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Abstract 
The resistance of Glioblastoma (GBM) to conventional cytotoxic drugs has prompted novel 

therapeutic strategies, including differentiating tumor propagating cells (TPCs) into less tumorigenic 

cells using small molecule inducers of TPC differentiation. However, high-throughput screening for 

such molecules is hampered by the lack of robust markers of GBM differentiation. To obtain a 

signature of differentiated TPCs, we developed “Microscopic Imaging of Epigenetic Landscapes” 

(MIEL), which captures patterns of nuclear staining for epigenetic marks to derive feature-fingerprints 

of individual cells. We confirmed MIEL’s ability to accurately distinguish multiple cell fates and 

identified a multiparametric epigenetic signature of differentiated TPCs. Critically, we validated 

epigenetic imaging-based signature using global gene expression thus providing the proof of principle 

for the MIEL’s ability to select and prioritize small molecules, which induce TPC differentiation.  
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Introduction 
Malignant GBM is the most common and lethal brain tumor, however, current therapeutic options 

offer little prognostic improvement, and the median survival time has remained virtually unchanged for 

several decades (1-3). GBM tumor mass is a heterogeneous mix of cells expressing lineage markers 

found in neural stem/precursor cells, neurons, and glia, and aberrantly expressed proliferation 

markers (4,5). TPCs are a subpopulation of GBM cells with increased tumorigenic capability (6) 

operationally defined as early passaged (<15) GBM cells propagated in serum-free medium (7).  

 Compared to the bulk of the tumor, TPCs are more resistant to drugs, such as temozolomide 

(TMZ), and radiation therapy (8,9). This resistance may explain the failure of traditional therapeutic 

strategies based on cytotoxic drugs targeting GBM. A promising alternative approach aims to drive 

differentiation of tumor cells, particularly TPCs, thereby reducing tumor expansion through decreased 

cell proliferation and increasing sensitivity to cytotoxic treatments (10-15).  

 Culturing primary GBM cells in serum-containing medium induces their differentiation into cells 

with drastically reduced tumorigenic potential (16). In addition, Bone Morphogenetic Protein 4 (BMP4) 

treatment was reported to induce GBM differentiation (17,18), which might be reversible (19) and is 

contingent on the presence of functional BMP receptors (20). These observations support the 

potential therapeutic value of small molecules that mimic the differentiation effect of serum and BMPs 

on TPCs. Several studies successfully performed high content screenings using normal neural 

progenitor and monolayer cultures of GBM to identify cytotoxic molecules (21,22). However, attempts 

to design screening strategies identifying inducers of GBM differentiation have been met with multiple 

difficulties. One critical problem is the lack of informative markers for GBM differentiation. The most 

commonly used markers (e.g. sex-determining region Y-box 2 (SOX2) and glial fibrillary acidic protein 

(GFAP)), exhibit highly variable expression in TPCs (4) and in our hands these markers failed to 

prioritize molecules mimicking serum/BMP ability to differentiated GBM. In addition, recent single-cell 

expression analysis of primary GBM was unable to identify a limited set of GBM differentiation 

markers that could be used for high-throughput screening (23). 

 Here, we introduce MIEL, a novel phenotypic screening platform that takes advantage of 

epigenetic modifications and multiparametric image analysis to reveal a signature of TPC 

differentiation amenable to high-content screening. We have validated MIEL’s ability to select and 

prioritize small molecules mimicking serum/BMP4 effect on GBM using global gene expression 

profiling. This new approach opens the door for discovering small molecule drugs that can phenocopy 

the effect of biologicals such as serum or BMP known to induce GBM differentiation.  

 

Results 
Brief treatment with serum or Bmp4 initiates TPC differentiation.  
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A comparative analysis of gene expression changes in TPCs following short serum or Bmp4 

treatment, which is relevant to our high-throughput screening objective, has not been conducted. We 

therefore treated several GBM cell lines for 3 days with serum or Bmp4 and then quantified 

expression of core transcription factors previously shown to determine the transcriptomic program of 

TPCs (6). Immunostaining revealed that the 4 transcription factors Sox2, Sall2, Brn2 and Olig2 were 

down regulated by both serum and Bmp4 in a cell line dependent manner (Supplementary Fig. 1a). 

After 3 days of treatment, the growth rate of TPCs was reduced by both serum and Bmp4 

(Supplementary Fig. 1b). RNAseq analysis of serum and Bmp4 treated GBM2 cells revealed that 3 

days treatment reduced (vs untreated cells) the expression of most genes previously found to 

constitute the transcriptomic stemness signature (23) (Supplementary Fig. 1c). To identify the cellular 

processes altered by these treatments, we conducted differential expression analysis. We found that 

expression of 4852 genes was significantly altered (p<0.01 and -1.5<Fold Change >1.5) by either 

serum or Bmp4 treatment. Gene Ontology (GO) analysis of these altered genes indicated enrichment 

in multiple GO categories consistent with initiation of TPC differentiation – including cell cycle, cellular 

morphogenesis associated with differentiation, differentiation in neuronal lineages, histone 

modification, and chromatin organization (Supplementary Fig. 2). Taken together, these results 

demonstrate that a 3 days treatment with serum or Bmp4 is sufficient to result in transcriptomic 

changes characteristic of TPC differentiation.  

  
Sox2- and GFAP-based screening doesn’t prioritize inducers of TPC differentiation.  
Several studies suggest that Sox2 function is required for maintenance of TPCs and that its 

knockdown induces TPC differentiation (6,15,24,25). We therefore selected Sox2 as a marker of the 

TPC state. For the differentiated state, we selected GFAP, an astrocytic marker previously shown to 

be upregulated following differentiation of TPCs (6,24). We confirmed that Bmp4, but not serum, 

treatment also increased GFAP expression (Supplementary Fig. 1a).  

