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Abstract

Dendritic size and branching patterns are important features of neural form and function. However, current com-
putational models of neuronal networks use simplistic cylindrical geometries to mimic dendritic arborizations. One
reason for this is that current methods to generate dendritic trees have rigid a priori constraints. To address this,
a deep convolutional generative adversarial network (DCGAN) trained on images of rodent hippocampal granule
and pyramidal dendritic trees. Image features learned by the network were used to generate realistic dendritic mor-
phologies. Results show that DCGANs achieved greater stability* and high generalization, as quantified by kernel
maximum mean discrepancy, when exposed to instance noise and/or label smoothing during training. Trained models
successfully generated realistic morphologies for both neuron types, with high false positive rate reported by expert
reviewers. Collectively, DCGANs offer a unique opportunity to advance the geometry of neural modeling, and, there-
fore, to propel our understanding of neuronal function.

* A ”stable/stabilized DCGAN”, as mentioned throughout this work, is a DCGAN which was stable throughout
training.

1 Introduction
Neural dendrites are the principal sites for synaptic input; their shapes and sizes across cell classes are highly variable
[15]. Furthermore, complexity of dendritic arbors increases during development [17], suggesting that morphology
plays a fundamental role in determining neuronal function.

To date, biophysically detailed computational models of the rodent hippocampus has emerged as a tractable tool
for investigating open questions in neuroscience. Such models have allowed researchers to gain a deeper understand-
ing of the interneuronal mechanisms underlying theta oscillations [4] and the generation of hyperexcitable networks
in the epileptic brain [11]. The predictive power of these tools have [10] and will continue to form a symbiosis with
experimental design.

However, one overwhelming problem of current models is that dendritic trees are often modeled using generic cylin-
drical geometries [11]. As a result, fundamental passive (membrane capacitance, input resistance, electrotonic length)
and active (action potential generation and propagation) properties are disconnected from reality. Altogether, this will
manifest in inaccurate estimation of electrical attenuation, synaptic integration, and plasticity [7] - processes integral
to neuronal function and overarching network dynamics.

Generative methods have emerged as an intriguing opportunity for creating and deploying synthetic dendritic mor-
phologies in computational models. While labs have leveraged these techniques [19], it has not been readily adopted
by the field. Particularly, many current algorithms suffer from a priori constraints [3], overall limiting generational
diversity. Fortunately, advances in deep learning offer a unique opportunity to generate realistic morphologies by
training a model to learn useful features.
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Here, a deep convolutional generative adversarial network (DCGAN) [14] was trained on thousands of images of
granule and pyramidal cell dendritic reconstructions (input) from rodent hippocampus. Features learned by the net-
work were used to output realistic images containing dendritic morphologies. Collectively, DCGANs are in a prime
position for advancing state of the art computational models of neuronal networks.

2 Related Work

2.1 Semi-automated methods
Building geometrically realistic neurons for computational models can be done by tracing. While semi-automatic
reconstruction software such as Neuromantic [12] exist, the process is tedious and time consuming [2]. Therefore,
considerable efforts have been aimed at building synethetic neurons that statistical similarity to real neurons.

2.2 Algorithms for generating neural morphologies
The foundation of modern generative algorithms revolves around the work of Hillman, who described seven fun-
damental features of neuronal morphology [6]. With this, Asocli and Kirchmar developed the L-Neuron algorithm
that samples from these feature density distributions [3]. Unfortunately, a finite mixture model to the data requires
a priori knowledge of the number and types of distributions. Collectively, only a small subset of the total parame-
ter space may be sampled and used for morphological development. Evolutionary algorithms have since emerged as
a way to explore broader ranges of this hard coded parameter space [22]. Nonetheless, these parametric methods do
not exclude the possibility that other features, not described by Hillman, can be useful towards explaining morphology.

Additional generational methods exist that make use of non-parametric kernel density estimation (KDE) [23], and
degree-constrained minimum spanning tree (DCMST) [1]. Data driven non-parametric methods have been used only
for few cell classes but have shown promising results [23]. DCMST is an NP-hard problem that operates under the
biophysically plausible assumption that neural wiring is minimized for optimizing information transfer. However, it is
unclear if this theory holds true for all neurons, and may overall limit generational diversity.

