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The gut microbiome is now widely recognized as a dynamic ecosystem that plays an important role in 
health and disease1. While current sequencing technologies make it possible to estimate relative 
abundances of host-associated bacteria over time2,3, the biological processes governing their 
dynamics remain poorly understood. Therefore, as in other ecological systems4,5, it is important to 
identify quantitative relationships describing global aspects of gut microbiota dynamics. Here we use 
multiple high-resolution time series data obtained from humans and mice6–8 to demonstrate that 
despite their inherent complexity, gut microbiota dynamics can be characterized by several robust 
scaling relationships. Remarkably, these patterns are highly similar to those previously observed 
across diverse ecological communities and economic systems, including the temporal fluctuations of 
animal and plant populations9–12 and the performance of publicly traded companies13. Specifically, 
we find power law relationships describing short- and long-term changes in gut microbiota 
abundances, species residence and return times, and the connection between the mean and variance 
of species abundances. The observed scaling relationships are altered in mice receiving different diets 
and affected by context-specific perturbations in humans. We use these macroecological relationships 
to reveal specific bacterial taxa whose dynamics are significantly affected by dietary and 
environmental changes. Overall, our results suggest that a quantitative macroecological framework 
will be important for characterizing and understanding complex dynamical processes in the gut 
microbiome. 
 
The dynamics of gut bacteria can now be monitored with high temporal resolution using metagenomic 
sequencing14. Recent longitudinal studies have revealed significant day to day variability yet marked long-
term stability of gut microbiota6,7,15,16. Several studies have also identified important factors, such as host 
diet and lifestyle, that contribute to temporal changes in species abundances7,8,17,18. However, in contrast to 
macroscopic ecological communities, quantitative relationships describing gut microbiota dynamics are 
currently not well understood. While ideas from theoretical ecology have been applied to understand static 
patterns of gut microbial diversity and species abundance distributions19,20, a comprehensive and 
quantitative understanding of gut microbiota dynamics is currently missing. Therefore, using a 
macroecological approach, we sought to investigate dynamical relationships in the gut microbiome using 
several of the longest and most densely-sampled longitudinal studies in humans and mice6–8. The 
considered data spanned three independent investigations, utilizing different sample collection procedures 
and sequencing protocols; bacterial abundances in these studies were tracked daily for several weeks in 
mice and up to a year in humans. Our analysis included four healthy human individuals (A, B, M3, F4) and 
six individually-housed mice fed either a low-fat, plant polysaccharide (LFPP) diet or a high-fat, high-sugar 
(HFHS) diet. We use these data to explore the short-term abundance changes and long-term drift of gut 
microbiota, species residence and return times, and the temporal variability of individual bacterial taxa 
across humans and different mouse diet groups. Collectively, our study provides the most in-depth and 
comprehensive characterization of macroecological dynamics in the gut microbiome.  
 
Following a quantitative framework used previously to examine the ecological dynamics of animal 
populations9,10, we first investigated short-term temporal fluctuations of gut microbiota abundances. One of 
the most basic descriptors of bacterial population dynamics is the daily growth rate, defined as the 
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logarithm of the ratio of consecutive daily abundances, ����� � log �
��� � 1�/
�����, where 
� is the 
relative abundance of a bacterial operational taxonomic unit (OTU) 
 at time �. Interestingly, we found that 
the probability of � averaged over all OTUs closely followed a Laplace distribution, with a characteristic 
tent shape in log-transformed probabilities (Fig. 1a-c). Laplace distributions were highly similar within and 
between individual humans, and between humans and mice (parameter � � 0.73 �  0.07, � � 0.82 �
 0.1; mean � s.d. across all humans and LFPP mice respectively), indicating the universality of these 
relationships. Moreover, the Laplace distribution described well the daily growth rates of every gut 
microbiome time series we analyzed, including those defined at various taxonomic resolutions 
(Supplementary Fig. 1). In contrast to a Gaussian growth rate distribution, which is expected for bacterial 
growth affected by random multiplicative processes19,21, the Laplace distribution indicates substantially 
higher probabilities for large short-term bacterial abundance fluctuations. Interestingly, very similar growth 
rate distributions have been observed across many diverse ecological and economic systems including bird 
communities9,10, fish populations11, tropical rain forests12, publicly traded company sales13, and country 
GDPs22 (Supplementary Fig. 2a). Similar to these complex ecological and interacting systems, the gut 
microbiome may exhibit sudden large-scale abundance fluctuations. 