 Among several GBMs tested, the GBM2 line exhibited the largest reduction in Sox2 and 

increase in GFAP and was selected for screening. GBM2 TPCs were plated in 384-well plates, 

treated with the Prestwick library compounds (10 µM, 1200 molecules) for 3 days, fixed, and then 

immunostained for Sox2 and GFAP. Hits were defined as compounds that increased GFAP and 

decrease Sox2 by more than 40% or any compounds that decrease Sox2 alone by more than 100%; 

Bmp4 was used as a positive control (Fig. 1a). We detected 19 hits (Supplementary Fig. 3), however, 

reduced cell viability and the presence of pyknotic nuclei indicated apparent cytotoxicity of the most 

hits (z-score for viable cell count less than -4 compared with -2.33 for Bmp4; Supplementary Fig. 3). 

We therefore retested the hit compounds at lower concentrations (3, 1 and 0.3µM) and observed that 

a 3 days treatment with 0.3µM Digitoxigenin, a Na+/K+ ATPase inhibitor, was able reduce Sox2 
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expression while maintaining growth rate and Ki67 expression levels similar to Bmp4 (Fig. 1b, c and 

supplementary Fig. 10a). A related compound Digoxin also reduced Sox2 expression but induced a 

stronger reduction in growth rate (Fig. 1b, c and supplementary Fig. 10a); both Digitoxigenin and 

Digoxin were able to downregulate expression of the core transcription factors similar to serum and 

Bmp4 (Fig. 1c). To validate these results using a “gold standard” of cell fate analysis, we conducted a 

whole genome expression analysis of treated GBM2 TPCs. To test whether Digitoxigenin and Digoxin 

increased transcriptomic similarity of treated cells to serum or Bmp4 treated cells we used FPKM 

values of all expressed genes (FPKM>1) to calculate the Euclidean distance between drug and 

serum or Bmp4 treated cells. We discovered that neither Digitoxigenin nor Digoxin reduced the 

distance of treated cells to the desired state (Fig. 1d). Several representative GO terms illustrate the 

gene expression changes induced by digoxin and digitoxigenin which were markedly different from 

those induced by serum or BMP4 (Fig. 1e). We concluded that our 2 top hits didn’t induce desirable 

TPC fate change, despite downregulation of some core transcription factors essential for TPC 

propagation. Our results emphasize the need of developing novel approaches to interrogate TPC 

differentiation, which are compatible with the high-throughput screening and align well with the entire 

transcriptome analysis. 

 
Development of MIEL platform.  
We developed novel phenotypic screening platform, which interrogates the epigenetic landscape at 

single cell level using imaged-based machine learning. MIEL takes advantage of epigenetic marks 

such as histone methylation and acetylation, which are always present in eukaryotic nuclei and can 

be revealed by immunostaining. MIEL analyzes the immunolabeling patterns of epigenetic marks at 

the single-cell level – using conventional image analysis methods for segmentation of nuclei, feature 

extraction and previously described machine learning algorithms (26) (Fig. 2a, Supplementary Fig. 

4a, b, and Methods).  

 Primarily, we utilized 4 histone modifications: H3K27me3 and H3K9me3, which are associated 

with condensed (closed) facultative and constitutive heterochromatin, respectively; H3K27ac, 

associated with transcriptionally active (open) areas of chromatin, especially at promoter and 

enhancer regions; and H3K4me1, associated with enhancers and other chromatin regions (27,28). To 

focus the learning algorithm on the intrinsic pattern of epigenetic marks, we discarded the intensity 

and nuclear morphology features and used only texture-associated features (e.g. Haralick's texture 

features (29), threshold adjacency statistics, and radial features (30)) for multivariate analysis. 

Previous studies have successfully employed similar features for cell painting techniques combined 

with multivariate analyses to accurately classify subcellular localization of proteins (30), cellular 

subpopulations(31), and drug mechanisms of action (26,32-34). We interpreted the observed patterns 
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as a 2D projection of the 3D topological distribution of a given epigenetic mark in the nucleus. 

Although this representation degrades the spatial information, the resulting 2D textures, such as foci 

of high and low intensity, are visually apparent in the computer-enhanced images (Supplementary 

Fig. 4a). 

 

MIEL analysis provides signatures of cell fates. 
We developed MIEL to distinguish between differentiated and undifferentiated TPCs, and to obtain a 

multiparametric signature of differentiated TPCs. To validate MIEL’s ability to discriminate between 

different cellular states/fates involving major changes in chromatin organization (e.g., reprogramming 

and differentiation), we analyzed 3 cell types: primary human fibroblasts isolated from 3 donors (WT-

61, WT-101, WT-126), induced pluripotent stem cell (iPSC) lines derived from the fibroblasts, and 

neural progenitor cell (NPC) lines differentiated from the iPSCs, therefore providing genetically 

matching fibroblasts, iPSC and NPC cells (the cell lines were kindly provided by the Moutri group, 

UCSD). Cellular identities of the 3 cell types were verified by immunofluorescence (Fig. 2b). 

The 9 cell lines were immunostained for H3K4me1 and H3K9me3 marks, chosen based on 

major pattern alteration of these marks during differentiation (35,36). Note that immunostaining for 

H3K27ac and H3K27me3 marks produced a similar distance map (Supplementary Fig. 5a). Both 

pairs of epigenetic marks were used interchangeably for further analysis. We segmented images and 

extracted image features, as previously described (26). Multivariate centroids were calculated for 

each cell population. Multi-dimension scaling (MDS) was employed to reduce 524 texture features 

into 2D and plotted to visualize the relative Euclidean distance between various cell populations 

(referred to as the “distance map”). Fibroblasts, iPSCs and NPCs each segregate to form 3 visually 

distinct territories (Fig. 2c).  