2.3 Generational methods in deep learning
Generative models have permeated the field of deep learning. Particularly, variational autoencoders (VAE) [16, 9] and
generative adversarial networks (GAN) [5] have showed significant promise. VAEs use statistical inference and are
known to train much easier than GANs. However, GAN variants, such deep convolutional GAN (DCGAN) [14], are
known to generate higher quality images compared to VAEs. One reason for this is that convolutional neural networks
have made remarkable advances in image classification [20]. This is primarily the result of a hierarchical feature
extraction architecture that generalizes well to images. Additionally, learned features can be visualized, allowing one
to find the approximate purpose of each filter. Further advances towards stabilization, such as training with instance
noise [21] and label smoothing [18], make DCGANs a premier tool to generate realistic dendritic trees.

2.4 Using deep learning to generate dendritic trees
It is argued that a generative deep learning approach offers a unique advantage to current methods, particularly those
with a priori assumptions [3]. Specifically, the parameters of a neural network are mutable. This means that the feature
space is learned rather than hard coded, allowing a network to extract a variety of features that may be non-intuitive
to humans. Such features may be useful for modeling different classes of neurons, where particular ’fundamental
features’ [6] may or may not have significant influence. To date, no deep network trained to generate dendritic ar-
borizations has been reported.
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3 Methods

3.1 Deep convolutional generative adversarial network (DCGAN)
Generative adversarial networks (GANs) [5] are a class of methods for learning generative models. The GAN can
be broken into two distinct neural networks: generator and discriminator. Let X = Rnxn be the space of natural
images. The generator can be defined as G : Z → X where Z is a latent space. The discriminator will be defined
as D : X → [0, 1). The generator will take as input random noise from latent space Z and output an image. The
discriminator will then need to decide if the generated image is real or fake. It does so by outputting a probability that
correspond to likelihood of an image being drawn from the distribution of real images. The generator’s objective will
be to trick the discriminator into thinking a generated image is real. Ultimately, this turns into a minimax game which
can be described formally as:

min
G

max
D

Ex∼pdata [logD(x)] + Ez∼p(z) [log (1−D(G(z)))]

where z ∼ p(z) are the random noise samples, G(z) are the generated images using the neural network generator G,
and D is the output of the discriminator.

The convolutional neural network architectures for the generator and discriminator are shown in Tables 1 and 2,
respectively. FC = fully connected. Maxpool layers were implemented with 2x2 kernel size and stride of 2. Leaky
ReLU units had a negative slope of 0.01. For conv layers in both tables, S=stride; P=padding. In total, the generator
network had 4351217 parameters and discriminiator network had 1250241 parameters.

Layer Volume Dimensions Num Parameters

Input 96x1 0
FC 96x1024 99328

ReLU - 0
Batchnorm - 2048

FC 1024x4096 4198400
ReLU - 0

Batchnorm - 8192
ConvTranspose 64x32x4x4 (S2;P1) 32800

ReLU - 0
Batchnorm - 64

ConvTranspose 32x16x4x4 (S2;P1) 8208
ReLU - 0

Batchnorm - 32
ConvTranspose 16x8x4x4 (S2;P1) 2056

ReLU - 0
Batchnorm - 16

ConvTranspose 8x1x3x3 (S1;P1) 73
Tanh 1x1 0

Table 1: Generator architecture
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Layer Volume Dimensions Num Parameters

Input 64x64x1 0
Conv 32x5x5 (S1) 832

Leaky ReLU - 0
Maxpool - 0

Conv 32x64x5x5 (S1) 51264
Leaky ReLU - 0

Maxpool - 0
Conv 64x64x6x6 (S1) 147520

Maxpool - 0
FC 1024x1024 1049600

Leaky ReLU - 0
FC 1024x1 1025

Table 2: Discriminator architecture

3.2 Loss function and optimization
Training GANs requires finding a Nash equilibrium of a non-convex game, a non-trivial problem. Instead, gradient
descent techniques are used to minimize a loss function. The discriminator will seek to maximize the probability that
it can make a correct choice on both real and fake data. The discriminator loss can therefore be formalized as:

LD = −[Ex∼pdata [logD(x)] + Ez∼p(z) [log (1−D(G(z)))]]

The generator will seek to maximize the probability of the discriminator making the incorrect choice on generated
data. The generator loss can therefore be formalized as:

LG = −Ez∼p(z) [logD(G(z))]

In this work, ADAM [8] was used to minimize the loss functions.

