genome-wide association study (GWAS) of food allergy (FA) in a US cohort of children 

with/without FA and their biological parents (18), a total of 2,790 blood DNA samples, including 

839 nuclear families and 100 technically duplicated pairs, were genotyped on the Illumina 

HumanOmni1-Quad BeadChip with 1,048,713 SNP probes and 91,706 CNV probes. The mean 

and median of distances between neighboring probes are 2.63kb and 1kb (Supplementary Table 

S1). After quality control (QC), a total of 2,765 samples remained, including 835 nuclear families 

and 95 technically duplicated pairs (see Quality Control section for details). The majority (85.5%) 

of the samples are of European ancestry (Supplementary Table S1). 

STARNET dataset 

In the Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task study (STARNET) 

(19), a total of 874 blood DNA samples collected from coronary artery disease (CAD) patients, 

including 12 technically duplicated pairs, were genotyped on the Illumina 

HumanOmniExpressExome-8 BeadChip with 951,117 SNP probes. The mean and median of 

distance between neighboring markers are 3.23kb and 1kb (Supplementary Table S1). After 

quality control (see Quality Control section for details), a total of 834 samples remained, 

including 12 technically duplicated pairs (Supplementary Table S1). 
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1000 Genomes Project (KGP) CNV dataset 

We downloaded the KGP structural variant (SV) dataset (in GRCh37 coordinates) in variant call 

format (VCF), which consists of 68,818 SVs detected by whole-genome sequencing (WGS) in 

2,504 individuals from different genetic populations (20).  In this study, we focused on the subset 

(CNV dataset) of 40,975 bi-allelic deletions (DELs), 6,025 bi-allelic duplications (DUPs) and 

2,929 multi-allelic copy number variants (CNVs) (Supplementary Table S2), because only these 

types of SVs can be detected by SNP array platforms. To compare with the CNVs detected in the 

FA and STARNET SNP array data, we further defined the subset of detectable CNVs spanning at 

least 5 probes of the SNP arrays used in the two studies, resulting in a total of 6,456 and 3,571 

detectable CNVs for the FA and STARNET datasets, respectively (Supplementary Table S2).  

Data processing and quality control 

We processed the raw data (i.e., .idat files) with Genome Studio 2011.1 (Illumina, CA) following 

similar protocols as described (21). For data processing with Genome Studio, an important step is 

to update the cluster centers corresponding to the so-called AA, AB and BB genotypes for each 

SNP probe (CNV probe has only one cluster), where A and B refers to the two alleles for the SNP 

probe. This was done by re-clustering on the data points from samples with high call rate (e.g., 

>95%). This step is necessary since the cluster centers (in .egt file) accompanying the SNP array, 

or which are built from other studies, do not always align with the real cluster centers in the 

current study. In the FA and STARNET datasets, the sample sizes are large enough to build 

customized clusters. For the updated cluster centers of each probe, we updated genotype calls and 

derived quantities (including LRR and BAF used for CNV analysis) and exported them to final 

reports. 

We performed two types of sample-level quality control (QC). Firstly, as routine QC for a GWAS 

based on SNP genotype data, we excluded samples with (1) mismatched genders, (2) excessive 
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missing genotype rates, (3) excessive heterozygosity in autosomes (an indication of potential 

sample contamination) and (4) outliers in principle component analysis (PCA). We retained 

technical duplicates in this study to evaluate CNV methods (see below). It should be noted that 

we did not perform QC at the probe-level (as in a typical QC for GWAS), because SNP probes 

with high missing genotype rates and deviation from Hardy-Weinberg equilibrium may be 

associated with CNVs. At these SNP probes, data points corresponding to CNVs usually deviate 

from empirical genotype clusters and such deviation is especially magnificent for those with CN 

= 0 (i.e., 0 copies of the allele) (13,14). Secondly, we performed additional sample-level QC to 

remove samples with abnormal CNV signals and alleviate batch effects. Please refer to 

ensembleCNV step (b) (see below) and Supplementary Results for details. 

ensembleCNV workflow 

The overall workflow of ensembleCNV is summarized in Figure 1. This involves an initial 

localization of CNVRs by assembling CNV calls from multiple methods with complementary 

advantages, and then a refining of the initial calls using local models tuned for each CNVR. The 

workflow consists of two major phases implemented in five steps. In the initial detection phase, 

we processed the raw image data with Genome Studio (Illumina, CA) and extracted genotype and 

CNV signals, particularly log R ratio (LRR) and B allele frequency (BAF) from the final report. 

Next, we applied three popular CNV detection methods, PennCNV (9), QuantiSNP (10), and 

iPattern (8), to create the initial CNV call sets, respectively (step (a)). In the raw data and initial 

call sets, batch effects may exist and affect the downstream analysis. For this reason, we applied 

PCA on the raw LRR data and sample-level summary statistics of CNV results from the 

individual callers to identify batches. When batches existed, we re-processed each batch along the 

pipeline for the initial detection phase (step (b)). In the following ensemble and re-genotyping 

phase, we aimed to address three sub-tasks: First, we aligned the CNVs called from the individual 

methods in all subjects and merged overlapping CNVs to construct initial CNVRs using a 
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heuristic algorithm (step (c)). Second, we trained a local likelihood model on both LRR and BAF 

CNV signals at each CNVR with the “global” information from frequent CNVRs incorporated 

(see Supplementary Methods); and assigned a copy number (CN) genotype to each subject, 

accompanied by a genotyping quality (GQ) score to quantify the confidence level (step (d)). 