 To determine whether it was possible to discriminate between individual cells with different 

fates, a Support Vector Machine (SVM) classifier was trained using fibroblasts, iPSCs, and NPCs 

derived from donor WT-61. This classifier accurately identified 79% of fibroblasts, 79% of iPSCs and 

97% of NPCs (overall accuracy 85% Fig. 2d; overall accuracy for H3K27ac and H3K27me3 based 

classification was 82% Supplementary Fig. 5b). Similar results were obtained when the classifier was 

trained using cell lines from the other 2 donors. A classifier derived by pooling WT-61, WT-101, and 

WT-126 cells correctly identified 89% of fibroblasts, 90% of iPSCs and 94% of NPCs (overall 

accuracy 91% Fig. 2e; overall accuracy for H3K27ac and H3K27me3 based classification was 90% 

Supplementary Fig. 5c). Furthermore, a direct pairwise classification distinguished different genetic 

backgrounds with 74% (Supplementary Fig. 5d). Additionally, MIEL analysis was able to discriminate 

between various primary hematopoietic cell types freshly isolated from mouse bone marrow 

suggesting that such analysis is not a cell culture artifact (Supplementary Fig. 6). 
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 These results suggest that MIEL can be used to distinguish between different differentiation 

states based on their single-cell epigenetic landscapes. Furthermore, we were able to derive 

multiparametric signatures for several cell types (e.g., fibroblasts, iPSCs, NPCs) that discriminate 

each cell type from the others.  

 

MIEL determines signature of TPC differentiation. 
To begin deriving the signature of GBM differentiation, we tested MIEL’s ability to distinguish TPCs 

and differentiated glioma cells (DGCs), derived from the same primary human GBMs (6). Three 

TPC/DGC pairs (kindly provided by the Bernstein group, MGH, Harvard) were derived in parallel from 

3 genetically distinct GBM tumor samples (MGG4, MGG6, and MGG8) over a 3-month period using 

either serum-free FGF/EGF conditions for TPCs or 10% serum for DGCs (6). MIEL analysis 

distinguished TPCs from their corresponding DGC lines with an average accuracy of 83%, using any 

of the 4 epigenetic marks tested (H3K27me3, H3K9me3, H3K27ac, and H3K4me1; Fig. 3a, b). An 

SVM classifier derived from images of the MGG4 TPC/DGC pair separated all 3 TPC/DGC pairs with 

88% average accuracy, providing proof of principle for the derivation of a signature for non-

tumorigenic cells obtained following serum differentiation of primary GBM cells (Fig. 3c). 

 Next, we asked whether shorter serum treatment (compatible with the screening protocols) 

would induce detectable epigenetic alterations. We treated 4 low-passage primary TPCs for 9 days 

with 10% serum and compared their epigenetic landscape to that of untreated cells and “terminally” 

differentiated DGCs. As before, we used MDS to visualize the relative Euclidean distance between 

populations. While untreated cells were quite heterogeneous, serum treatment reduced the distance 

from all TPC centroids to DGC centroids (n=4 cell lines, p<0.05; unpaired two-tailed t-test; 

Supplementary Fig. 7a, b). These concordant results obtained with 7 independent human GBM lines 

attest to the robustness of the serum-induced epigenetic changes detected by MIEL and suggesting 

that similar epigenetic patterns may exist in other differentiated GBM lines. 

 To compare the outcomes of several experiments using multiple GBM lines and treatments, 

we developed a normalization procedure that compares the changes in feature space induced by 

treatments by bringing together the centroids of all TPCs (including MGG-TPCs). The results are then 

displayed using a polar plot in which treatments for each cell line are represented as vectors with a 

magnitude - rho (the distance from the center) and directionality given by the angular coordinate 

theta. Remarkably, for all GBM lines, the magnitude and direction of changes induced by 9-day 

serum treatment were comparable and similar to that seen in the MGG TPC/DGC pairs (rho: FBS-

9d=10.1±1.0, DGCs=10.0±1.64; theta: FBS-9d=-2.4±0.2, DGCs=-2.5±0.4); three-day serum 

treatment induced feature changes comparable in direction, but not magnitude (rho: FBS-3d=4.1±1.0; 

theta: FBS-3d=-2.2±0.5; Fig. 3d and Supplementary Fig. 7c).  
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 To test the accuracy of separating TPCs and DGCs at the single-cell level we generated an 

SVM classifier trained on texture features derived from a random subset of H3K27ac and H3K27me3 

images of TPCs and DGCs (MGG4,6,8 pooled for both). The classifier separated pooled TPCs from 

pooled DGCs with 92.8% accuracy (Fig. 3e) and categorized 76% of untreated cells as TPCs and 

69% of serum-treated cells as DGCs (Fig. 3e).   

 These experiments demonstrate that MIEL is suitable to determine a signature of differentiated 

GBM cells across multiple genetic backgrounds. Furthermore, MIEL can detect serum-induced 

changes in GBM epigenetic pattern within several days to monitor the progress of TPC differentiation 

in a timeframe suitable for high content screening.  

 

Validation of MIEL signature using global transcriptomic analysis. 
Previous work indicated distinct features of GBM differentiation induced with BMP compared to serum 

(19). Indeed, we observed distinct expression changes, including differences in expression of genes 

regulating chromatin organization and histone modifications (Supplementary Fig. 8), between serum- 

and Bmp4-induced GBM differentiation. Therefore, we inquired whether MIEL approach could 

distinguish these differentiation modalities, in particular at the early time points. 

 We treated 4 genetically distinct GBM lines for 2 days with serum or BMP4 and conducted 

MIEL analysis using H3K9me3 and H3K4me1 marks. To visualize the changes induced by each 

treatment, we used polar plot normalization, as described above. Indeed, we observed that serum 

and BMP4 induce distinct epigenetic changes as detected by MIEL for each GBM line tested (Fig. 3f).  

