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Abstract	
In a 2018 paper posted to bioRxiv, Pertea et al. presented the CHESS database, a new catalog 
of human gene annotations that includes 1,178 new protein-coding predictions. These are 
based on evidence of transcription in human tissues and homology to earlier annotations in 
human and other mammals. Here, we reanalyze the evidence used by CHESS, and find that 
nearly all protein-coding predictions are false positives. We find that 86% overlap transposons 
marked by RepeatMasker that are known to frequently result in false positive protein-coding 
predictions. More than half are homologous to only nine Alu-derived primate sequences 
corresponding to an erroneous and previously withdrawn Pfam protein domain. The entire set 
shows poor evolutionary conservation and PhyloCSF protein-coding evolutionary signatures 
indistinguishable from noncoding RNAs, indicating lack of protein-coding constraint. Only four 
predictions are supported by mass spectrometry evidence, and even those matches are 
inconclusive. Overall, the new protein-coding predictions are unsupported by any credible 
experimental or evolutionary evidence of function, result primarily from homology to genes 
incorrectly classified as protein-coding, and are unlikely to encode functional proteins.  

Introduction	
The complete and accurate representation of all the genes in the human genome is critically 
important for both the investigation of genome biology and the medical interpretation of genetic 
variation. Errors in protein-coding gene annotations can result in false predictions of mutations 
with severe phenotypic consequences in a clinical setting (MacArthur et al. 2012). 
Consequently, a reference gene catalog must only represent a given locus as protein-coding 
when that is believed to be the most likely interpretation of its functionality based on all the 
available evidence. 

Identification of all transcribed loci and the determination of which of those loci are translated 
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into functional proteins is a core remit of large-scale gene annotation projects such as 
Ensembl/GENCODE (henceforth GENCODE) and RefSeq, which began producing reference 
annotation on the human genome sequence approximately 15 years ago (Harrow et al. 2012; 
Zerbino et al. 2018; O’Leary et al. 2016). For GENCODE, the distinction between bona fide 
protein-coding genes and other gene types involves the expert curation of all loci on a case-by-
case basis, incorporating computational pipelines and experimental data alongside targeted 
experimental validation procedures. Projects like GENCODE also actively follow advances in 
genome annotation because they recognize the critical need to achieve the highest possible 
accuracy for the human gene set. The GENCODE Consortium welcomes all efforts to push the 
state of the art and has worked closely with and evaluated the outcomes of numerous previous 
and ongoing studies.  

Expert manual curation has resulted in high-confidence annotations for approximately 20,000 
protein-coding genes in GENCODE, RefSeq, and UniProtKB/Swiss-Prot (The UniProt 
Consortium 2017). These databases do not claim to have a “final” count of protein-coding 
genes, and each remains a work in progress, in fact disagreeing from each other on the protein-
coding status of approximately 2,700 loci (Abascal et al. 2018).  

Numerous recent efforts have sought to detect previously undiscovered (“novel”) protein-coding 
genes using experimental and computational tools. These include: mass spectrometry (Slavoff 
et al. 2013; Gascoigne et al. 2012; Kim et al. 2014; Wilhelm et al. 2014; Vanderperre et al. 
2013; Mackowiak et al. 2015); ribosomal profiling (Bazzini et al. 2014; Mackowiak et al. 2015; 
Crappé et al. 2013); and evolutionary signatures of protein-coding constraint (Mackowiak et al. 
2015; Gascoigne et al. 2012). Unfortunately, all three techniques can produce false positive 
annotations (Uszczynska-Ratajczak et al. 2018): lowering validation parameters in mass 
spectrometry analyses results in large numbers of incorrectly matched peptides (Ezkurdia et al. 
2015; Nesvizhskii 2014); ribosome association is not sufficient to validate novel coding open 
reading frames (Verheggen et al. 2017; Guttman et al. 2013); and evolutionary signatures are 
dependent upon robust genomic alignments and can produce spurious signals for pseudogenes 
and genomic regions antisense to true coding regions (Mudge et al. In preparation).  

In contrast to transcript annotations, which can still substantially improve using increasingly 
large RNA datasets, high-confidence annotation of functional protein-coding regions remains 
challenging. A key difficulty common to many diverse genome-wide searches is the needle-in-a-
haystack problem, which is exemplified well by protein-coding searches. Only a small fraction of 
the genome is protein-coding, and the human genome has now been so well studied that any 
protein-coding genes waiting to be discovered are likely to be sparsely distributed and 
particularly well hidden. For example, they could have particularly small coding sequence, or 
have highly restricted expression. This means that even highly-specific methods that work well 
on poorly-studied genomes will have considerably more false positives than true positives when 
applied to the whole human genome.  

With this problem in mind, the GENCODE project does not directly import predictions produced 
by high-throughput discovery studies into the GENCODE protein-coding gene set, but instead 
subjects each prospective novel coding gene to manual appraisal. This process considers the 
merits for coding annotation provided by the authors, but also involves the consideration of 
multiple orthogonal datasets alongside a potential reanalysis of the original data. 

A paper recently posted on bioRxiv introduced a new database (CHESS) of human genes, 
identified by generating transcripts from 9,795 RNA-seq experiments from the genotype-tissue 
expression (GTEx) project (The GTEx Consortium 2015), and applying various filters to predict 
21,306 protein-coding and 21,856 noncoding genes, as well as millions of transcripts classified 
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as transcriptional noise (Pertea et al. 2018). The database includes 1,178 novel protein-coding 
gene predictions and 3,819 novel noncoding gene predictions (i.e. not already annotated in 
GENCODE or RefSeq). Here, we examine the 1,178 loci that were predicted to be novel 
protein-coding genes (henceforth “novel protein-coding predictions”, or, for brevity, “novel 
coding predictions”), and the criteria used to distinguish them. We find that almost all of these 
loci are unlikely to be protein-coding. 

Results	
CHESS	criteria	allow	for	low-quality	annotations	
The approach used to distinguish protein-coding from noncoding genes in the CHESS database 
relies on homology to previously-annotated proteins rather than evolutionary signatures or 
experimental evidence of translation. More specifically, transcripts are classified as protein-
coding if they contain an open reading frame (ORF) of at least 60 amino acids that shows 
significant homology to a human or other mammalian protein-coding annotation in GenBank 
(Benson et al. 2013) or UniProtKB/Swiss-Prot (The UniProt Consortium 2017), that does not 
overlap ribosomal RNA genes or a subset of repeat elements (LINEs or LTRs), and that is at 
least 75% of the length of the matched protein-coding annotation. CHESS also imposes 
conditions on level of transcription and diverse criteria to choose among overlapping transcripts. 
These criteria result in 1,178 loci classified as novel protein-coding genes.  

A priori, these criteria leave open three major sources of false positives: homology to protein-
coding annotations that were themselves erroneous (thus propagating the errors of low-quality 
genome annotations), overlap with non-LTR and non-LINE repeat elements (e.g., SINE Alu 
repeat elements), and overlap with pseudogenes (non-functional gene remnants that bear some 
resemblance to their still-functional relatives). 