Third, we refined the boundaries of CNVRs using the correlation structure of the LRR values of 

the probes around the CNVRs (step (e)). The whole pipeline results in CN genotype data of 

refined CNVRs across each subject. Details of the implementations are described as follows. 

(a) Initial CNV calls by selected methods.  We chose PennCNV (9), QuantiSNP (10), and 

iPattern (8) to make the initial CNV calls using final report files generated by Genome Studio 

2011.1 (Illumina, CA). These methods use different information to call CNVs from different 

perspectives. Both PennCNV and QuantiSNP are hidden Markov Model (HMM)-based 

approaches, which take LRR (reflecting total copy number) and BAF (reflecting allelic 

proportion/balance) jointly as observed data while modeling copy number (CN) status in the 

hidden layer. PennCNV further accounts for population frequency of the B allele, which can be 

estimated by the data. They make CNV calls on an individual-wise basis. iPattern takes 

normalized intensities from fluorescent measurements of the two alleles of each SNP as input, 

calculates total intensities for each SNP, and normalizes the total intensities (reflecting total CN) 

across individuals. It then screens the genome with sliding windows, within which a Gaussian 

mixture model (GMM) is fitted to the normalized total intensities across individuals and CNV 

calls are made based on the fitted model. While PennCNV and QuantiSNP are good at calling 

large rare CNVs in a more sensitive way, iPattern performs better in calling more frequent CNVs 

across individuals. We took the complementary advantages of these methods and combined their 

discovery sets to boost the sensitivity of CNV detection for the initial call set.  

(b) Sample-level QC for batch effects.  We used two orthogonal signals to identify batch effects 

in CNV calling: (i) Along with CNV calls, the three detection methods can generate per-sample 
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summary statistics, such as standard deviations (SD) of LRR, SD of BAF, wave factor in LRR 

(15), BAF drift (9), and the number of CNVs detected, reflecting the quality of CNV calls at the 

sample level.  Since these quantities are highly correlated among themselves and between 

methods (Supplementary Figure S1), we used PCA to summarize their information. By 

examining the first two or three PCs, we can identify sample outliers or batches that deviate from 

the majority of the normally behaved samples (Supplementary Figure S2). (ii) Batch effects may 

also be orthogonally reflected in the first two or three PCs from the LRR data before any CNV 

analysis is performed. We randomly selected 100,000 probes and applied PCA to the LRR values 

at these probes across individuals and visualized the first few PCs in scatter plots. Batches can be 

identified by visual check if they exist (Supplementary Figure S2). The batches identified by 

these two independent approaches should be consistent with each other. While isolated outliers 

were excluded from downstream analysis, if batch effects were identified, we re-normalized the 

samples within each outstanding batch with Genome Studio (see data processing section), re-did 

the CNV calling in step (a), and combined the re-called CNVs with the remaining call set of good 

quality (Figure 1). Please refer to Supplementary Results and Figures S1-3 for details regarding 

the identification and removal of batch effects in the FA dataset. 

(c) Construction of CNVRs.  We defined CNVR as the region in which CNVs called from 

different individuals by different callers substantially overlap with each other. CNV events 

belonging to the same CNVR are comparable across individuals and thereby the estimation of 

population frequency can be made. For copy number polymorphisms (CNPs) frequently observed 

in populations and inherited CNVs segregating within pedigrees, their boundaries would be 

aligned precisely across individuals. For recurrent CNVs (but not CNPs), their affected genomic 

regions would largely overlap, albeit if not exactly aligned.  

We modeled the CNVR construction problem as identification of cliques (a sub-network in which 

every pair of nodes is connected) in a network context (Supplementary Figure S4), where (i) 
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CNVs detected for each individual from a method are considered as nodes; (ii) two nodes are 

connected when the reciprocal overlap between their corresponding CNV segments is greater 

than a pre-specified threshold (e.g. 30%); (iii) a clique corresponds to a CNVR in the sense that, 

for each CNV (node) belonging to the CNVR (clique), its average overlap with all the other 

CNVs of this CNVR is above a pre-specified threshold (e.g. 30%). The computational complexity 

for clique identification can be dramatically reduced in this special case, since the CNVs can be 

sorted by their genomic locations and the whole network can be partitioned by chromosome arms 

– CNVs from different arms never belong to the same CNVR. Correspondingly, the adjacent 

matrix representing the network model is banded along the diagonal (Supplementary Figure S4). 

Briefly, for CNVs in each chromosome arm, which were sorted by their genomic locations, we 

constructed CNVRs in a forward-screening and backward-pruning procedure. In the forward-

screening step, we initialized the first CNVR with the first CNV in the list and screened the 

remaining CNVs in their genomic order. For the current CNV under consideration, we compared 

it against all existing CNVRs. If its average overlap with all CNVs of a most overlapping CNVR 

was above the pre-specified threshold (see above definition (iii)), we assigned it to this CNVR; 

otherwise we created a new CNVR with it. The screening continued until all CNVs in the list 

were assigned to a CNVR. In the backward-pruning step, for each CNVR, we re-checked, for 

each CNV belonging to this CNVR, if its average overlap with all the other CNVs of this CNVR 

was above the pre-specified threshold. If a CNV did not meet this criterion, we removed it from 

this CNVR. This pruning procedure would continue until no more CNVs could be removed from 

the CNVR. The leftover CNVs would be assigned to other CNVRs whenever possible; otherwise, 

they would be assigned to newly created CNVRs. 