3.3 Stabilization
GAN training is notoriously unstable. To address these concerns, numerous ’tricks’ have been developed. In this work,
label smoothing [18] and instance noise [21] were leveraged. A nice graphical representation of the two methods can
be found here: http://www.tinyurl.com/znnnvej.

To motivate the nature of these methods, it is worth diving deeper into the internals of a GAN. The loss function
of the discriminator is the negative expectation of the log likelihood ratio s(x) = log p(x)fθ(x)

where fθ represents the
generative model and p is the real data. One major assumption underlying optimization convergence is that s(.) is
finite. For this condition to hold, the support (i.e. inputs not mapped to 0) must overlap. fθ is degenerate by con-
struction, and the training process attempts to build a model that overlaps with p. The stabilization techniques below
attempt to foster the process of generating support overlap by altering the log likelihood function. In a sense, the
discriminator is ’tricked’.

3.3.1 Label smoothing

In this technique, labels of some real data sample x ∼ p are flipped so that the discriminator is trained to think they
are from fθ. If this is performed with probability ν, the log likelihood function is now s(x) = p(x)

νp+(1−ν)fθ . Since
the denominator now includes information regarding the distribution from both the real and generated data, support
overlap is more likely to occur. The structure of the logistic loss landscape is not altered dramatically, however, and so
non-convergence may still occur.
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3.3.2 Instance noise

Here, noise is input into both the generated and fake data. White Gaussian noise εσ is convolved with images so that
the log likelihood function is now s(x) = log εσ∗p(x)εσ∗fθ(x) . Because the noise distributions overlap, s(.) will ’behave’
better.

3.4 Kernel maximum mean discrepancy (MMD)
Evaluation metrics for GANs have been thoroughly researched. Kernel maximum mean discrepancy (MMD) has
been recently shown to assess overfitting [24]. Kernel MMD can be thought of as a measure between the statistical
dissimilarity between two datasets (i.e. higher MMD means datasets are not similar) and can be written as:

(E[k(x1, x2)− k(x1, y2)− k(x2, y1) + k(y1, y2)])
1
2

where x1, x2 are drawn from dataset X , y1, y2 are drawn from dataset Y , and k is a Gaussian kernel with width σ,
written as:

k(x, y;σ) = e−
||x−y||2

2σ2

In practice, the kernel MMD value can be approximated as:√∑
ij,i6=j k(x1, x2)− k(x1, y2)− k(x2, y1) + k(y1, y2)

N(M − 1)

where N = |X| and M = |Y |. To assess overfitting, the MMD metric is calculated between training data X and
generated data F - call this ρ(X,F ). Next, the MMD metric is calculated between validation data Y and generated
data F - call this ρ(Y, F ). The ’metric gap’ is defined as:

γ = |ρ(X,F )− ρ(Y, F )|

Higher values of γ imply overfitting. Furthermore, kernel MMD is used in this work to compare between models. The
rational here is that if two models display low MMD gap (i.e. don’t overfit) but model A has a lower post-training
ρ(X,F ) compared to model B, then model A is superior.

3.5 Qualitative assessment
To assess if generated images ’looked’ real, 64 fake and 64 real images were pseudorandomely shuffled and blurred
with 5 x 5 mean smoothing. The 128 image stacks were given to 5 experts (PhD holders) in the field of neuroscience
who rated each image as 1 if real or 0 if fake. This was done for both granule pyramidal cells separately.