Little	similarity	to	validated	coding	genes	
Predicting protein-coding regions in a poorly-annotated genome based on homology to a high-
quality “target” genome is a common technique (Zerbino et al. 2018). Such an approach is less 
useful for reappraising a well-annotated genome, because homologs of well-known protein-
coding genes are likely to be already annotated as coding (or pseudogene).  

The target protein set used for homology search in the CHESS analysis pipeline included both 
the expert-curated UniProtKB/Swiss-Prot protein database and the RefSeq gene catalog, which 
includes both manual and computationally-derived protein annotations. However, the pipeline 
also utilized the entire set of sequences from GenBank. It is important to note that GenBank is a 
repository of nucleotide sequences - a subset of which have accompanying translations - and 
not an expert-curated catalog of protein-coding genes. While it is possible that some predictions 
based on homology to lower quality annotations such as GenBank could be true protein-coding 
genes, it is important to note that using such annotations as the target increases the likelihood 
of generating false positive predictions, and these can constitute the bulk of what remains after 
filtering out previously annotated homologs of true coding genes. A total of 1,083 of the novel 
protein-coding predictions were tagged as having homology to GenBank sequences, 616 had 
homology to UniProtKB/SwissProt sequences and 93 to RefSeq sequences (some novel coding 
predictions had homology to more than one target protein).  

The most striking feature of the novel protein-coding predictions is their similarity to one 
another. Most or the novel coding predictions appear to be homologs of other novel coding 
predictions (903 of them have homology to just 177 GenBank or predicted RefSeq sequences). 
According to the CHESS database 102 of the 1,178 novel coding predictions were classified as 
protein-coding based on their homology with GenBank sequence AAP34472.1, and a further 37 
had homology with GenBank prediction EHH18952.1. GenBank sequence AAP34472.1 (also 
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known as LP3428) is one member of a group of human conceptual translations derived from 
SVA (SINE-VNTR-Alus) transposons (Hancks and Kazazian 2010) that were created in the 
early 2000s. SVA transposons are evolutionarily young, active, and present in about 2,700 
copies in the human reference genome (Wang et al. 2005). A further 13 novel coding 
predictions are similar to HCA25a, another SVA transposon, and 34 are similar to one of several 
“FKSG” proteins annotated in GenBank, most of which are again related to SVA retroelements. 

Most of the 37 novel coding predictions similar to GenBank prediction EHH18952.1 (a 
hypothetical protein from macaque) are also similar to the human UniProtKB/Swiss-Prot protein 
Q86U02 from gene LINC00596. LINC00596 is annotated as noncoding in both GENCODE and 
RefSeq and in UniProtKB/Swiss-Prot is tagged with the lowest evidence code “unclear”. Another 
UniProtKB/Swiss-Prot protein (Q6UX73 from gene C16orf89) is also similar both to novel coding 
predictions and to GenBank prediction EHH18952.1. Unlike LINC00596, C16orf89 is annotated 
as protein-coding in both GENCODE and RefSeq and has the highest UniProtKB evidence 
coding “protein evidence”. In fact the major isoform of C16orf89 is well conserved in mammals 
and is known to be expressed in thyroid (Afink et al. 2010). However, the region of the C16orf89 
that is similar to LINC00596 and EHH18952.1 is the product of an alternative 3’ exon. What both 
LINC00596 and the alternative 3’ exon of C16orf89 have in common is a GVQW domain. 

GVQW domains were Pfam domains (Finn et al. 2014) that are now obsolete. The NCBI 
conserved domain database (Marchler-Bauer et al. 2017) still annotates the domain with the 
following description “This short domain is often found nested inside other longer domains. The 
function is not known, but the domain carries a highly conserved GVQW motif. It is possible that 
this is an AluS that has expanded in Human and Macaque genomes.” The GVQW domain was 
made obsolete in Pfam precisely because it is based on an Alu SINE element. Before it was 
removed, the domain was used to validate the protein-coding potential of a handful of human 
and other primate genes. Genes annotated with this domain are in the process of being 
reclassified as noncoding in the GENCODE reference set (Abascal et al. 2018), but genes 
GVQW1 and GVQW2, both annotated with the now defunct GVQW domain, are still annotated 
as coding in RefSeq and UniProtKB/SwissProt.  

In fact more than half of the novel protein-coding predictions in the CHESS database appear to 
be based on similarity to proteins with this obsolete GVQW domain: 560 are similar to just nine 
proteins or regions of proteins in UniProtKB/SwissProt that have a GVQW domain (Fig. 1, 
Supplementary Table 1) and 649 are either similar to one of these nine proteins, or similar to a 
GenBank sequence that is similar to one of the nine proteins. Thus, more than half of the novel 
protein-coding predictions in CHESS appear to be derived from Alu SINE elements. 
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Figure	1.	Alignment	of	the	two	types	of	GVQW	Alu	SINE	sequences		
Multiple alignments of (A) sequences similar to GVQW1 and (B) sequences similar to GVQW2 using KAlign 
(Lassmann et al. 2009). Colours indicate similarity of the amino acid. Note that the C-terminals of the transposon-
derived sequences similar to GVQW1 and those similar to GVQW2 are homologous, but the N-terminal region is not. 
Identifiers that start with the letter Q are UniProt identifiers and indicate that this sequence is present in UniProt only. 
Four genes (GVQW2, C9orf85, C16orf89 and BEND2) are annotated as coding in GENCODE. In all but the first 
sequence the transposon-related sequence is part of an alternative exon. GVQW2 is already earmarked for 
reclassification in GENCODE. 

Eight novel coding predictions are similar to the last 50 residues of UniProtKB/SwissProt protein 
Q96N38 (from gene ZNF714), which again is provided by an Alu element and a further eight are 
similar to UniProtKB/SwissProt protein Q96CB5 (C8orf44), a gene that was flagged with 
potential noncoding features (Abascal et al. 2018). The region of homology to the novel 
sequences precisely matches a region of Alu sequence in the C8orf44 coding sequence. In total 
at least 846 of the novel protein-coding predictions are similar to sequences in databases that 
appear to have been derived from transposons (Supplementary Table 1). 

Overlap	with	RepeatMasker	regions	
Since a majority of the novel protein-coding predictions were classified as protein-coding based 
on homology to transposon-associated sequences, we used RepeatMasker (Smit et al. 2013) to 
investigate how many of the predicted novel coding transcripts themselves overlapped 
interspersed repeats and low complexity DNA sequences. The ORFs of 92% of the predicted 
novel coding transcripts have some overlap with a RepeatMasker region, including 34% that are 
entirely contained in such regions. The ORFs of around 25% of GENCODE coding transcripts 
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also overlap RepeatMasker regions, but in most cases only a small fraction of the ORF 
overlaps, in sharp contrast to the novel ORFs (Fig.  2). In fact, RepeatMasker predicts that 61% 
of all nucleotide positions in the novel ORFs are in a transposon-associated region and another 
11% are in other repetitive or low complexity regions, whereas only 0.96% of all nucleotide 
positions in GENCODE ORFs are in a transposon-associated region and another 1.1% in other 
repetitive or low complexity regions. The fraction of transposon overlap with nucleotides in 
ORFs of APPRIS principal isoforms (Rodriguez et al. 2018), a subset of GENCODE transcripts 
considered most likely to represent primary functional translations based on metrics including 
evolutionary conservation, is just 0.37%, so most transposon overlap with GENCODE ORFs is 
in alternatively spliced exons that are not part of an APPRIS principal isoform. Looking more 
closely at the classes of repetitive regions that overlap novel protein-coding predictions we see 
that more than 67% overlap SINE/Alu elements and 15.6% overlap Retroposon/SVA elements 
(Table 1). 
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Figure	2.		
Cumulative distribution of the fraction of each ORF that overlaps RepeatMasker regions for predicted novel coding 
transcripts (black) and GENCODE protein-coding transcripts (red). The ORFs of over 92% of the predicted novel 
coding transcripts have some overlap with a RepeatMasker region, including 34% that are entirely contained in 
RepeatMasker regions, whereas only around 25% of GENCODE coding transcripts overlap repeat regions and in 
most cases only a small fraction of the transcript overlaps. 