To define the boundary of each CNVR, we stacked all CNVs in a CNVR and defined the 

footprint carried by at least a pre-specified proportion of CNVs (e.g. 50%) as the initial 

boundaries of this CNVR (Supplementary Figure S4). We adopted this major-vote type of 
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strategy to enrich CNV signals within the CNVR and reduce the noise from surrounding probes. 

The initial boundaries were refined in an iterative way as shown in Figure 1 and step (e) below. 

(d) CNV re-genotyping.  The initial CNV calls within a CNVR may be mixed with false positives 

and false negatives from the initial call set. Moreover, the baseline LRR value corresponding to 

normal CN status may substantially deviate from 0, violating the essential model assumptions for 

individual-wise CNV callers (e.g., PennCNV and QuantiSNP) (Supplementary Figures S5A and 

S6). To address these issues, we re-genotyped CN status per individual at each CNVR by a 

locally fitted likelihood model, with information from other CNVRs borrowed for the 

initialization of model parameters (see Supplementary Methods). Both the LRR and BAF signals 

from SNP probes and the LRR signal from CNV probes within a particular CNVR were used for 

model fitting. With the additional signal from BAF, the original samples with non-identifiable 

CN status based on the LRR signal alone (e.g., iPattern) may be distinguishable in the expanded 

BAF-LRR 2-D space (Supplementary Figure S5B-C). 

For BAF signal, denote xij  (i =1,...,n; j =1,..., p)  as the observed BAF value for the i -th 

individual at the j -th SNP probe in the CNVR. We adopted the mixture model (9): 

pBAF (xi | zi ) = b(g;G(zi )−1, p B, j )
g=0

G(zi )−1

∑ φ(xij;µx,zi ,g
,σ x,zi ,g

)
j=1

p

∏  

where b(g;G(z)−1, p B )  and φ(x;µx,z,g,σ x,z,g )  are density functions for binomial and normal 

distributions respectively; zi  ( zi ∈ {0,1, 2,3} ) is CN; G(zi )  is the number of possible genotypes 

associated with the CN (e.g., G(zi = 3) = 4  corresponding to genotype AAA, AAB, ABB and 

BBB); p B  is the population B allele frequency (PFB), which can be retrieved from PennCNV 

analysis (9) in step (a). The parameters in the BAF model are estimated from a set of selected 

CNVRs (see Supplementary Methods). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2018. ; https://doi.org/10.1101/356667doi: bioRxiv preprint 

https://doi.org/10.1101/356667
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

12 

For LRR signal, denote the median value of all probes within the CNVR as yi  (i =1,...,n)  for the 

i -th individual. We adopted the commonly used Gaussian mixture model (GMM): 

pLRR (yi ) = π zi
pLRR (yi | zi )

zi∈{0,1,2,3}
∑ = π zi

φ(yi;µy,zi
,σ y,zi

)
zi∈{0,1,2,3}
∑  

The model can be fitted by an EM algorithm (22). For a CN Gaussian component in the GMM 

with adequate sample size (e.g. >= 10) from the initial call set generated in step (a), we use these 

samples to estimate the initial value of parameters for the EM algorithm; otherwise, we adopted 

the parameters estimated from a set of selected CNVRs as the initial value (see Supplementary 

Methods). It should be noted that LRR signals are not always properly normalized and centered at 

0, so we used the mode of yi  of the samples absent from the initial CNV call set (i.e., CN = 2) for 

the CNVR to estimate the initial location of normal CN component (µy,z=2 ) and calculate the 

relative locations of other CN components with respect to µy,z=2 . 

Once the CNVR-specific model is fitted, we computed the Phred-scaled likelihood (PL) of a CN 

status ( zi ∈ {0,1, 2,3} ): 

PL(zi ) = −10 log10 π zi
pLRR (yi | zi )pBAF (xi | zi )( ) . 

We decided the CN genotype (including CNV and normal CN) as the one with the smallest PL 

value, with associated genotype quality (GQ) score defined by the difference between the 

smallest and the second smallest PL values. This definition is similar to the GQ score used in 

GATK pipeline for the analysis of next-generation sequencing data (23). The GQ score can be 

used to measure the confidence of a CN genotype call. The CN genotype with GQ score greater 

than a pre-specified threshold will be reported and otherwise be set as missing (“no call”). The 

GQ threshold can be tuned in a data-driven manner that balances accuracy and call rate. For 
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example, technical duplicates are often adopted for QC purposes. We can adjust the GQ score 

threshold to a level that the CNVs detected in technical duplicates achieve a high concordance 

rate while the call rates at the individual-level and CNVR-level are not heavily compromised (see 

Results).  