4 Dataset
All granule and pyramidal cell reconstructions from rodent hippocampus were extracted from http://www.NeuroMorpho.
org. NeuroMorpho is an well recognized and standardized database containing neural reconstructions submitted by
labs around the world. 3107 granule and 5708 pyramidal cell reconstructions were downloaded for processing. Point
cloud files were ingested, and dendritic points extracted and centered. Any point cloud files lacking dendritic trees or
with sparse reconstructions were excluded. Sparse reconstruction was determined if a dendritic cloud had less than
100 points, an admittedly arbitrary threshold. Lastly, aligned clouds that passed both conditions were resampled to
output images of size 64 x 64 pixels. These 64 x 64 pixel images were fed into the DCGAN.

Ultimately, 2802 granule and 5287 pyramidal cells passed both conditions. 90% of images from each class were
used for training (2522 granule, 4759 pyramidal) and the remaining 10% for validation (280 granule, 528 pyramidal).
Figure 1 shows example reconstructions and 64 x 64 pixel image outputs for both neuron classes. It can be observed
that morphologies are unique between the two classes.
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5 Experiments

5.1 Hyperparameters
Separate DCGAN models were trained for granule and pyramidal cells with PyTorch [13]. The Adam optimizer [8]
was used for all training with fixed hyper-parameters (β1, β2) = (0.5, 0.999) and ε = 10−8 for numerical stabil-
ity. Adam was used because it incorporates advantages from momentum based and adaptive optimization techniques.
Training was limited to mini-batch size of 64 due to available computational resources. For label smoothing, probabil-
ity of label flipping was set to 0.1. This was implemented by swapping the ’fake’ and ’real’ logits. For instance noise,
Gaussian white noise with µ = 0 and initial σ = 10−2 was input to images. σ underwent linear decay, with updates
after each epoch, to 0 during the training process.

To find the optimal learning rate hyper-parameter, 20 values randomly picked from the range [10−5, 10−2] were tested.
Qualitative assessment of image quality and loss curves suggested that 5.94∗10−4 and 6.85∗10−4 are ideal candidates
for granule and pyramidal DCGAN, respectively (Figure 2).

5.2 Label smoothing and instance noise stabilized DCGANs during training
Models were then trained with the above mentioned learning rates for 100 epochs. DCGAN trained without stabiliza-
tion techniques exhibited generator loss that slowly increased over the course of training (Figure 3). This furthermore
resulted in poor quality generated images.
To stabilize the models, a combination of instance noise and label smoothing was applied (see methods). Kernel
mean maximum discrepancy (MMD) (see methods) between 256 generated and 256 training images was used to com-
pare models after 100 epochs of training. Low kernel MMD would indicate high statistical similarity between the
two datasets, an ideal situation. For granule cells, models trained for 100 epochs with both instance noise and label
smoothing resulted in the lowest kernel MMD over multiple Gaussian kernel widths (Figure 4a). For pyramidal cells,
this was true whether instance noise and/or label smoothing was used (Figure 4c). For both cell types, generator loss
stabilized and discriminator loss exhibited periodic spikes (Figures 4b,d).

5.3 Stabilized DCGANs were well-generalized
Low kernel MMD can imply overfitting if the synthetic images simply memorized the training images. To test for this
possibility, kernel MMD with σ = 25.0 was calculated between (1) 256 training images and 256 generated images;
(2) 256 validation images and 256 generated images. A large difference between (1) and (2) - i.e. the metric gap
(see methods) - is an indicator of overfitting. The above mentioned sigma value was chosen because kernel MMD
reported highest values as seen in Figures 4a,c. Figures 5a,c shows that low gap values were calculated for both
granule (< 0.01) and pyramidal cells (< 0.02) across all training epochs. However, pyramidal cell training appeared
to be slightly more unstable. Furthermore, it was hypothesized that kernel MMD would start high and decrease over
training as the generative model learned to output realistic images. Figures 5b,d confirms this, ultimately providing
quantifiable evidence that training improved generation quality.