 

Repeat	Class	 Predictions	 Percent	
SINE/Alu	 793	 67.3%	
Retroposon/SVA	 184	 15.6%	
Simple_repeat	 123	 10.4%	
SINE/MIR	 70	 5.9%	
DNA/hAT-Charlie	 46	 3.9%	
DNA/TcMar-Tigger	 27	 2.3%	
Satellite/centr	 23	 2.0%	
Satellite	 16	 1.4%	
Low_complexity	 16	 1.4%	
DNA/hAT-Tip100	 10	 0.8%	
DNA/TcMar-Mariner	 7	 0.6%	
LINE/L1	 5	 0.4%	
DNA/hAT-Blackjack	 3	 0.3%	
LTR/ERVL-MaLR	 3	 0.3%	
Satellite/acro	 3	 0.3%	
DNA/hAT?	 2	 0.2%	
LINE/L2	 1	 0.1%	
LTR/ERVL	 1	 0.1%	
Satellite/telo	 1	 0.1%	
DNA/hAT-Ac	 1	 0.1%	

Table	1.		
For each repeat class, the number and percent of novel protein-coding predictions that overlap at least one 
RepeatMasker region of that class. Percentages add up to more than 100% because some loci overlap more than 
one class. 

Likely	pseudogenes	
Even if an open reading frame has significant homology to a true protein-coding gene, it could 
be a disabled copy. To guard against this, GENCODE annotation guidelines consider a paralog 
to be a pseudogene if there is any truncation at all without independent evidence of translation. 
In the CHESS database, predicted genes are classified as coding if the ORF is at least 75% as 
long as that of the homology target. However, many pseudogenes would not be excluded by 
this condition. A nonsense mutation or frame shifting indel in the final 25% of a coding gene 
would leave more than 75% intact but may break or remove one or more domains at the protein 
C-terminal, or interfere with proper protein folding. A frame-shifting indel earlier in the sequence 
could damage an even larger fraction of the protein yet still result in a long ORF by chance. It is 
common for a disabled paralog to have an ORF more than 75% as long as the parent; in fact, 
an analysis of a subset of the pseudogenes in the current GENCODE catalog found that 14% of 
them had ORFs more than 75% as long as those of the parent genes. 
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Although we believe that most of the novel protein-coding predictions are not homologs of real 
coding genes, we have found at least two that appear to be disabled paralogs of real coding 
genes. CHS.625 has aflatoxin B1 aldehyde reductase member 4 homology, as noted by Pertea 
et al., but the locus contains only the final two coding exons of other family members. According 
to GENCODE annotation criteria, a duplicated locus with such a large truncation would not be 
annotated as protein-coding without orthogonal experimental support for its functionality. 
CHS.56318 is a retrotransposed paralog of CEBPZOS. It has a frameshift relative to the parent 
that replaces the final 10 amino acids with an alternative sequence 21 amino acids long. This 
changes a substantial fraction of this 80-amino acid protein, whose C-terminal is highly 
conserved in mammals, so the paralog is unlikely to be coding. 

Lack	of	protein-coding	evolutionary	signatures	
Next, we tested the CHESS novel ORFs for the evolutionary signature of functional protein-
coding regions using PhyloCSF (Lin et al. 2011). PhyloCSF uses substitutions and codon 
frequencies among 58 mammals to distinguish coding from noncoding regions, with higher 
scores indicating regions more likely to be translated and functional at the amino acid level. It is 
often used to distinguish coding transcripts from lncRNAs (Uszczynska-Ratajczak et al. 2018; 
He et al. 2018). We computed the PhyloCSF score per codon, averaged over the length of the 
ORF, for the ORFs in all 1,365 predicted novel coding transcripts. As a coding control, we used 
an equal number of the previously annotated coding ORFs in the CHESS database. As a 
noncoding control, we used an equal number of theoretical ORFs at least 60 codons long in 
GENCODE lncRNAs, chosen so as to match the distribution of phylogenetic branch lengths of 
the species present in the local alignments of the CHESS novel ORFs. This last step was 
needed because the CHESS novel ORFs tend to have lower alignment branch length than 
typical lncRNAs, which can decrease the absolute value of the PhyloCSF score. This is notable 
because usually protein-coding regions have higher alignment branch length than noncoding 
regions, since the latter are so poorly conserved that alignment algorithms can only detect 
orthology in closely related species. The PhyloCSF score distribution for the CHESS novel 
ORFs is nearly identical to the distribution for noncoding lncRNAs and much lower than for the 
previously annotated coding ORFs (Fig. 3), indicating that the novel ORFs are no more likely to 
be conserved coding regions than lncRNAs currently annotated as noncoding. Even among the 
106 novel coding transcripts that do not overlap RepeatMasker regions, most scores are 
negative, indicating a lack of coding potential. 
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Figure	3.		
Coding potential of CHESS novel ORFs. Evolutionary coding potential measured by PhyloCSF per codon for novel 
ORFs (black), previously annotated coding ORFs (red), noncoding theoretical ORFs in Gencode lncRNAs (green), 
and novel ORFs that do not overlap RepeatMasker regions (orange). The score distribution of the novel ORFs is 
nearly identical to that of the noncoding lncRNAs, indicating that the novel ORFs are unlikely to be conserved coding 
regions. Even the novel ORFs that do not overlap RepeatMasker regions lack coding potential. 

Only one of the novel protein-coding predictions, CHS.16591, has a high PhyloCSF score. Its 
ORF is the 3’ end of a longer protein-coding ORF, that of transcript ENST00000497872.4, which 
was independently added to GENCODE in version 27 (August 2017). This is not a novel gene 
but is an alternatively spliced transcript of immunoglobulin gene IGHA2, which was present in 
earlier versions of GENCODE.  

The lack of a PhyloCSF signal does not itself prove that a gene is noncoding, since roughly 10% 
of annotated genes do not have such a signal. One explanation for this is that PhyloCSF 
depends on multi-species genome alignments, and it is therefore not suitable for judging the 
coding capability of recently-duplicated protein-coding genes (i.e., loci that lack one-to-one 
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orthologs across a reasonable period of evolutionary time). Thus, it is plausible that certain 
novel coding predictions may score poorly with PhyloCSF because they are lineage-specific 
paralogs within known gene families as opposed to truly noncoding. However, we doubt that this 
is a common scenario because our manual analysis has thus far identified just four novel coding 
predictions that have true homology to genuine protein-coding genes, these being CHS.7402 
(the gene presented in Figure 1 of the Pertea manuscript, which GENCODE expects to 
annotate as a protein-coding gene in a future release), CHS.16591 (which had already been 
annotated as part of IGHA2), and the two pseudogenes discussed earlier.  