(e) Boundary refinement. For a CNVR with high frequency of variant alleles, the LRR signals 

are highly correlated across individuals among involved probes (Supplementary Figure S7). We 

can take advantage of this structure to further refine CNVR boundaries. In other words, we are 

able to find a sub-block of high correlations within a local correlation matrix. This strategy has 

also been adopted for CNV detection in other studies (24,25). Considering the M  SNPs within 

the local region by expanding the initial boundaries several times (e.g. twice the size of the initial 

region on both sides), let rij  be the Pearson correlation of LRR values between SNP i  and j . The 

refined left l̂  and right r̂  boundaries are obtained by optimizing: 

(l̂ , r̂) = argmax
m≤ j−i≤M−1

S(i, j)
m1

−
S(1,M )− S(i, j)

m2 −m1

⎛

⎝
⎜

⎞

⎠
⎟

1
m1

+
1

m2 −m1

⎛

⎝
⎜

⎞

⎠
⎟ , 

where S(i, j) = rijt=s+1

j
∑s=i

j−1
∑ , m1 = ( j − i)( j − i+1) / 2 , m2 =M (M −1) / 2 , and m  is the pre-

specified minimum size of CNVR (e.g., spanning 5 probes). This optimization is feasible by 

simple exhaustive search, since the number of SNPs M  involved in a CNVR is commonly 

within the range of tens to hundreds. 

When the refined boundaries are different from the initial boundaries, the probes falling within 

the range of updated boundaries will change. We needed to update the local likelihood model as 

in step (d) and re-did the genotyping step (Figure 1). If several CNVRs share the exact boundaries 

after boundary refinement, we merged them into one. 
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Concordance rate in duplicated pairs 

To avoid overestimating the concordance rate, for each pair of technical duplicates, we only 

considered the CNVRs with CNV genotype (CN ≠ 2) in at least one of the pair, while those with 

only normal CN genotype (CN = 2) in both were excluded. The concordance rate was defined as 

the proportion of CNVRs with consistent CNV status in both duplicates among all the CNVRs 

considered for each pair of duplicates. 

Mendelian errors and transmission rate in trios 

From the nuclear families in the FA cohort, we included those with complete trios (father-mother-

child). Larger nuclear families with multiple children were converted to multiple trios. For 

example, a quartet family was converted to two trios, each with one child and the parents. This 

resulted in a total number of 1019 trios. In each trio, the CNVRs with normal CN status (CN = 2) 

in all three individuals were excluded. A CNVR has a Mendelian error if the CN status in the 

trios does not follow the normal inheritance pattern. For example, if CN = 0 in the father, CN = 2 

in the mother, then CN = 2 in the child will lead to a Mendelian error. A Mendelian error could 

possibly arise from a de novo mutation in the child, false positive CNV calls in the child, or false 

negatives in the parents. To avoid ambiguity in the estimation of transmission rate in a trio, we 

only considered the CNVR with CNV status (CN ≠ 2) in only one of the parents. The 

transmission rate was estimated as the proportion of CNVRs carrying CNV genotype in the child 

among all CNVRs considered in the trio. 

Sensitivity analysis 

We used the “detectable” subset of the 1000 Genomes Project (KGP) CNV dataset 

(Supplementary Table S2) as the reference to evaluate the sensitivity of the six methods in CNV 

detection. A CNV in KGP data was considered as detected by a method if a CNV from the call 

set of the method was found with ≥ 30% reciprocal overlap with the KGP CNV and the allelic 
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types of the two CNVs were compatible. For example, if the CNV called by the method had only 

a deletion allele while the KGP CNV had only a duplication allele, then the KGP CNV was not 

counted as detected even though they had ≥ 30% reciprocal overlap. The sensitivity of a method 

was defined as the proportion of the CNVs in the KGP data that could be detected by the method. 

 

RESULTS 

Performance of ensembleCNV 

We evaluated the performance of ensembleCNV using two empirical datasets from the FA and 

STARNET studies (see Material and Methods; Supplementary Table S1) and compared with the 

three methods we adopted in our pipeline. In addition, we also considered two simple integration 

methods commonly used in CNV studies: (i) the “intersection” method where the CNVs called by 

at least two of the three methods (i.e., major voting) were selected to the final call set; and (ii) the 

“union” method where the CNVs called by any of the three methods were added to the final call 

set (Supplementary Figure S8). For the other five methods, we used the ensembleCNV CNVR 

construction algorithm to create CNVRs. Key summary statistics of the CNV call sets from the 

six methods are shown in Supplementary Table S3. The individual performance of these six 

methods were compared from three perspectives: (1) concordance rate of detected CNVs between 

technical duplicates in both datasets; (2) Mendelian error and transmission rate evaluated in trios 

of FA study; (3) the quality of detected CNVs evaluated by the external CNV data from the 1000 

Genomes Project (KGP) (20). 

Concordance rate and genotype call rate 

To benchmark the accuracy of CNV detection methods, the ideal way is to use real datasets with 

known ground truth of CNVs in all subjects. Such a benchmark is usually not available, 
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especially for large-scale genetic studies. However, for QC purposes in SNP genotyping, 

technical duplicates are often considered in the experimental design as in the FA and STARNET 

studies. Thus, the concordance rate (see Methods for definition) of CNV calls in duplicated pairs, 

i.e. the reproducibility, can be used as a surrogate of accuracy measurement – with high 

reproducibility being an indication of good quality for a CNV call set. In ensembleCNV, we also 

defined the genotyping quality (GQ) score (see Methods) to quantify the confidence of the CN 

genotype assigned to each individual at each CNVR. As the GQ score threshold increases, the 

concordance rate constantly increases with the median value across duplicated pairs gradually 

approaching 100% at the cost of decreased sample-wise and CNVR-wise call rates 

(Supplementary Figures S9 and S10). To achieve a balance between concordance rate and call 

rate, we selected GQ score thresholds of 15 and 20 in the FA and STARNET datasets, 

respectively (Supplementary Figures S9 and S10). We also used these thresholds in the results 

sections below. Of note, the strategy of utilizing technical duplicates along with the GQ score can 

be used when applying ensembleCNV in real data analyses. For the other five methods, however, 

there is no such quantification of genotyping confidence for every individual at each CNVR. In 

particular, these methods do not distinguish between normal CN (CN = 2) vs. no call. Instead, we 

set the genotype of an individual without a CNV call (CN ≠ 2) at a CNVR as normal (CN = 2). 