5.4 Visualizing convolutional layers
Filters from the first convolutional layer of the discriminator and generator were visualized (Figures 6a-d). It can be
seen that generator filters attempted to learn edge orientations and possible bifurcations (Figures 6a,c). Furthermore,
it is evident the that discriminator filters attempted to dissect complicated branching structures (Figures 6b,d). To
further investigate how label smoothing and/or instance noise affects network structure, filter distributions were plotted
between models trained with or without stabilization (Figures 6e,f). Distributions appeared almost identical for most
layers with the exception of third convolutional layer of the generator and first convolutional layer of the discriminator.

5.5 Trained DCGANs generated high quality dendritic morphologies
The best granule and pyramidal DCGAN models (see 5.3) were used for dendritic morphology generation (Figure
7) and qualitative evaluation. Shuffled datasets containing real and fake morphologies (Figure 8) were presented
to expert reviewers. Results (Table 3) show false positive rates of 0.54 and 0.44 for granule and pyramidal cells,
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respectively. That is, almost half of the generated images were considered real to the expert eye. However, true
positive rate was 0.52 for granule and 0.48 for pyramidal cells, suggesting difficulty in identifying features of true
morphologies. Overall accuracy was approximately 50% for both classes of cells.

Statistic Granule Pyramidal

True positive 0.52 (.18) 0.48 (0.15)
False positive 0.54 (0.19) 0.44 (0.11)

Accuracy 0.49 (0.14) 0.53 (0.12)

Table 3: Results of expert assessment to discern real vs fake granule and pyramidal cell dendritic morphologies. n
= 5 for both cell classes. True positive represents a correct identification of real image. False positive represents
identifying generated image as real. Values represented as mean with standard deviation in parenthesis.

6 Discussion

6.1 Stabilization techniques and its affect on network infrastructure
It is evident that application of label smoothing and instance noise resulted in stable and well-generalized DCGAN
models. High frequency spikes in discriminator loss are expected given the nature of these techniques are to ’trick’ the
discriminator. However, inspection of weight distributions across discriminator and generator convolution layers was
insufficient to isolate the affect of label smoothing and/or instance noise on network infrastructure. No identifiable
trends were observed for the granule DCGAN despite observation of low frequency increase in generator loss over
training. Furthermore, the weight distributions presented for pyramidal DCGAN is not convincing evidence towards
any particular conclusion.

6.2 Advances over current generative methods
The parameters of a DCGAN model are free to learn whatever features are necessary for the generator to output
realistic morphologies. This results in higher-order image features that humans may not have the insight to concept.
In this regard, the method proposed here is an advance over current techniques that sample from a pre-defined feature
space [3]. Overall, this may lead to increased diversity in generated morphologies, but a more quantitative assessment
will need to be performed.

6.3 Limitations of this study
Despite the positive outcome, this study has its flaws. It was reported here that DCGAN models generalized well, and
therefore can produce images not seen in the training set. However, a comparative study quantifying differences in
diversity between the method proposed here and current generational techniques [3] needs to be performed. Secondly,
during hyper-parameter search, the ’best’ learning-rate was identified by qualitative inspection of generated morpholo-
gies. While certainly some models can be thrown away from eye-ball inspection, kernel MMD should have been used
to isolate the ideal hyper-parameter amongst models with similar looking outputs. Lastly, it is clear from the low true
positive rate amongst expert reviewers that there might have been ambiguity in what a real dendritic tree looked like.
This might have been caused by downsampling dendritic clouds to 64 x 64 pixel images. Nonetheless, this work shows
that generating high quality realistic morphologies is possible via a deep learning approach.

7 Conclusion
Computational models of neural networks have become increasingly important for investigating topics in neuroscience.
Unfortunately, most models do not attempt to incorporate realistic dendritic trees or use techniques that limit diversity
through a priori assumptions. This results in simulations that may not properly model neuron function.
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To address this, a deep learning approach was applied to generate realistic dendritic morphologies. Specifically,
DCGAN models were trained on thousands of granule and pyramidal cell reconstructions from rodent hippocampus.
Results show that trained models are highly sensitive to learning-rate and are unstable unless label smoothing and/or
instance noise is implemented. For granule cells, it was shown that both instance noise and label smoothing resulted in
the lowest statistical discrepancy between generated and training data, as quantified by kernel maximum mean discrep-
ancy (MMD). This was the case for pyramidal cells whether instance noise or label smoothing was used. Additionally,
stable DCGAN models exhibited a high degree of generalization. Lastly, generated images from trained models were
of high quality as determined by expert reviewers. Collectively, it is shown that well-engineering DCGANs presents a
unique opportunity to add geometric realism to current computational models.