Lack	of	other	evidence	of	translation	
Two additional lines of evidence for protein-coding function were presented in Pertea et al. 

First, unmatched spectra from mass spectrometry experiments using 30 human tissues or cell 
types were searched for potential matches to the novel protein-coding predictions and verified 
using synthetic spectra. Four matching peptides were identified, each confirming one of the 
1,178 novel coding predictions. However, despite the verification procedure these four peptides 
do not confer a high degree of certainty because each is only seven amino acids long and only 
one peptide was found per protein. The Human Proteome Project (Deutsch et al. 2016) requires 
at least two non-overlapping nine-residue peptides to validate a novel coding gene. 

In any case, none of these four novel coding predictions has a conserved ORF. Even though 
CHS.57705 and CHS.24083 have homology to other primate sequences (Pertea et al. 2018), 
the start codon of CHS.57705 is only preserved in the closest human relatives and CHS.24083 
has a premature termination codon in all sequences apart from gorilla (Fig. 4). CHS.53541 has 
a 2-base deletion in apes that changes the reading frame relative to other primates (Fig. 5a) 
and is unlikely to be coding anyway because it has similarity to the GVQW domain proteins and 
is likely derived from an Alu SINE element. Finally, all non-human sequences related to 
CHS.16287 have a premature termination codon, and several also have frame shifts and 
missing start codons (Fig. 5b). 
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Figure	4.		
The alignments from Pertea et al. Figure 4 (Pertea et al. 2018) show that the start codon of CHS.57705 is not well 
conserved and that most species have early stop codons (asterisks) that truncate the final 17 amino acids of 
CHS.24083. Neither of these open reading frames are conserved in primates. 
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Figure	5.	
Alignments indicate ORFs are not conserved in primates. (a) A 2-base deletion (red box) in apes in the 14th codon of 
CHS.57705 changes the reading frame relative to other primates. Also note that the start codon is not present in 
chimp. (b) A TAA stop codon (red rectangle around cyan codons) truncates the final 29 amino acids of the ORF of 
CHS.16287. Also note that start codon is not present in gibbon, and much of the ORF is frame-shifted in several 
species (orange). 
 
We note that Pertea et al. describe CHS.57705 and CHS.24083 as being conserved in 
primates, whereas we have described them here as not conserved. This discrepancy is due to 
different usage of the word “conserved”. Pertea et al. use it to mean that the homologous 
sequences are similar, whereas we are using it to mean that there is evidence of purifying 
selection. This latter usage requires not only that the sequences be similar but that they are 
more similar than would be expected under neutral evolution, which in turn requires comparison 
to a null model of neutral sequence evolution as well as assuring preservation of start codon, 
stop codon, and reading frame. 

Pertea et al. provided evidence of differential expression as a second method to validate the 

Human_aa  M  K  Q  L  S  L  L  G  K  C  P  G  L  S  R  I  I  I  K  S  S  R  F  Y  K  I  H  G  P  I  W  H  L  P  A  H  A  A  R  I  E  G  Q  G  W  A  P 
Human ATG AAA CAA CTT TCT CTG TTA GGG AAG TGT CCT GGG CTG TCA AGA ATT ATC ATC AAG AGC AGC AGG TTT TAT A-AG ATA CAT GGA CCT ATT TGG CAT TTA CCA GCC CAT GCC GCT AGG ATA GAG GGA CAG GGC TGG GCC CCA
Chimp ATG AAA CAA CTT TCT CTG TTA GGG AAG TGT CCT GGG CTG TCA AGA ATT ATC ATC AAG AGC AGC AGG TTT TAT A-AG ATA CAT GGA CCT ATT TGG CAT TTA CCA GCC CCT GCC GCT AGG ATA GAG GGA CAG GGC TGG GCC CCA

Gorilla ATG AAA CAA CTT TCT CTG TTA GGG AAG TGT CCT GGG CTG TCA AGA ATT ATC ATC AAG AGC AGC AGG TTT TAT A-AG ATA CAT GGA CCT ATT TGG CAT TTA CCA GCC CCT GCC GCT AGG ATA GAG GGA CAG GGC TGG GCC CCA
Orangutan ATG AAA CAA CTT TCT CTG TTA GAG AAG TGT CCT GGG CTG TCA AGA ATT ATT ATC AAG AGC AGC AGG TTT TAT A-AG ATA CAT GGA CCT ATT TGG TAT TTA CCA GCC CCT GCC GCT AGG ATA GAG GGA CAG GGC TGG GCC CCA

Gibbon ATT AAA CAA CTT TCT CTG TTA GGG AAG TGT CCT GGG CTG TCA AGA ATT ATC ATC AAG AGC AGC AGG TTT TAT A-AC ATA CAT GGA CCT ATT TGG CAT TTA CCA GCC CCT GCC ACT AGG ATA GAG GGA CAG GGC TGG GCC CCA
Rhesus ATG AAA CAA CTT TCT CTG TTA GGG AAG TGT CCT GGG CCG TCA AGA ATT GTC ATC AAG AGC AGC AGG TTT TAT G-AG ATA CGT GGA CCT ATT TGG CAT TTA CCA GCC CCT GCT GCT CGG ATA GAG GGA CAG GGC TGG GCC CCA

Crab_eating_macaque ATG AAA CAA CTT TCT CTG TTA GGG AAG TGT CCT GGG CCG TCA AGA ATT GTC ATC AAG AGC AGC AGG TTT TAT G-AG ATA CGT GGA CCT ATT TGG CAT TTA CCA GCC CCT GCC GCT CGG ATA GAG GGA CAG GGC TGG GCC CCA
Baboon ATG AAA CAA CTT TCT CTG TTA GGG AAG TGT CCT GGG CCG TCA AGA ATT GTC ATC AAG AGC AGC AGG TTT TAT G-AG ATA TGT GGA CCT ATT TGG CAT GTA CCA GCC CCT GCC GCT CGG ATA GAG GGA CAG GGC TGG GCC CCA

Green_monkey ATG AAA CAA CTT TCT CTG TTA GGG AAG TGT CCT GGG CCG TCA AGA ATT GTC ATC AAG AGC AGC AGG TTT TAT G-AG ATA CGT GGA CCT ATT TGG CAT TTA CCA GCA CCT GCC GCT CGG ATA GAG GGA CAG GAC TGG GCC CCA
Marmoset GTG AAA CAA TGT TCT CTA TTA GGG AAG TGT CCT GAG CTG TCA AGA ACC GTC ATC AAG AGC AGC AGG TTT TGT A-AG ATA TGT GAA CCT ATT TGG --- -TA CCA GCC CCT GCC ACT CGG ATA GAG G-- --- --- --- --- ---