The call rate, therefore, cannot be defined for these five methods. 

In this evaluation, not only did ensembleCNV achieve the highest concordance rates with 

medians of 98.6% and 95.5% in the FA and STARNET datasets, but it also resulted in the 

greatest stability (i.e., the smallest variability) across duplicated pairs (Figure 2A and D). On the 

other hand, the medians of sample-wise call rate and CNVR-wise call rate reached 93.3% and 

97.0% for the FA data and 96.3% and 99.5% for the STARNET data, respectively (Figure 2B, C, 

E, and F). A similar QC based on call rate at both individual and CNVR levels can be performed 

as what is routinely done for SNP QC in GWAS. For the purpose of fair comparison, we kept all 
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samples and CNVRs generated by ensembleCNV without any filtering unless otherwise 

specified. Following ensembleCNV, the joint analysis based method, iPattern, performed better 

than the individual-wise analysis based methods, PennCNV and QuantiSNP, in terms of 

concordance rate. It should be noted that the straightforward integration methods “intersection” 

and “union” did not make any improvement on the individual methods, but instead reached a 

compromise between the three methods – they underperformed as compared to iPattern and 

outperformed as compared to PennCNV and QuantiSNP (Figure 2A and D). Moreover, in the FA 

data, the concordance rate produced by ensembleCNV was mostly comparable between the 

duplicated pairs, either within the same batches or those belonging to different batches. This 

suggests robustness of ensembleCNV to batch effects, whereas the other five methods were 

vulnerable (Supplementary Figure S11). 

Mendelian error and transmission rate 

Taking advantage of family information from the FA dataset, we calculated the number of 

Mendelian errors in the trios (see Methods). Though a Mendelian error may imply a de novo 

CNV, the number of such errors is expected to be within a certain range. As suggested by KGP 

CNV data (Supplementary Table S2), the median number of singleton CNVs per sample is 8. 

Therefore, an excessive number of Mendelian errors per trio indicates poor quality of a CNV call 

set. Figure 3A summarizes the number of Mendelian errors per trio for the six methods. The 

median number for ensembleCNV is 13, a little above the number suggested by KGP data. It 

should be noted that the GQ score threshold was not optimized for Mendelian errors (see above 

section). With the increment of GQ score threshold, the number of Mendelian errors continues to 

decrease at the expense of call rate (Supplementary Figure S12). In contrast, the median number 

for iPattern is 45 and those numbers for the other four methods are all above 200, implying a 

large amount of false positive CNV calls in offspring and/or false negatives in parents. 
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Concurrently, with trio data, we estimated the transmission rate of CNVs from parents to 

offspring (see Methods). Normally, the average transmission rate should be around 0.5 (26). The 

medians of transmission rates in the trios for ensembleCNV and iPattern were close to 0.5, 

whereas the median values for the other four methods were all well below 0.5 (Figure 3B). 

Moreover, as expected, the median of transmission rates for ensembleCNV converged to 0.5 as 

the GQ score threshold increased (Supplementary Figure S12). 

Evaluation with 1000 Genomes Project CNV (KGP) data 

We used the KGP CNV data (20) as an external dataset to evaluate the sensitivity of the six 

methods (Supplementary Table S2). Since KGP CNV data was produced by whole-genome 

sequencing (WGS), the size of detectable CNVs can be smaller than 1kb at base-pair resolution, 

which is beyond the capability of SNP array platforms. To make the reference data comparable to 

the results from the FA and STARNET datasets, we defined the subsets of “detectable” CNVs as 

those spanning at least 5 probes in the SNP array used in the FA and STARNET studies, 

respectively (Supplementary Table S2). Since the majority of subjects in the FA and STARNET 

studies are of European ancestry and the SNP arrays used (Supplementary Table S1) are mainly 

designed for European populations (reflected in the number of detectable singleton CNVs per 

sample; Supplementary Table S2), we focused on the statistics in European populations from 

KGP. The sensitivity assessment was further stratified by the allele frequency in KGP European 

populations at 1% (Figure 4). Overall, the total number of CNVs detected per sample from 

ensembleCNV (median: 620 and 38) was the closest, among the six methods, to the number 

(median: 633 and 48 for European populations) of the detectable subsets of KGP data in both the 

FA and STARNET studies (Supplementary Tables S2 and S3). Regarding the sensitivity, 

ensembleCNV was able to identify 85% and 71% of detectable common CNVs in the FA and 

STARNET data, respectively. That the sensitivity for rare CNVs was found to be much lower is 

not surprising (Figure 4). The call set from iPattern is the most conservative and biased toward 
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common CNVs, while the other four methods tend to be slightly more sensitive than 

ensembleCNV at a greater cost of accuracy (Figures 2-4). Interestingly, for the detectable 

common CNVs (containing ≥5 probes on the SNP genotype array), the CN genotype frequencies 

documented in the KGP CNV dataset were better matched with those estimated by ensembleCNV 

than the other 5 evaluated methods (see Methods; Supplementary Figure S13). 