Future work will seek to build 3D morphologies. Furthermore, the diversity between traditional generation tech-
niques and this proposed method will be quantitatively compared.

NeuroGAN public repo can be found here: http://www.github.com/dhadjia1/NeuroGAN
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Figures

Figure 1: (a, c) Example neuron reconstructions of granule (a) and pyramidal cell (c). (b,d) Example granule (b) and
pyramidal (d) 64 x 64 arborization images output from preprocessing.
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Figure 2: Learning rate hyperparameter search. (a,b) An example of poor training on images of granule cells (learning
rate 2.26 ∗ 10−5). (c,d) Successful training of DCGAN on images of graunle cells (learning rate 5.95 ∗ 10−4). (e,f)
same as (a,b) but for pyramidal cells and learning rate 4.33 ∗ 10−3. (g,h) same as (c,d) but for pyramidal cells and
learning rate 6.85 ∗ 10−4.
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Figure 3: DCGANs can be unstable over long training durations. (a) Output of DCGAN trained for 25 epochs on
images of pyramidal cells and learning rate 6.85 ∗ 10−4. (b) Output of DCGAN after 100 epochs of training on the
same learning rate. (c) Discriminator (red) and generator (blue) loss curve over training. Notice the slow increase in
generator loss over training.
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Figure 4: Label smoothing and instance noise help stabilize DCGAN training. (a) Plots of kernel MMD between
training data and DCGAN generated images over varying Gaussian kernel widths. DCGAN model was trained on
granule cells with learning rate 5.94 ∗ 10−4. One can see that the red curve (label soothing on, instance noise on)
has lowest kernel MMD. (b) Plot of discriminator (red) and generator (blue) loss over training duration for DCGAN
model trained with label smoothing and/or instance noise. (c) Same as (a) except for DCGAN trained on pyramidal
cells with learning rate 6.85 ∗ 10−4. (d) Discriminator (blue) and generator (red) loss curves for DCGAN trained with
label smoothing. Legend key: ls = label smoothing. in = instance noise. 0 = off. 1 = on.
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Figure 5: DCGAN models with label smoothing and/or instance noise do not overfit training data. (a) Plot of kernel
MMD metric ’gap’ (see method) for DCGAN model trained on images of granule cells. Blue curve represents model
trained with label smoothing and instance noise. Orange curve represents vanilla DCGAN. (b) Table of gap values
for DCGAN model trained on granule cells with label smoothing and instance noise. (c) Pyramidal cell DCGAN
equivalent of (a). Blue curve represents model trained with label smoothing on. Orange curves represents vanilla
DCGAN. (d) Table of gap values for DCGAN model trained on pyramidal cells with label smoothing.
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Figure 6: (a,c) Examples of filters from the first convolutional layer of DCGAN generator trained on images of
granule (a) and pyramidal (c) cells for 100 epochs. (b,d) Examples of filters from first convolutional layer of DCGAN
discriminator trained on images of granule (b) and pyramidal (d) cells for 100 epochs. (e) Comparison of weight
distribution in third convolutional layer of generator for DCGAN model trained with (orange) and without (blue) label
smoothing. (f) Similar to (e) but for the first convolutional layer of discriminator.
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Figure 7: Generated images of granule (a) and pyramidal (b) cell dendritic arborizations from best trained DCGAN
models.
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Figure 8: Expert reviewers were tasked with discerning real vs fake. (a) Generated images of granule cell dendritic
arborizations pseudorandomely shuffled with training data. (b) Generated images of pyramidal cell dendritic arboriza-
tions psuedorandomely shuffled with training data. Images were blurred with 5 x 5 spatial mean filter. Can you discern
real from fake? 17
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