 Global gene expression profile represents a gold standard to define the cellular state (37). 

Therefore, we asked whether the relative distances between distinct cellular states, for instance, 

untreated GBM cells, serum treated, and BMP treated GBM cells correlate using MIEL-based metrics 

and global gene expression-based metrics. We sequenced untreated and 3 days serum or Bmp4 

treated GBM2 TPCs. All genes with FPKM>1 in at least one cell population were used to calculate the 

Euclidean distance matrix between all cell populations. FPKM-based distances were then correlated 

to image texture feature-based distances. The resulting Pearson correlation coefficient of R=0.93 

suggests a high correlation between these 2 metrics (Fig. 3g, h) and validates the robustness of MIEL 

approach for the analysis of GBM differentiation.  

These experiments demonstrate that MILE is capable of distinguishing closely related GBM 

differentiation routes induced by serum or BMP. Critically, these results validate the robustness and 

accuracy of MIEL-based analysis of epigenetic patterns using conventional global gene expression 

approach. 

 

MIEL prioritizes compounds based on serum/Bmp4 signature of GBM differentiation. 
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To test whether MIEL can prioritize compounds based on serum/Bmp4 signature of GBM 

differentiation, we re-screened the Prestwick compound library (at lower concentration, 3 µM to 

minimize toxicity). GBM2 TPCs were plated on 384-well plates, treated for 3 days with Prestwick 

compounds fixed, and then immunostained for H3K27ac and H3K27me3. GBM2 cells treated with 

DMSO, serum, BMP4, or compound were compared within the same plate (to avoid imaging artifacts 

and normalization issues). To identify compounds inducing epigenetic changes reminiscent of 

serum/BMP4-induced differentiation, we conducted pairwise classification of DMSO- and either 

serum- or BMP4-treated cells.  Because both serum and BMP4 induce TPC differentiation and 

reduce tumorigenicity we selected compounds that induced at least 50% of the cells to be classified 

as either serum- or BMP4-treated. We then calculated the Euclidean distance between these 

candidate compounds and serum/BMP4 treated cells – selecting compounds for which the distance 

to one or both treatments was less than the distance between DMSO and that treatment. This screen 

yielded 20 candidate compounds (Supplementary Fig. 9a), of which 15 belonged to 1 of the following 

4 categories: Na/K-ATPase inhibitors of the digoxin family, molecules that disrupt microtubule 

formation or stability, topoisomerase inhibitors, and nucleotide analogues that disrupt DNA synthesis.  

Of these 15 candidate compounds, we chose 2 top compounds from each of the 4 categories 

(8 total) for further analysis. For each of the 8 compounds, we used pairwise classification of 

untreated cells and either serum- or Bmp4-treated cells to identify the lowest concentration where at 

least 50% of cells are categorized as treated (Supplementary Fig. 9b). These concentrations were 

used for all subsequent experiments. Because most of these compounds are known for their cytotoxic 

effects, we verified the growth rates of drug-treated GBM cells. With the exception of Digoxin, which 

was cytostatic, treatment with drugs resulted in the growth rates comparable with that induced by 

serum/BMP4 treatment (supplementary Fig. 10a). We used immunofluorescence to test for the 

expression of the core TPC transcription factors (Sox2, Sall2, Brn2 and Olig2). With the exception of 

Trifluridine all compounds induced statistically significant reductions in Sox2, but no reduction in the 

other core factors (Supplementary Fig. 10b; see Fig. 1c for Digoxin and Digitoxigenin)  

Next, we investigated whether MIEL can prioritize compounds according to their effect on TPC 

as judged by the transcriptomic changes induced by these compounds. GBM2 cells were treated 

with DMSO (negative control), serum or Bmp4 (positive controls), or 1 of the 8 candidate compounds; 

after 3 days, RNA was extracted and sequenced. Transcriptomic profiles of the 8 compounds were 

ranked according to average Euclidean distance (based on FPKM values for all expressed genes) 

from serum/BMP4-treated cells. To safeguard against potential artefacts of cytotoxicity we compared 

gene expression-based ranking with the measured cellular growth rates for all drug treatments. 

Indeed, no positive correlation was revealed (Supplementary Fig. 10c). 
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Next, we compared the levels of Sox2 expression under all treatment conditions to determine 

whether this metric is informative for identifying the drugs that best mimic serum/BMP4 treatment. We 

did not observe a positive correlation between Sox2 expression levels and the transcriptomic-based 

rankings (Fig. 4a), suggesting that SOX2 level alone is insufficient to stratify the compounds. 

To compare MIEL based signatures to the transcriptomic profile we first sought to get a 

comprehensive readout of the epigenetic landscape of treated cells. We therefore conducted MIEL 

analysis using an additional set of histone modifications including H3K9me3 and H3K4me1 marks. 

We then ranked MIEL readouts of cells treated with the 8 drugs according to average Euclidean 

distance from serum- or Bmp4-treated cells (calculated using texture features derived from images of 

4 histone modifications). Comparison of the MIEL-based metric with the gene expression-based 

metric revealed a high degree of positive correlation between MIEL- and gene expression-based 

rankings (Pearson correlation coefficient R=0.92, p<0.001, one side t-test, n=6, Fig. 4b). To further 

visualize these results, we constructed heat-maps depicting fold change in expression of genes 

associated with several GO terms enriched by serum and Bmp4 treatments. Our top candidate, 

etoposide, altered expression of a large portion of genes in a similar fashion to that of serum and 

BMP4; in contrast, the lowest-ranking candidate, digoxin, induced gene expression changes that 

were rather different from serum and BMP4 (Fig. 4c).  