Size and frequency distribution of CNVRs 

The size and frequency of CNVs called by the different methods were found to be comparable 

both to each other and to CNVs released by KGP (Figure 5). In the FA study, 84.2% and 91.1% 

of all CNVRs were below the frequencies of 1% and 5%, respectively. In the STARNET study, 

83.7% and 93.7% of all CNVRs were below frequencies of 1% and 5%, respectively. This 

frequency spectrum is similar to that observed for SNPs (27).  Importantly, in the FA (by 

ensembleCNV) and KGP data, a total of 1,752 and 1,948 CNVRs with frequency ≥ 1% was 

detectable, offering sufficient statistical power to perform large CNV-GWAS.   

The CNVRs detected had a wide size range (Figure 5B and 5D), which is consistent with findings 

in KGP.  63.7% and 43.8% of CNVRs in the FA and STARNET data were 20kb or shorter, 

respectively. It should be noted that there were only 2 CNVs with a size of greater than 1Mb in 

the KGP CNV dataset (Supplementary Table S2), and these two CNVs did not pass the 5-probe 

lower limit and thus did not appear in the detectable sets for the FA and STARNET studies.  

Correlation of CNVRs and nearby SNPs 

A key question for CNV-GWAS is whether the CNVs are already well tagged by nearby SNPs, in 

which case making CNV calling becomes redundant.  We estimated linkage disequilibrium (LD; 

r2) between each CNVR (with >90% call rate from ensembleCNV) and SNPs within 500 kb 

(Figure 6). In the FA data for all CNVRs, only 7.3% were tagged at r2 ≥ 0.6. In contrast, for 

CNVRs at frequencies ≥ 1% and ≥ 5%, the corresponding numbers were 46.5% and 76.3%, 
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respectively.  In STARNET, a SNP array with fewer SNPs than FA was used, and the LD 

between CNVRs and SNPs was therefore even lower. For all CNVRs, 4.4% were tagged at r2 ≥ 

0.6, and for CNVRs at frequencies ≥1% and ≥5%, 15.3% and 36.9% were tagged at r2 ≥ 0.6, 

respectively.  These results indicate that testing CNV-disease associations is necessary and 

potentially fruitful for both rare and common CNVs. 

Functional relevance of CNV 

In the STARNET and FA datasets, we found that 5.58% and 17.49% of the genome were affected 

by CNVs, respectively.  For more frequent CNVs (e.g. frequency ≥ 5%), 0.74% (FA) and 1.23% 

(STARNET) of the genome were affected. Furthermore, 0.54% (FA) and 0.4% (STARNET) of 

the genome were affected by CNVs with null (CN = 0) genotype. 

Given that CNVs directly change the dosage of genes, they are likely functional and possibly 

important for disease.  For that reason, we overlapped the CNVRs with the NHGRI-EBI GWAS 

catalog (28), holding 43,927 unique variants with convincing evidence of variant-trait 

associations.  Importantly, 23.97% (10,530) of the GWAS catalog variants were affected by 

CNVRs (i.e., within CNVR boundaries), where 2% (881) were affected by frequent CNVRs and 

1.1% (485) by CNVRs with null genotype.   

It is known that most genomic loci can affect several traits either by affecting multiple genes at 

the locus or genetic pleiotropy (29-31). In our results, risk loci of the GWAS catalog affected by 

CNVs we detected in either the FA or the STARNET data were linked to multiple traits.  The top 

diseases/traits with the most GWAS SNPs affected by CNVs were breast cancer (220 CNV-

affected variants), schizophrenia (220 variants), obesity-related traits (213 variants), height (174 

variants), and body mass index (170 variants).  As an example, the 7q36.3 locus with 

susceptibility to testicular germ cell tumor (leading SNP rs11769858; p-value = 2e-8) (32) was 

within a CNVR (CNVR_954_r1_chr7_q) of 4kb length (Supplementary Figure S14A). In the FA 
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cohort, 2014, 483 and 31 subjects are of 2, 1 and 0 copy numbers, respectively, at this CNVR 

(Supplementary Figure S14B).  This CNVR (CNVR_954_r1_chr7_q) is reliably called based on 

15 probes on the Illumina HumanOmni1-Quad-v1 BeadChip (Supplementary Figure S14C and 

D).  The promoter region of a gene proposed to be responsible for testicular germ cell tumor risk 

(32), NCAPG2, was affected by this CNVR (Supplementary Figure S14A).  

 

DISCUSSION 

Despite the availability of large, relevant datasets (e.g. SNP array of large GWASs) (7), the 

hypothesis that CNV broadly influences disease risk in the population and across diseases has not 

been systematically evaluated in a well-powered study. The main challenge has been a lack of 

robust and accurate methods to quantify CNVs.  Here we describe and report on the utility of 

ensembleCNV for detecting and genotyping CNVs; a technique that is readily applicable to a 

large amount of existing data.  We demonstrate that our ensemble approach quantifies CNV 

genotype with accuracy and properties comparable to SNP genotyping, and as such paves the way 

for large-scale population-based CNV-disease association studies (i.e., CNV-GWAS). 