Squirrel_monkey ATG AAA CAG TGT TTT CTA TTA GGG AAG TGT CCT GAG CTG TCA AGA ATT GTC ATC AAG AGC AGC AGG TTT TGT A-AG ATC CAT GGA CCG ATT TGG --- -TA CCG GCC CCT GCC ACT TGG ATA GAG G-- --- --- --- --- ---
Bushbaby --- --- CAA CTT TCT CTG TTA GGG AAG TAA CTT GGC CTG TCA AGA ATT GTC ATC AAA AGC AAC AAG TTT TAC GCAG ACA CCT GAA C-T ATT TGA -GT TCA AGG GCA CCT GCC ACT CAG ACA AAG GGG CAA -AC TGG GGC CCT

Human_aa  S  V  G  F  P  E  E  P  S  T  G  C  S  Y  G  M  G  G  G  G  A  G  A  L  H  G  F  H  C  P  K  E  G  T  K  A  T  P  P  C  V  C  Q  G  W  V  Q 
Human AGT GTG GGC TTC CCG GAA GAG CCA AGC ACC GGC TGC TCA TAT GGG ATG GGT-- GGG GGT GGT GCA GGT GCC CTG CAT GGG TTC CAC TGC CCT AAA GAG GGT ACA AAG GCC ACA CCT CCG TGT GTC TGC CAG GGC TGG GTT CAG
Chimp AGT GTG GGC TTC CTG GAA GAG CCA AGC ACC GGC TGC TCA TAT GGG ATG GGT-- GGG GGT GGT GCA GGT GCC CTG CAT GGG TTC CGC TGC CCT AAA GAG GGT ACA AAG GCC ACA CCT CCG TGT GTC TGC CAG GGC TGG GTT CAG

Gorilla AGC GTG GGC TTC CCG GAA GAG CCA AGC ACC GGC TGC TCA TAT GGG ATG GGT-- GGG GGT GGT GCA GGT GCC CTG CAT GGG TTC CGC TGC CCT AAA GAG GGT ACA AAG GCC ACA CCT CCG TGT GTC TGC CAG GGC TGG GTT CAG
Orangutan AGC GTG GGC TTC CCG GAA GAG CCA AGC ACC GGC TGC TCA TAT GGG ATG GGT-- GGG GGT GGT GCA GGT GCT CTG CAT GGG TTC CGC TGC CCT AAA GAG GGT ACA AAG GCC ACA CCT CCG TGT GTC TGC CAG GGC TGG GTT CAG

Gibbon AGT GTG GGC TTC CCG GAA GAG CCA AGC GCC AGC TGC TCA TAT GGG ATG GGT-- GGG GGT GGT GCA GGT GCC CTG CAT GGG TTC CGC TGC TCT AAA GAG GGT ACA AAG GCC ACA CCT CCA TGT GTC TGC CAG GGC TGG GTT CAG
Rhesus AGT GTG GGC TTT CCG GAA GAG CCA AGC GCC GGC TGC TCA TAT GGG ATG GGT-- GGG GGT GGT GCA GGT GCC CTG CAT GGG TTC CGC TGC CCT AAG GAG GGT GCC AAG GCC ACG CCT CTG CGT GTC TGC CAG GGC TGG GCT CAG

Crab_eating_macaque AGT GTG GGC TTT CCG GAA GAG CCA AGC GCC AGC TGC TCA TAT GGG ATG GGT-- GGG GGT GGT GCA GGT GCC CTG CAT GGG TTC CGC TGC CCT AAG GAG GGT GCC AAG GCC ACG CCT CTG CGT GTC TGC CAG GGC TGG GCT CAG
Baboon AGT GTG GGC TTT CCG GAA GAG ACA AGC GCC GGC TGC TCA TAT GGG ATG GGGTG GGG GGT GGT GCA GGT GCC CTG CAT GGG TTC CGC TGC CCT AAG GAG GGT GCC AAG GCC ACG CCT CTG CGT GTC TGC CAG GGC TGG GCT CAG

Green_monkey AGT GTG GGC TTT CCG GAA GAG CCA AGC GCC GGC TGC TCA TAT GGG ATG GGT-- GGG GGT GGT GCA GGT GCC CTG CAT GGG TTC CGC TGC CCT AAG GAG GGC GCC AAG GCC ACG CCT CTG CGT GTC TGC CAG GGC TGG GCT CAG
Marmoset --- --- --C TTC CCC AAA GAG CCC AGT GCC GAC GGC TTA CAG GGA ATG GAT-- GAG GAT GGT GCA A-T ACC CTT CAT GGG TTC CGG TGC CCT AAA GAG GAT GCC AAG GCC ACG CCT CTG CGT GTC TGC CAG GGC TGG GCT CAG

Squirrel_monkey --- --- --C TTC CCC AAA GAG CCC AGT GCC GAC AGC TCA TAG GGA ATG GGT-- GGG GAT GGT GCA A-T ACC CTG CAT GGG TTC CGG TGC CCT AAA GAG GGT GCC AAG GCC ACG CCT CTG TGC GTC TGC CAG AGC TGG GCT CAG
Bushbaby AGT GTG GGT GTT CCC ATA GAG CAA AGC ACC ACC TGC TCA TAT --- --- ----- GGG GAT GGT GCA CGT GCC CTG CAT GGG TTC TGC TAC CCA GAC TAG GAG GCA AAG GCG AGA CCT C-- --- --- TGC CAG GCC TGG GCT CAG

Human_aa  S  L  P  G  F  L  G  T  L  P  I  T  Q  R  F  Q  Y  D  H  M  F  R  T  A  T  L  V  K  A  R  R  E  H  F  S  N  V  Q  K  H  V  S  R  D  * 
Human AGC CTC C-CT GGC TTC CTG GGC ACT CTG CCT ATC ACA CAG CGA TTC CAA TAT GAT CAC ATG TTC AGA ACA GCC ACA CTT GTC AAA GC-A AGG AGA GAA CAC TTC AGC AAC GTT CAA AAA CAT GTC TCC AGG GAT TAA
Chimp AGC CTC C-CT GGC TTC CTG GGC ACT CTG CCT ATC ACA CAG CGA TTC TAA TAT GAT CAC ATG TTC AGA ACA GCC ACA CTT GTC AAA GC-A AGG AGA GAA CAC TTC AGC AAC GTT CAA AAA CAT GTC TCC AGG GAT TAA

Gorilla AGC CTC C-CT GGC TTC CTG GGC ACT CTG CCT ATC ACA CAG CGA TTC TAA TAT GAT CAC ATG TTC AGA ACA GCC ACA CTT GTC AAA GC-A AGG AGA GAA CAC TTC AGC AAC GTT CAA AAA CAT GTC TCC AGG GAT TAA
Orangutan ACC CTC C-CT GGC TTC CTG GGC ACT CTG CCT ATC ACA CAG CGA TTC TAA TAT GAT CAC ATG TTC AGA ACA GCC ACA CAT GTC AAA GC-A AGG AGA GAA CAC TTC AGC AAT GTT CAA AAA CAT GTC TCC AGG GAT TAA