The above results suggest a robust correlation between MIEL- and global expression-based 

readouts of GBM differentiation, therefore validating MIEL approach for prioritizing hits in high-content 

screening aimed at identifying small molecules that mimic the effect of serum/BMP4 on GBM 

differentiation.   
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Discussion 
 Cytotoxic drugs have had limited success treating GBM; therefore, we focused on the 

alternative approach - inducing GBM differentiation. We analyzed previously established biologicals 

such as serum and BMP4 known to induce GBM differentiation in culture (16-18) and established 

signatures of such differentiated GBM cells based on the pattern of epigenetic marks that could be 

applied across several genetic backgrounds. This is the first time that GBM differentiation signature 

suitable for high-throughput drug screening could be obtained. Indeed, the results of previous studies 

using bulk analysis of GBM (19) or single-cell sequencing (23) could not be readily applied for high-

throughput screening. As a proof of principle, we analyzed Prestwick chemical library of 1200 

approved drugs to validate MIEL’s ability to select and prioritize small molecules, which mimic the 

effect of serum and BMP4 using global gene expression profiling. Surprisingly, we observed that the 

degree of reduction in endogenous SOX2 protein levels following drug treatment did not correlate 

with the degree of differentiation assessed by global gene expression. In contrast, the MIEL-based 

metrics did correlate with the degree of differentiation assessed by global gene expression. 

Therefore, MIEL can be readily applied to screen large compound libraries using a reference 

signatures of GBM differentiation (e.g. serum or BMP4) to identify novel small molecules that mimic 

the effect of serum or BMP4 on GBM. 

 Accurately defining the identity of a cell is of fundamental importance to cell biology. Currently, 

this is done by assessing the presence or absence of a panel of experimentally verified lineage-

specific markers. However, these markers require manual and arbitrary thresholding, which could be 

confusing and potentially contributes to multiple challenges of reproducibility in biomedical science 

(38,39). These concerns are alleviated by expression profiles that use hundreds of genes to assign a 

specific gene signature to a given cell type. However, at a single-cell level, expression profiling 

becomes stochastic, and is difficult to apply to high-throughput analysis in a cost- and time-effective 

manner. Phenotypic drug screening is an emerging technology that is revolutionizing drug discovery 

(26,33,40). Here, we described a new method for phenotypic identification of a cell state that offers 

reproducibility, single-cell resolution and scalability for high-content screening. MIEL takes advantage 

of robust and reproducible patterns of epigenetic marks that are always present in every eukaryotic 

cell. As a proof of principle using MIEL, we were able to define the unique signatures of various cell 

types in culture such as fibroblasts, iPSCs, NPCs as well as primary cells isolated from mouse bone 

marrow (T cells, B cells, monocytes, and hematopoietic stem/progenitor cells) enabling their 

identification with over 80% accuracy. 

 It is becoming increasingly apparent that nuclear chromatin is spatially organized relative to the 

gene expression pattern (41); for example, CTCF proteins play a role in dictating boundaries of 

topologically associated domains (TADs) (42,43). TADs are thought to parse chromatin into loosely 
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defined active (euchromatin) and inactive (heterochromatin) domains, reciprocating particular 

patterns of gene activity (41). It is tempting to conjecture that the 2D epigenetic landscapes, which 

can be imaged at the single-cell level by MIEL, define the state of chromatin and the gene expression 

pattern (ie, a cell’s molecular identity). While other phenotypic screens are based on diverse 

strategies for labeling cellular compartments (e.g. nucleus, membranes or mitochondria) (33,40), 

MIEL is rooted in the spatial organization of epigenetic marks. The ability of MIEL to distinguish 

between multiple cell fates with high accuracy indicates that the topology of epigenetic marks might 

be used as a proxy for single cell state and function. Providing MIEL can be adapted to analyze 

epigenetic landscapes in 3D, it might offer unique insights into cellular heterogeneity during 

development and aging and enable in situ analysis of epigenetic variations in normal human tissues 

and various pathologies including cancer.
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Materials and Methods. 
Cell Culture: Monolayer cultures of patient-derived TPCs were propagated on Matrigel-coated plates 

in DMEM:F12 Neurobasal media (1:1; Gibco), 1% B27 supplement (Gibco), 10% BIT 9500 (StemCell 

Technologies), 1 mM glutamine, 20 ng/ml EGF (Chemicon), 20 ng/ml bFGF, 5 µg/ml insulin (Sigma), 

and 5 mM nicotinamide (Sigma). The medium was replaced every other day and the cells were 

enzymatically dissociated using Accutase prior to splitting. Fibroblasts, iPSCs, and iPSC-derived 

NPCs  were cultured as previously described(44,45). 

 
Differentiation treatment: For TPC differentiation treatments cells were cultured in DMEM:F12 

Neurobasal media (1:1), 1% B27 supplement, 10% BIT 9500, 1 mM glutamine supplemented with 

either Bmp4 (100ng/ml; R&D Systems) or FBS (10%).  

 
Cell staining: Cells were rinsed with PBS and fixed in 4% paraformaldehyde in PBS for 10 min at 

room temperature. After blocking with PBSAT (2% BSA and 0.5% Triton X-100 in PBS) for 1 h at 

room temperature, the cells were incubated overnight at 4°C with primary antibodies diluted in 

PBSAT. The primary antibodies are listed in Table 2, and the appropriate fluorochrome-conjugated 

secondary antibodies were used at 1:500 dilution. Nuclear co-staining was performed by incubating 

cells with Hoechst-33342 nuclear dye.   