EnsembleCNV has several key advantages over existing methods:  

(1) High genotyping accuracy and reproducibility.  In the STARNET and FA cohorts, we 

observed 96.2% and 98.6% consistency, respectively, among technical duplicates (Figure 2), and 

the median number of Mendelian errors was 13 per family in the FA data, which outperformed 

other methods.  

(2) Detection and re-genotyping functions. Many existing methods are designed as CNV 

detection tools (e.g. PennCNV and QuantiSNP) and do not distinguish CN=2 vs. “no call”, 

causing substantial mis-classification.  EnsembleCNV has both detection and re-genotyping 

functions and employed a GQ score to identify “no call” for genotypes with low confidence.   
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(3) High genotyping call rate.  In the STARNET and FA cohorts, we obtained 97.0% and 93.3% 

sample-wise genotyping call rates (Figure 2), respectively. 

(4) High detection rate. The detection phase of ensembleCNV utilizes multiple underlying 

callers, and ensures a high detection rate (i.e., ability to detect and genotype more CNVRs).  For 

example, in the FA cohort, ensembleCNV called 19,695 CNVRs, more than the 10,200 CNVRs 

called by iPattern; in the meantime, ensembleCNV achieved a higher rate of consistency for 

duplicate pairs (98.6% vs. 90.5%; Figure 2) and fewer Mendelian errors (13 vs. 45; Figure 3). 

(5) Improved calling quality and functional interpretability. The boundary refinement of 

ensembleCNV both improves the CNV calling quality and downstream functional 

interpretability. 

(6) Prepared for CNV-GWAS. EnsembleCNV outputs aligned CNVRs and CNV genotype matrix 

with similar format and properties as SNP genotype matrix (e.g. PLINK format(33)), ready for 

association testing. 

(7) Identification and elimination of batch effects. Proper ways to handle batch effects are 

prerequisite to produce high-quality CNV signals. However, this is often overlooked and rarely 

addressed in a proper way by existing methods. We proposed steps to address this issue at raw 

data level from the beginning of the pipeline. In the FA dataset, we identified and eliminated 

batch effects to a considerable extent (Supplementary Results and Supplementary Figures S1-S3 

and S11).   

CNVs in a given individual can be inherited and de novo.  We found, when accurately typed, 

CNVs are overwhelmingly inherited (98.1%), following simple Mendelian inheritance, which is 

consistent with previous reports.(7)  Importantly, we found that inherited CNVs are often not well 

tagged by nearby SNPs.  In the STARNET and FA studies, only 4.4% and 7.3% of CNVRs were 

tagged by nearby SNPs at r2 ≥ 0.6 (Figure 6), emphasizing the need for CNV-GWAS to capture at 

least part of the missing heritability of human diseases.  Further, CNVs are of great functional 
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relevance.  Among the unique variants documented in the NHGRI-EBI GWAS catalog, 23.97% 

(10,530 variants) were inside CNVRs detected in the STARNET and/or FA studies, and 485 

variants were inside CNVRs with null (i.e., CN = 0) genotype.  

An enormous amount of raw SNP array data generated from large GWASs has not been 

comprehensively investigated in terms of CNVs, leaving a large gap of CNV genotyping and 

CNV-based association analyses.  To address this gap, we systematically benchmarked the 

performance of ensembleCNV on large SNP array datasets, suggesting its applicability for CNV-

GWAS.  In this context, it should be noted that the ensembleCNV framework can be extended to 

next-generation sequencing (NGS) data (34), where multiple NGS-based CNV calling tools have 

been proposed (e.g., GenomeSTRiP (35,36) and LUMPY (37)) and their individual call sets can 

be aggregated in a similar way. Extension of ensembleCNV to NGS data would address the 

limitations of CNV detection using SNP array data.  For example, using the boundary refinement 

functionality of ensembleCNV, but limited by the pre-specified distribution of probes in a SNP 

array, the boundaries of CNVs can only be approximated as being somewhere between 

neighboring probes. By aggregating signals around CNV boundaries (i.e., break point) from split 

reads and discordant read pairs across multiple individuals, the boundary location may be 

increased to base-pair resolution (34). Using NGS data with sufficient coverage, we would also 

alleviate the signal saturation limitation in SNP array data, where we cannot reliably distinguish 

CN = 3 vs. CN ≥ 4 genotypes at many CNVRs (35,36). 

In the 1000 Genomes Project data, some CNVs are more frequent (i.e., frequency ≥ 1%); which 

are also termed copy number polymorphisms or CNPs (38-40). In the FA data, indicating a high 

sensitivity for CNPs, we were able to detect and genotype 85% of these frequent CNVs using 

ensembleCNV.  Indeed, the ability to accurately detect and genotype CNPs is particularly 

important from the perspective of successfully performing CNV-GWAS. The relative 

contribution of rare and common variants to genetic variation can be measured as a fraction of the 
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number of loci that differ in copy-number between any two unrelated individuals. In a recent 

analysis, > 90% of the loci were observed to differ in copy-number between pairs of individuals 

among involved CNPs, and ∼80% involved common CNPs (with minor allele frequency >5%) 

(38-40).  This indicates that a large fraction of the copy-number differences between any two 

individuals arise from a limited set of common polymorphisms (38-40), analogous to an earlier 

observation that the largest component of human sequence variation (at fine scale) arises from 

common SNPs. In the FA cohort, 15.8% of the CNVs detected belong to CNPs in which the same 

mutant allele exists in multiple pedigrees.  It should be noted that the detection rate of CNVs is 

influenced by the density of SNP array probes. Our working definition requires at least five 

probes per CNV, and SNP arrays with higher probe density as well as specifically designed CNV 

probes, or next generation sequencing (NGS), may potentially detect even smaller CNVs.  