Gibbon AGC CTC C-CT GGC TTC CTG GGC ACT CTG CCT ATC ACG CAG CGA TTC TAA TAT GAT CAC ATG TTC AGA ACA GCC ACA CTT GTC AAA GC-G AGG AGA GAA CAC TTC GGC AAT GTT CAA AAA CAT GTC TCC AGG GAT TAA
Rhesus AGC CTC C-CC GGC TTC CTG GGC ACT CTG CCT ATC ACA CAG CGA TTC TAA TAT GAT CAC GTG TTC AGA ACA GTC ACA CTT GTC AAA GC-A AGG AGA GAA CGC TTG AGC AAT GTT CAA AAA CGT ATC TCC AGG GAT AAA

Crab_eating_macaque AGC CTC C-CC GGC TTC CTG GGC ACT CTG CCT ATC ACA CAG CGA TTC TAA TAT GAT CAC GTG TTC AGA ACA GTC ACA CTT GTC AAA GC-A AGG AGA GAA CGC TTG AGC AAT GTT CAA AAA CGT ATC TCC AGG GAT AAA
Baboon AGC CTC C-CC GGC TTC CTG GGC ACT CTG CCT ATC ACA CAG CGA TTC TAA TAT GGT CAC GTG TCC AGA ACA GTC ACA CTT GTC AAA GC-A AGG AGA GAA CGC TTG AGC AAT GTT CAA AAA CGT ATC TCC AGG GAT AAA

Green_monkey AGC CTC C-CC GGC TTC CTG GGC ACT CTG CCT ATC ACA CAG CGA TTC TAA TAT GAT CAC GTG TTC AGA ACA GTC ACA CTT GTC AAA GC-A AGG AGA GAA CAC TTG AGC GAT GTT CAA AAA CGT GTC TCC AGG GAT AAA
Marmoset AGC CTC C-C- GGC TTC CTG GGC ACT CTG CCT ATC ACA TAG CAC TTC TAA GGT GAT CAC ATG TTC AGA ACA GCC ATC CTT GTC AAA GC-A AGG AGA GGA TGC TTC AGG AAT TTT CAA AAA CAT GTC TCT AGG GAT TAA

Squirrel_monkey AGC CTC C-G- GGC TTC CTG GGC ACT CTG CCT ATC ACA TAG CAC TTC TAA GAT GAT CAC ATG TTC AGA ACA GCC ATG CTT GTC AAA GC-A AGG AGA GGA TGC TTC AGG AAT TTT CAA AAA CGT GTC T-- AGG GAT TAA
Bushbaby AGC CTC CTCT GGC TCC CTG GGC ACT CTG CCT ATC ATA GGG TGC TTC TAA TAT TAT CAC ATG ATC AGA ACA GCC ACA CCT GTA AAA ACCA AAA AGA GAG CAC TTC AGT AAG CCT CAA AAA TGT GTC TCC AGG GAG CAG

CHS.16287

Human_aa  M  A  G  L  L  G  R  A  A  S  L  K  G  P  H  T  L  D  F  H  G  C  V  L  F  V  C  L  F  V  F  E  M  E  S  R  P  V  A 
Human ATG GCT GGT CTC CTG GGC AGA GCT GCT AGC CTT AAA GGG C--CA CAT ACG TTA GAT TTC CAC GGT TGT GTT TTG---- TTT GTT TGT TTG TTT GT-T TTT GAG ATG GAG TCC CGC CCT GTC GCC
Chimp ACG GCT GGT CTC CTG GGC AGA GCT GCT AGC CTT AAA GGG C--CA CAT ACA TTA GAT TTC CAC GGT TGT GTT TTG---- TTT GTT TGT TTG TTT GT-T TTT GAG ATG GAG TCC CGC CCT GTC GCC

Gorilla ATG GCT GGT CTC CTG GGC AGA GCT GCT AGC CTT AAA GGG C--CA CAT ACG TTA GAT TTC CAC GGT TGT GTT TTG---- TTT GTT TGT TTG TTT GT-T TTT GAG ATG GAG TCC CGC CCT GTC ATC
Orangutan ATG GCT GGT CTC CTG GGC AGA GCC GCT AGC CTT AAA GGG C--CA CAC ACT TTA GAT TTC TAC AGT TGT GT. ....... ... .TT TGT TTG TTT GT-T TTT GAG ACG GAG TCC CAC CCT GTT GCC

Gibbon ATG GCT GGT CTC CTG GGC AGA GCC GCT AGC CTT AAA GGG C--CA CAC GCT TTA GAT TTC CAC GGT TGT GTT TTG---- TTT GTT TGT TTG TTT GT-T TTT GAG ACG GAG TCC CGC CCT GTC ACC
Rhesus ATG ACT GGT CTC CTG GGC AGA GCC ACT AGC CTT AAA GGG TCACA CAC ACT TCA AAT TTC CAC GGT TGT GTT TTGTTTT TTT GTT TGT TTA TTT GT-T TTT GAG ATG GAG TCC CGC CCT ATC GCC

Crab_eating_macaque ATG ACT GGT CTC CTG GGC AGA GCC ACT AGC CTT AAA GGG TCACA CAC ACT TCA AAT TTC CAC GGT TGT GTT TTGTTTT TTT GTT TGT TTA TTT GT-T TTT GAG ATG GAG TCC CAC CCT GTC GCC
Baboon ATG ACT GGT CTC CTG GGC AGA GCC ACT AGC CTT AAA GGG CCACA CAC ACT TCA AAT TTC CAA GGT TGT GTT TTG---- TTT GTT TGT TTA TTT GT-T TTT GAG ATG GAG TCC CGC CCT GTC GCC

Green_monkey ATG ACT GGT CTC CTG GGC AGA GCC ACT AGC CTT AAA GGG CCACA CAC ACT TCA AAT TTC CAC GGT TGT GTT TTG---- TTT GTT TGT TTA TTT GT-T TTT GAG ATG GAG TCC CGC CCT GTC ACC
Marmoset ATG GCT GGT CTC CTG GGC AGA GCC ACC GGC CTT AAA GGG CCACA CAC ACT TCA AAT TTG CAT GGT TGT GGT TTT---- TTT GTT CGT TTG TTT TTGT TTT GAG ACG GAG TTC CAC TCT GTT GCC

Squirrel_monkey ATG GCT GGT CTC CTG GGC AGA GCC ACT AGC CTT AAA GGG CCACA CAC ACT TCA AAT TTC CAT GGT TGT GGT TTC---- TTT CTT TCT TTC TTT TT-T TTT TAG ACG GAG CTC CAC TCT GTT GCA
Bushbaby GTG GCT GGC CTC CTG GGC AGA ACC GCT AGC CTT GAA GGG CCGTG CAC ACT TCA GTT TTC CAC TCT TGT TTT ....... ... ... ... ... ... .... ... ... ... ... ... ... ... ... ...