  
RNAseq and transcriptomic analysis: Total RNA was isolated from GBM2 cells using the RNeasy 

Kit (Qiagen), 0.5 ug total RNA was used for isolation of mRNAs and library preparation. Library 

preparation and sequencing was conducted by the SBP genomics core (Sanford-Burnham NCI 

Cancer Center Support Grant P30 CA030199). PolyA RNA was isolated using the NEBNext® Poly(A) 

mRNA Magnetic Isolation Module and barcoded libraries were made using the NEBNext® Ultra II™ 

Directional RNA Library Prep Kit for Illumina®(NEB, Ipswich MA). Libraries were pooled and single 

end sequenced (1X75) on the Illumina NextSeq 500 using the High output V2 kit (Illumina). Read 

data was processed in BaseSpace (basespace.illumina.com). Reads were aligned to Homo sapiens 

genome (hg19) using STAR aligner (https://code.google.com/p/rna-star/) with default settings. 

Differential transcript expression was determined using the Cufflinks Cuffdiff package 

(https://github.com/cole-trapnell-lab/cufflinks). Go term enrichment analysis was conducted using 

PANTHER v11 using all genes identified as differentially expressed following either serum or Bmp4 

treatment. For heat maps showing fold change in expression the FPKM values in each population 

were divided by the average FPKM values of untreated GBM2. To highlight differences in expression 

levels between serum and Bmp4 treated GBM2 cells the FPKM values in each sample were z-

scored. Zscore=(FPKMObservation-FPKMAverage)/FPKMSD (FPKMObservation- FPKM value obtain through 
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sequencing; FPKMAverage – average of all FPKM values in all samples for a certain gene; FPKMSD – 

standard deviation of FPKM values for a certain gene). Heat maps were generated using Microsoft 

Excel conditional formatting function. 

 
Prestwick Chemical Library screen using Sox2 and GFAP: GBM2 cells were plated at 2000 

cells/well and exposed to Prestwick compounds (10 µM) for 3 days in 384-well optical bottom assay 

plates (Greiner). Cells were then fixed and stained with goat polyclonal anti-Sox2 and rabbit 

polyclonal anti-GFAP (Table 2) antibodies followed by AlexaFluor-488- or AlexaFluor-555-conjugated 

secondary antibodies. The positive and negative control treatments were BMP4 (100 ng/ml) and 

DMSO (0.1%), respectively. DNA was counterstained with DAPI and the cytoplasmic region was 

identified with HCS CellMask Deep Red. Images were acquired using the Perkin Elmer Opera® 

QEHS. Image analysis protocols were developed with PerkinElmer Acapella® using standardized 

analysis building blocks and custom algorithm scripting. Specific antibody-based parameters, 

morphological and fluorometric parameters, and nuclei counts were extracted for the imaged region in 

each well. Nuclear mask was segmented based on DAPI stain, cytoplasm mask was segmented 

based on CellMask. Image analysis included quantification of cell count, the nuclear staining intensity 

of Sox2 and the cytoplasmic intensity of GFAP. These parameters were used to evaluate activity of 

compounds, which was scored as percent efficacy for decrease in Sox2 levels and increase in GFAP 

levels. The average robust Z’-scores (RZ’) is based on the Z′-score (46) but uses the median and the 

median absolute deviation instead of the mean and the standard deviation. RZ’ were 0.31 and 0.29 

for Sox2 and GFAP, respectively. Percent efficacy was calculated as: Percent efficacy=((Obs-

NegCont)/(PosCont-NegCont))X100; Obs, intensity measured for compound; NegCont, average 

intensity of 32 DMSO-treated wells in each plate; PosCont - average intensity of 32 Bmp4-treated 

wells in each plate. Percent efficacy for each compound was calculated using only controls from the 

same plate. Hits were defined as compounds that yield percent efficacy values of either GFAP 

(increase) and Sox2 (decrease) >40, or only Sox2 decrease >100. To evaluate drug induced 

cytotoxicity robust z-score for the number of non-Pyknotic cells (Pyknotic cells were identified by 

decreased nuclear area and increased DAPI intensity) was calculated according to: 

RZscore=(CountObservation-CountMedian)/CountMAD where CountObservation denotes count of viable nuclei in 

the well; CountMedian denotes median cell count for all DMSO treated wells; CountMAD denotes median 

absolute difference of cell count for all DMSO treated wells). 

  
Microscopy and image analysis: Unless stated otherwise, for MIEL analysis cells were imaged on 

an Opera QEHS high-content screening system (PerkinElmer) using ×40 water immersion objectives. 

Images collected on the Opera were analyzed using Acapella 2.6 (PerkinElmer). At least 40 fields per 
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well were acquired and at least 2 wells per population were used. Features of nuclear morphology, 

fluorescence intensity inter-channel co-localization, and texture features (Image moments, Haralick, 

Threshold Adjacency Statistics) were calculated using custom algorithms (scripts available from 

www.andrewslab.ca). A full list of the features used is available from the authors. Values for each cell 

were generated and exported to MATLAB for further analysis. For Sall2, Olig2, Brn2, Sox2, Oct4 and 

GFAP immunostaining, images were captured on an IC200-KIC (Vala Sciences) using a ×20 

objective. Between 3 and 8 fields per well were acquired and analyzed using Acapella 2.6 

(PerkinElmer). For all nuclear markers, average intensities in nucleus or fold change in average 

intensity compared to untreated cells are shown. Unless stated otherwise, at least 3 wells and a 

minimum of 300 cells for each condition were compared using unpaired two-tailed t-test was. 

 
MDS: The image features based profile for each cell population (eg, cell types, treatments) was 

represented using a vector (center of distribution vectors) in which every element is the average value 

of all cells in that population for a particular feature. The vector’s length is given by the number of 

features chosen. All vectors used to composite the MDS maps (distance maps) consisted of 524 

texture features (262 per channel, 2 channels). Cell-level data in all populations together were 

normalized to z-scores prior to calculation of center of distribution vectors. All cells in each population 

were used to calculate center vectors and each population contained at least 400 cells. 