In conclusion, we proposed and benchmarked ensembleCNV, a novel method for CNV calling 

and genotyping.  It makes highly reproducible and accurate CNV calls, obtains a high call rate, 

and pinpoints CNV boundaries reliably. Importantly, this high performance is not achievable by 

simply taking the intersection or union of the call sets from individual callers.  Our tool is freely 

available at https://github.com/HaoKeLab/ensembleCNV.  Given the amount of SNP array data 

that has been generated in large GWASs of many diseases and traits, we believe ensembleCNV is 

a powerful and timely tool to quantify CNVs on existing data, and to investigate the contribution 

of CNVs to human disease predisposition.  
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AVAILABILITY 

The source code for ensembleCNV is freely available on GitHub at 

https://github.com/HaoKeLab/ensembleCNV. The food allergy dataset is available upon 

reasonable request to the principal investigator, Dr. Xiaobin Wang. The STARNET dataset is 

available at dbGaP under study accession number: phs001203.v1.p1. The 1000 Genomes Project 

structural variant data is available at ftp://ftp-

trace.ncbi.nih.gov/1000genomes/ftp/phase3/integrated_sv_map/ 

SUPPLEMENTARY DATA 

Supplementary Data including supplementary results, methods, 14 figures and 3 tables are 

available at NAR Online. 
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Figures 

 

Figure 1: Workflow of ensembleCNV  
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Figure 2: Concordance rate and call rate of detected CNVs 

Results are summarized for the FA (A-C) and STARNET datasets (D-F), respectively. In (A) and 

(D), the concordance rate of CNV genotype for technically duplicated pairs are compared among 

six methods. In (B), (C), (E) and (F), the distribution of the sample-wise and CNVR-wise call 

rates of CNV genotype are shown for ensembleCNV, since only ensembleCNV makes direct 

genotyping in each CNVR and distinguishes between normal copy number and missing genotype.  

● ●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

iPattern
PennCNV

QuantiSNP
intersection union

ensembleCNV

C
on

co
rd

an
ce

 ra
te

FA: concordance rateA

0

200

400

600

0.5 0.6 0.7 0.8 0.9 1.0
Call rate

Fr
eq

ue
nc

y

FA: sample−wise call rateB

0

2000

4000

0.00 0.25 0.50 0.75 1.00
Call rate

Fr
eq

ue
nc

y

FA: CNVR−wise call rateC

●

●

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

iPattern
PennCNV

QuantiSNP
intersection union

ensembleCNV

C
on

co
rd

an
ce

 ra
te

STARNET: concordance rateD

0

100

200

300

400

0.5 0.6 0.7 0.8 0.9 1.0
Call rate

Fr
eq

ue
nc

y

STARNET: sample−wise call rateE

0

300

600

900

0.00 0.25 0.50 0.75 1.00
Call rate

Fr
eq

ue
nc

y

STARNET: CNVR−wise call rateF

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2018. ; https://doi.org/10.1101/356667doi: bioRxiv preprint 

https://doi.org/10.1101/356667
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

31 

 

Figure 3: Mendelian error and transmission rate in FA trios 

Given the information regarding nuclear families in the FA dataset, the Mendelian error (A) and 

transmission rate (B) calculated from CNV genotype data in trios were compared among the six 

methods. The y-axis in (A) is on log10 scale.  
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Figure 4: Sensitivity of detecting CNVRs in the KGP dataset 

The fraction of detectable KGP CNVRs spanning at least 5 probes in the FA (A) and STARNET 

datasets (B) were compared among the six methods. In each subfigure, the detectable CNVRs are 

further stratified by allele frequencies in European populations of KGP into common (frequency > 

1%; left panel) and rare CNVRs (frequency < 1%; right panel).  
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Figure 5: CNVR frequency and size distribution 

The frequency (A and C) and size (B and D) of CNVRs detected in the FA (A and B) and 

STARNET (C and D) datasets using the six methods as well as those detectable CNVRs 

(spanning at least 5 probes in each of the dataset). The frequency of a CNVR refers to the 

proportion of the unrelated carriers of a CNV genotype instead of allele frequency at the CNVR. 

The frequency in KGP was calculated based on European populations.  
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Figure 6: Linkage disequilibrium (LD) between CNVR and nearby SNP probes 

LD (r2) was estimated as the maximum of squared Pearson correlations between the copy number 

at each CNVR resulted from ensembleCNV and the genotype (coded as 0, 1, and 2 copies of 

alternative alleles) of SNPs within 500kb upstream and downstream of the CNVR in the FA (A) 

and STARNET datasets (B). The plots show the fraction of CNVRs as the threshold of LD 

measure increases. The call set of CNVRs is further categorized by frequency greater than 0%, 1% 

and 5%, respectively, with the total number of CNVRs in each subset indicated in the legend. The 

frequency of a CNVR refers to the percentage of the unrelated carriers of a CNV genotype at the 

CNVR. 
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