Human_aa  Q  A  G  V  Q  W  R  D  L  S  L  L  Q  P  P  P  P  G  F  K  R  F  P  C  L  S  L  P  C  S  C  D  Y  R  H  T  L  P  * 
Human CAG GCT GGA GTG CAA TGG CGC GAT CTC AGT TTA CTG CAA CCT CCA CCT CCC GGG TTC AAG CGA TTC CCT TGC CTC AGC CTC CCA TGT AGC TGT GAC TAC AGG CAC ACA CTA CCA TGA
Chimp CAG GCT GGA GTG CAA TGG CGC GAT CTC AGT TTA CTG CAA CCT CCA CCT CCC GGG TTC AAG CGA TTC CCT TGC CTC AGC CTC CCA TGT AGC TGT GAC TAC AGG CAC ACA CTA CCA TGA

Gorilla CAG GCT GGA GTG CAA TGG CGC AAT CTC AGT TTA CTG CAA CCT CTG CCT CCC GGG TTC AAG CGA TTC CCT TGC CTC AGC CTC CCA TGT AGC TGT GAC TAT AGG CAC ACA CTA CCA TGA
Orangutan CAG GCT GGA GTG CAA TGG CAC GAT CTC GGC TTA CTG CAA CCT CCG CCT CCC GGG TTC AAG CGA TTC CCT TGT CTC AGC CTC CCA TGT AGC TGT GAC TAC AGG CAC ACA TTA CCA TGA

Gibbon CAG GCT GGA GTG TAA TGG CAC GAT CTC GGC TTA CTG CAA CCT CCG CCT CGC GGC TTC AAG CGA TTC CCT TGC CTC AGC CTC CCA TGT AGC TGT GAC TAT AGG TAC ACG CTA CGA TGA
Rhesus CAG GCT GGA GTG CAA TGG TGC AAT CTC AGC TTA CTG CAA CCT CTG CCT CCC GGG TTC AAG CGA TTC CCT TGC TTC AGC CTC CCA AGT AGC TGA GAC TAC AGG CAC AAA CCT CCA TGA

Crab_eating_macaque CAG GCT GGA GTG CAA TGG TGC AAT CTC AGC TTA CTG CAA CCT CTG CCT CCC GGG TTC AAG CGA TTC CCT TGC TTC AGC CTC CCA AGT AGC TGA GAC TAT AGG CAC ACA CCT CCA TGA
Baboon CAG GCT GGA GTG CAA TGG TGC AAT CTC AGC TTA CTG CAA CCT TTG CCT CCC AGG TTC AAG CAA TTC CCT TGC TTC AGC CTC CCA AGT AGC TGA GAC TAC AGG CAC ATA CCT CCA TGC

Green_monkey CAG GTT GGA GTG CAA TGG TGC AAT CTC AGC TTA CTG CAA CCT CCG CCT CCC GGG TTC AAG CGA TTC CCT TGC TTC AGC CTC CCA AGT AGC TGA GAC TAC AGG CAC ATA CCT CCA TGC
Marmoset TAG GCT AGA GTG CAA TGG TGT GAT CTT AGC TCA CTA CAA CCT CCG CCA CCC GGG TTC AAG CAA TTC GTT TGC CTC AGC CTC CCA AGT AGC TGG GAC TAC AGG CGC ACA CCA CCA TGC

Squirrel_monkey TAG GCT AGA GTG CAA TGG TAT GAT CTT AGC TCA CTG CAA CCT CCG CCT CCC GGG TTC AAG CAA TTC GCT TGC CTC AGC CTC CCA AGT AGC TGG GAC TAC AGG CAC ACA CCA CCA TGC
Bushbaby ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

CHS.53541

A	

B	

GAC  No Change     
GAT  Synonymous    
GAA  Conservative   
GGG  Radical     
TAA  Ochre Stop Codon
TAG  Amber Stop Codon
TGA  Opal Stop Codon
ATG  In-frame ATG
GA-  Indel       
GAC  Frame-shifted   
 <6  Splice Prediction
 []  Exon Break     
...  No alignment   
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novel protein-coding predictions. However, while differential expression might potentially be an 
indication that an RNA molecule is functional, it is not an indication that it functions at the protein 
level. In fact, protein-coding genes tend to be less tissue specific than lncRNAs (Cabili et al. 
2011). 

Discussion	

The integration of massive data sets of transcriptional information with predictions of protein-
coding potential is a promising approach to guide the discovery of previously unannotated 
protein-coding genes, with the understanding that in extensively scrutinized genomes like 
human finding even a handful of novel protein-coding genes is challenging. In reprocessing a 
large number of high quality and biologically interesting RNAseq datasets from GTEx, Pertea et 
al. have created an important starting point for this investigation. However, the subsequent 
process of protein-coding annotation suffers from a number of flaws that have resulted in a large 
number of false positives. The discovery of hundreds of novel human protein-coding genes is an 
extraordinary claim that must be backed up by strong experimental or evolutionary evidence. 
However the 1,178 CHESS novel protein-coding predictions have little support for coding 
potential beyond homology to other predictions that are themselves questionable and do not 
hold up to scrutiny. Our reanalysis of the evidence indicates that nearly all of the novel coding 
predictions lack the evolutionary signatures of protein-coding genes, stem from homology to 
transposons, and are unlikely to represent functional protein-coding genes.  

Can	transposon-associated	sequences	code	for	protein?	
Since so many of the novel protein-coding predictions are associated with transposons, it is 
important to consider whether there is evidence that these can be protein-coding. It is true that a 
number of human coding genes in GENCODE and RefSeq are derived from transposons 
(Riordan and Dupuy 2013), but in all cases these genes are well established and have cross-
mammalian conservation, whereas the novel coding predictions based on transposons have 
little to no conservation. Also, almost all of the transposon-derived protein-coding genes that are 
recognized in human feature coding sequences that have evolved from protein-coding regions 
contained in the transposon (Riordan and Dupuy 2013). For example, members of the ancient 
ZBED gene family incorporate transposase domains contributed by hAT DNA transposons 
(Hayward et al. 2013). In contrast, more than two thirds of the novel coding predictions overlap 
Alu elements. In common with other members of the SINE family, Alu elements do not contain 
protein-coding regions; instead, the core sequence is thought to be derived from a noncoding 
signal recognition particle RNA gene. Thus, the only way the transposon-associated novel 
coding predictions could contain genuine coding sequences is if the majority were de novo 
emergences from noncoding sequences.  

We are aware of just one previous study that supports the coding status of primate-derived 
transposon-based ORFs (Toll-Riera et al. 2009). Toll-Riera et al. identified 154 genes derived 
from LINE or SINE transposons during primate evolution that were classified as coding in 
Ensembl. However, the authors used Ensembl version 48, which predated the GENCODE 
expert annotation process. Today, we observe that over 90% of the transposon-based genes 
from this paper are no longer classified as coding by GENCODE, while the remaining 13 were 
all tagged as potential noncoding in a recent study (Abascal et al. 2018). Four of these 13 genes 
have already been reclassified as noncoding by human experts and the other 9 are under 
review. Nonetheless, two of these genes - LINC00269 and C8orf44 - are still annotated in 
reference sets and were used to identify 137 novel coding predictions in the CHESS database 
based on their classification as protein-coding loci.  
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The authors of the CHESS database did recognize that at least 132 of their novel ORFs 
overlapped transposons (62% of these were similar to GenBank prediction LP3428), but stated 
that these novel ORFs could be coding because “many retroposed genes have been previously 
reported as functional, particularly those that exhibit testis-biased expression”. However, the 
referenced paper (Emerson et al. 2004) specifically supports the functionality of retrotransposed 
protein-coding genes. These arise when mRNAs are inserted into the genome sequence 
through the activity of enzymes encoded by retrotransposons; they are not in themselves 
transposon-based ORFs. Also, the testis bias reported by Emerson et al only applied to those 
retrotransposed copies of coding genes that were on the X chromosome, and only 8 of the 132 
transposon-based ORFs recognized by Pertea et al. are on the X chromosome. 