Transcriptomic based profile for each cell population was represented using a vector in which every 

element is the z-scored FPKM value for a single gene in that population. The length of the vector is 

given by the number of genes used to construct the profile. The Euclidean distance between all 

vectors (either image features or transcriptomic based) was then calculated to assemble a 

dissimilarity matrix (size N×N, where N is the number of populations being compared). For 

representation, the N×N matrix was reduced to a Nx2 matrix with MDS using the MATLAB (2016a) 

function ‘cmdscale’ or an Excel add-on program Xlstat (Base, v19.06), and displayed as a 2D scatter 

plot.  

 

Polar plots: Due to the inherent heterogeneity of TPC lines, we performed data normalization when 

comparing multiple treatments on several TPC lines. For this, the value of each feature for all 

individual cells in each line was divided by the average value obtained for that feature in the untreated 

population from the same cell line. Therefore, following normalization, untreated cells from all lines 

had the same center of distribution vector (in which all elements are equal to 1), while each treatment 

retained its relative distance from untreated as well as from all other treatments of the same cell line. 

However, as each cell line is divided by a different value, the distance vectors originating from two 

different lines represent the change in feature values induced by treatment, rather than the absolute 
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feature values. Therefore, following MDS, the results are shown on a polar plot to indicate that the 

various treatments induce similar feature value changes in multiple lines rather than similar absolute 

values. As a result, direction and distance to the origin are comparable between lines while distances 

directly between points are not. 

 

SVM classification: SVM classification was conducted as previously described (26). Cell-level data 

in all populations (minimum 400 cells per population) together were normalized to z-scores and a 

subset of cells from each of the populations being classified was randomly chosen as the training set 

(subset size is at least 100× the number of populations being classified). The training set was used to 

train a SVM classifier (MATLAB function ‘svmtrain’). The remaining cells (test set) were then 

classified using the SVM-derived classifier to assess the accuracy of classification (MATLAB function 

‘svmclassify’). Here, the accuracy of all pairwise classifications is given as the average accuracy 

calculated for each of the populations. To utilize classification to determine the similarity of multiple 

cell populations, we classified known populations (such as different treatments or cell fates) to 

generate known ‘bins’ and then used the same classifiers on the unknown population to categorize 

each cell.  

 

Prestwick Chemical Library screen using H3K27me3 and H3K27ac: GBM2 cells were plated at 

2000 cells/well and exposed to Prestwick compounds (3 µM) for 3 days in 384-well optical bottom 

assay plates (PerkinElmer). Cells were then fixed and stained with rabbit polyclonal anti-H3K27ac 

and mouse monoclonal anti-H3K27me3 (Table 2) antibodies followed by AlexaFluor-488- or 

AlexaFluor-555-conjugated secondary antibodies. The positive control treatments were BMP4 (100 

ng/ml) and serum (10%), negative controls were DMSO (0.1%). DNA was counterstained with 

Hoechst. Images were acquired using the Perkin Elmer Opera® QEHS. MIEL analysis was 

conducted as described above. The robust Z′-score (RZ’) is based on the Z′-score described in (32), 

but uses the median (<x>) and the robust standard deviation (rSD) based on the median absolute 

deviation (MAD) instead of the mean and the standard deviation. Briefly, we use the DMSO- 

(negative) and BMP4- or serum-treated (positive) control wells to establish the signatures 

corresponding to undifferentiated (DMSO) and differentiated (BMP4 and/or serum) GBM cells. Using 

these signatures, we then classify the cells in each well to obtain the population fraction of 

differentiated GBM cells per well. These values are used to calculate the medians and rSDs for all 

DMSO (<x>neg and rSDneg) and all BMP- or serum-treated (<x>pos and rSDpos) wells. The RZ’ value is 

calculated as follows: RZ′=1 − (3*rSDpos+3*rSDneg)/∣<x>pos−<x>neg∣ with rSD=MAD*1.4826 and 

MAD=<∣x -<x>∣>. RZ’ values are calculated for DMSO vs. Bmp4 treated, DMSO vs. serum treated, 

and DMSO vs. pooled Bmp4 and Serum treated wells. The Signal-to-Background (S/B) described in 
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(32) uses the formula: μpos / μneg where μ is the average of the differentiated population fractions for 

all treated (Bmp4, Serum) or control (DMSO) wells. 

 

Correlation of transcriptomic and image-based profiles: Euclidean distance between untreated, 

serum or Bmp4 treated GBM2 cells (triplicates for each) was calculated using either transcriptomic 

data (FPKM) or texture features. Pearson’s correlation coefficient (R) was transformed to a t-value 

using the formula (t = R × SQRT(N-2)/SQRT(1-R2) where N is the number of samples, and R is 

Pearson correlation coefficient, and the p-value was calculated using Excel tdist(t) function. For 

compound prioritization, the Euclidean distance between compound treated and serum or Bmp4 

treated GBM2 cells was calculated based on either transcriptomic data (FPKM) or image features. 

The average distance to both serum and Bmp4 treatments was normalized to the average distance of 

untreated cells to serum and Bmp4. 
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Figure 1. Digoxin and digitoxigenin reduce expression of transcription factors regulating the 
TPC transcriptomic program but fail to induce GBM differentiation.  
(a) GBM2 cells were treated with DMSO, Bmp4 or Prestwick compounds (10 µM); after 3 days, cells 

were immunostained for Sox2 and GFAP. Scatter plot shows % of Sox2 inhibition and % of GFAP 

activation for individual wells. Compounds showing GFAP>40% and Sox2>40% (large green box) or 

only Sox2>100% (small green box) were considered hits. 

(b,c,d) GBM2 cells were treated for 3 days with serum, Bmp4, 0.3 µM digitoxigenin, or 0.3 µM 

digoxin. Cells were either (b,c) immunolabeled with cell count and intensity normalized to control cells  

(mean ± S.D, p<0.05, n=3 technical repeats, unpaired two-tailed t-test). 