Recommendations	for	future	studies	
A plethora of recent papers proclaim the discovery of hundreds or thousands of new human 
protein-coding ORFs (see Introduction), so it seems likely that there will be further studies of this 
type. For that reason we would like to make several recommendations that authors and 
reviewers alike might like to bear in mind with the aim of achieving higher confidence protein-
coding predictions. 

First, data should be filtered for the complete list of transposons. Second, ORFs predicted to be 
protein-coding based on homology should extend the full length of the coding homolog, unless 
there is independent evidence of functional translation, to avoid inclusion of pseudogenes. 
Third, any homology must be to manually-curated genes, not to predicted genes. Fourth, 
expression at the transcript level is not protein-coding evidence; even ribosome profiling data is 
not in itself proof of translation into a functional protein. Fifth, be conservative when attributing 
protein evidence from proteomics experiments; most novel protein coding genes will be hard to 
detect in standard proteomics experiments because they are likely to be expressed only in low 
quantities or in limited tissues, but using less stringent thresholds to compensate for that is likely 
to result in many false positives. Sixth, conservation among related species should be tested 
against a null model defined by noncoding regions in order to detect purifying selection. Finally it 
is important that all novel predictions are manually inspected, and not just a select few. Authors 
should not implicitly trust their own predictions. For example, manual inspection of the CHESS 
novel protein-coding predictions has quickly revealed that most are based on homology to the 
same few annotations, many of which are low quality predictions. 

Finally, to achieve the level of quality needed for reference gene catalogs, annotation should be 
supported by the intersection of multiple orthogonal datasets. For example, GENCODE recently 
added 16 novel human protein-coding genes from mass spectrometry experiments (Wright et al. 
2016) and another 139 were added to GENCODE versions 24-28 (December 2015 through 
April 2018) through a process that combined evolutionary signatures,  experimental evidence, 
and expert manual annotation (Mudge et al. In preparation). In both cases the manual step was 
essential to weed out false positives. 

The GENCODE gene set continues to be updated, and GENCODE does not claim that the 
current catalog of human protein-coding and noncoding genes is complete. For example, 67, 
27, and 43 protein-coding genes were newly annotated and 180, 7, and 41 were deprecated in 
the last three GENCODE versions (v26-v28, released in March 2017, August 2017, and April 
2018, respectively). There are likely to be additional protein-coding genes remaining to be 
discovered, and certain protein-coding genes currently annotated may be false predictions. The 
GENCODE Consortium looks forward to continued interactions with the community to 
incorporate new methods and results with the aim of narrowing the gap between the current 
reference gene annotation sets and the complex biological reality it aims to represent. As just 
one example, the set of lncRNAs recently produced by the FANTOM project (Hon et al. 2017) 
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were incorporated into the GENCODE capture long-read sequencing experimental validation 
pipeline (Lagarde et al. 2017) with the goal of eventually deriving the full length structure of 
potentially novel lncRNAs yet to be annotated in GENCODE. Similarly, The Consortium is eager 
to better understand and learn from those who are using GENCODE gene annotation and 
encourage direct communication via gencode-help@ebi.ac.uk.  

We hope that our observations here will lead to improvements in the CHESS methodology and 
database, and also help guide future large-scale experiments and computational analyses 
carried out by others.  

Methods	
All references to the Pertea et al. manuscript, its supplementary material, and the CHESS 
database refer to versions downloaded on June 1, 2018. Transcripts were extracted from the 
GFF file downloaded from http://ccb.jhu.edu/chess/data/chess2.0.gff.gz. 

RepeatMasker regions were obtained from the UCSC genome browser at  
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/hg38.fa.out.gz. GENCODE overlaps 
were calculated using GENCODE version 28 (April 2018). When calculating the fraction of 
overlap with APPRIS principal isoforms, we used all transcripts tagged as “appris_principal_1”. 

PhyloCSF was run using the 58 mammals parameters and the “mle” and “bls” options on the 
ORF of each transcript, excluding the stop codon, and the resulting score was divided by the 
length of the ORF in codons to obtain the score per codon. Alignments were extracted from the 
100-vertebrate MULTIZ hg38 alignment obtained from the UCSC genome browser (Casper et 
al. 2017), with species restricted to the 58 placental mammals. Coding controls were a randomly 
chosen subset of 1365 protein-coding transcripts from the CHESS database that were not in 
genes with status “novel” or “known_fantom”. To choose noncoding controls, we found the 
longest theoretical ORF in each lncRNA transcript in GENCODE v28, rejecting any that were 
not at least 60 codons long. We then chose the subset of 1365 that best matched the 
phylogenetic branch lengths of the species present in the local alignments of the CHESS novel 
coding transcripts. Among the CHESS novel coding transcripts there were three whose per-
codon PhyloCSF score was approximately 14.5, which is near the middle of the coding 
distribution, those being three transcripts of CHS.16591. All others had score less than 3, which 
is within the noncoding distribution. 

We estimated the fraction of GENCODE pseudogenes whose longest ORF is more than 75% as 
long as those of the parents using the subset consisting of the 1300 pseudogenes whose name 
is the name of a coding gene, followed by the letter P, followed by an integer (e.g., RPL31P2, 
which is RPL31 pseudogene 2), because these had unambiguous parents. 

Alignments in Fig. 5 were color-coded using CodAlignView (I Jungreis, MF Lin, CS Chan, M 
Kellis 2016). 

Manual analysis of genes was carried out according to GENCODE annotation guidelines, 
documented here: 
ftp://ftp.sanger.ac.uk/pub/project/havana/Guidelines/Guidelines_March_2016.pdf 

Counts of genes added (or deprecated) in various GENCODE versions were determined by 
counting protein-coding genes in one version for which none of the CDSs of their transcripts 
overlapped the CDS of any protein-coding transcript in the previous (or next) version. 

Supplementary	Material	
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Supplementary Table 1 is a tab-delimited file which includes the information from the first tab of 
Pertea et al. supplementary file CHESS_genes.xlsx (which lists all of the CHESS protein-coding 
predictions with genomic location and description) plus the following columns: 

● “Group” indicates group to which novel ORF belongs according to similarity. 
● “PerteaTransposon” indicates protein-coding predictions listed as over-expressed in 

testis and overlapping retroposons in Pertea et al. Supplementary Table S5. 
● “RepeatOverlaps” lists all repeat classes reported by RepeatMasker that overlap the 

protein-coding prediction,  in decreasing order of size of overlap. 
● “FractionRepeat” has the fraction of all nucleotide positions in ORFs of the protein-

coding prediction that are in a RepeatMasker region. 
● “FractionTransposon” has the fraction of all nucleotide positions in ORFs of the protein-

coding prediction that are in a transposon-associated RepeatMasker region, i.e., one 
whose repeat class is not Simple_repeat or Low_complexity and does not start with 
Satellite. 
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