(d) Bar graph showing Euclidean distance to serum- or Bmp4-treated cells, calculated using 

normalized FPKM values of expressed genes for untreated, 0.3µM Digitoxigening or 0.3µM Digoxin 

treated GBM2 cells. 

(e) Heat maps showing fold change (RNA sequencing) in expression of select genes taken from the 

GO list and belonging to 1 of 3 functional classes: cell cycle G2/M phase transition (GO:0044839), 

chromatin-modification (GO:0006325), and regulation of neuron differentiation (GO:0045664). 
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Figure 2. Validation of MIEL platform. 
(a) Flowchart of MIEL pipeline. Fixed cells were immunostained for the desired epigenetic 

modifications, stained with Hoechst 33342 to visualize DNA and imaged. Nuclei were segmented 

based on DNA staining, and texture features calculated from the pattern of immunofluorescence. The 

relative similarity of multiple cell populations was assessed by calculating the multiparametric 

Euclidean distance between their pairwise centers and represented in 2D following MDS (distance 

map). A support vector machine, trained on a random subset of cell data, was used to classify the 

rest of the individual cells (bar graph).  

(b) Hoechst 33342 stained (blue), and Sox2 (red) and Oct4 (green) immunofluorescence labeled 

fibroblasts (Sox2-/Oct4-), iPSCs (Sox2+/Oct4+) and NPCs (Sox2+/Oct4-). Scale bar, 50 µm.  

(c) Distance map depicting the relative Euclidean distance following MDS between the 

multiparametric centroids of 9 cell lines: 3 fibroblasts, 3 iPSCs and 3 NPCs, calculated from texture 

feature values derived from images of H3K9me3 and H3K4me1 marks. Each cell line appears as 

technical triplicates (ie, dots correspond to images from different wells).  

(d) Three-way classification of fibroblasts, iPSCs and NPCs from 3 donors.  

(e) Three-way classification of fibroblasts and NPCs, each pooled from the 3 donors.  
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Figure 3. MIEL determines signature of TPC differentiation. 
(a) Distance map depicting the relative Euclidean distance between the multiparametric centroids of 3 

genetically distinct TCP and DGC lines calculated using texture features derived from images of 

H3K9me3 and H3K4me1 marks.  

(b) TPC and DGC cell lines derived from the same tumor were distinguished by MIEL using multiple 

epigenetic marks. Numbers (percentages) correspond to the accuracy of TPC vs DGC pairwise 

classifications for each line using the indicated epigenetic marks. 

(c) Classification of TPC and DGC lines using an SVM classifier trained on texture features derived 

from images of H3K27ac and H3K27me3 marks in the MGG4 line. 

(d) Polar plot visualizing changes in feature values derived from H3K27ac and H3K27me3 images of 

4 genetically distinct GBM line (GBM2, 454M, 101A, SK262) treated with serum for 3 or 9 days as 

well as TPC-DGCs pairs from MGG4, 6, 8 lines.  

(e) Two-way classification of 9 days serum-treated GBM lines, TPC, and DGCs from pooled MGG4, 

6, 8 lines (MGG-TPC and MGG-DGC) using an SVM classifier trained on texture features derived 

from MGG-TPC and MGG-DGC. 

(f) Polar plot visualizing changes in feature values derived from H3K9me3 and H3K4me1 images of 4 

GBM lines (GBM2, 454M, 101A, SK262) treated for 2 days with either serum or Bmp4. Average 

values for all four lines: FBS-2d: rho=5.7±2.7, theta=1.7±0.7; BMP4-2d: rho=9.6±3.8; theta=-0.2±0.1. 

(g) Distance map depicting the relative Euclidean distance between the transcriptomic profiles of 

DMSO-, Bmp4- and serum-treated GBM2 cells calculated using FPKM values of all expressed genes 

(14,376 genes; FPKM>1 in at least one sample). Each treatment is in triplicates. 

(h) Distance map depicting the relative Euclidean distance between the multiparametric centroids of 

DMSO-, Bmp4- and serum-treated GBM2 cells calculated using texture features derived from images 

of H3K27ac and H3K27me3 marks. Each treatment is in triplicates. R denotes Pearson correlation 

coefficient. 
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Figure 4. MIEL prioritizes small molecules based on serum/Bmp4 differentiation signature. 
(a) Scatter plot showing the correlation of gene expression profile-based ranking and Sox2 

expression for 8 candidate drugs, untreated, serum or Bmp4 treated GBM2 cells. Euclidean distance 

to serum or Bmp4 treated GBM2 cells was calculated using transcriptomic profiles (vertical axis), or 

Sox2 immunofluorescence intensity (horizontal axis). Distances and Sox2 levels were normalized to 

untreated and serum/Bmp4 treated GBM2 cells. 

 (b) Scatter plot showing the correlation of gene expression profile-based ranking and MIEL-based 

ranking for 8 candidate drugs, untreated, serum or Bmp4 treated GBM2 cells. Euclidean distance to 

serum- or Bmp4-treated GBM2 cells was calculated using transcriptomic profiles (vertical axis), or 

texture features derived from images of H3K27ac and H3K27me3, H3K9me3, and H3K4me1 marks 

(horizontal axis). Distances were normalized to untreated and serum/Bmp4 treated GBM2 cells. 

 (c) Heat maps showing fold change in expression of select genes taken from Gene Ontology list: cell 

cycle G2/M phase transition (GO:0044839), chromatin modification (GO:0006325), and regulation of 

neuron differentiation (GO:0045664). R denotes Pearson correlation coefficient. Drug concentrations 

a-c: febendazole=0.5 µM, mebendazole=0.5 µM, cytarabine=0.3 µM, trifluridine=3 µM, irinotecan=0.5 

µM, etoposide=0.3 µM, digitoxigenin=0.3 µM, digoxin=0.3 µM.  
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