In complex ecosystems, species growth rate distributions often depend on their current 
abundance10,13,22. We therefore investigated the relationship between the standard deviation of daily 
bacterial growth rates and abundances. This analysis revealed that the daily growth rate variability of gut 
bacteria decreased approximately linearly with increasing mean daily abundances (Fig. 1d-f). Moreover, the 
observed behavior was similar between human and mouse gut microbiomes (regression slopes  � �
�0.15 � 0.01, �0.17 � 0.03; mean � s.d. across humans and mice). Thus, likely due to the presence of 
more stable nutrient niches, highly abundant bacteria exhibit substantially smaller relative day to day 
fluctuations compared to bacteria with lower abundances. 
 

 
 
Fig. 1 | Daily changes in the abundances of gut microbiota. a-c, Daily growth rates were defined as ����� �
log  �
��� � 1�/ 
�����, where 
� is the relative abundance of a given OTU 
 on day �. The distribution of � averaged 

over all OTUs displays a Laplace form,  ���� �  �
��

exp �� |�|

�
 � , appearing as a characteristic tent shape in log-
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transformed probabilities. Results are shown for two individuals from different human studies (A and M3) and mice fed 
a low-fat plant polysaccharide-based (LFPP) diet . Laplace exponents are � = 0.83 � 0.1 for human A, � = 0.71 � 0.07 
for human M3, and � = 0.82 � 0.10  for LFPP mice (mean � s.d., Methods).  Solid lines indicate fits to the data using 
maximum likelihood estimation (MLE). d-f, Across all OTUs, the standard deviation of daily growth rates (�� ) 

decreases with mean daily abundance (��), defined as the mean of successive log abundances, �� �  �
�

�log�
�� �
1�� �  log �
�����. Standard deviations were calculated by binning daily growth rates by different values of �� along 
the x-axis. Dashed lines are least-squares fits to the data, with slopes of  � � �0.16 � 0.02 , �0.16 � 0.02  and 
�0.17 � 0.03 for A, M3 and LFPP mice respectively (mean � s.d., Methods) Growth rates in (c) and  (f) were 
aggregated across the three mice on the LFPP diet.  

 
In addition to species growth rates, interesting long-term dynamical trends have also been observed across 
different macroscopic ecosystems9,23,24. To explore the long-term behavior of gut microbiota, we 
investigated how the mean-squared displacement (MSD) of OTU abundances �����Δ���� changed with 
time. Again, similar to the behavior of other diverse communities (Supplementary Fig. 2c), we found that 
the long-term dynamics of gut microbiota abundances could be well approximated by the equation of 
anomalous diffusion (Fig. 2, Supplementary Fig. 3), 
 

����Δ��� �  Δ���#�1�  
 
where � is the scaling parameter characterizing the diffusion process, and often referred to as the Hurst 
exponent25. In contrast to normal diffusion (� � 0.5), a Hurst exponent of �  0.5 indicates a tendency for 
increases (decreases) in abundances to be followed by further increases (decreases), whereas a value of 
� ! 0.5 indicates a higher degree of stability and a tendency for abundances to revert back to their means. 
Both in human and mouse gut microbiomes, our analysis revealed small Hurst exponents (� � 0.09 �
0.03 , � � 0.08 � 0.02 , mean  �  s.d. across humans and mice). This suggests that despite overall 
stability15,26,27, gut microbiota exhibit a slow, continuous and predictable drift in abundances over long time 
periods. Furthermore, while the temporal behavior of individual OTU abundances was also well-
approximated by the equation of anomalous diffusion (Supplementary Fig. 4a), the distribution of Hurst 
exponents across individual OTUs exhibited substantial variability (Supplementary Fig. 4b). This 
demonstrates the heterogeneity in the stability of different gut bacterial taxa within and across hosts. We 
show below that the stability of different taxa can be significantly affected by environmental factors such as 
host dietary intake. 

 

 
 
Fig. 2 | Long-term stability of gut microbiota abundances. a-c, In humans and mice, the mean-squared displacement  
of log OTU abundances ("#��Δ��%� scales with time as a power law of the form "#��Δ��% &   Δ���. Hurst exponents are 
'  = 0.07 � 0.03, 0.08 � 0.02, 0.08 � 0.02  for human A, human M3 and LFPP mice respectively (mean �  s.d., 
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Methods). The data in (c) represent an average over the three individual mice on the LFPP diet (Methods). Dashed lines 
indicate least-squares fits to the data.  
 
Both short and long-term dynamics of gut microbiota contribute to overall turnover in gut bacterial species. 
To directly investigate the dynamics of gut microbiota composition, we next calculated the distribution of 
residence ������  and return times ������  for individual OTUs. Following previous macroecological 
analyses9,28,29, we defined residence times as time intervals between the emergence and subsequent 
disappearance of corresponding OTUs; analogously, return times were defined as the intervals between 
disappearance and reemergence of OTUs. Again, we observed patterns very similar to those previously 
described in diverse ecological communities9,28,29 (Supplementary Fig. 2b). Specifically, the distributions of 
���� and ���� followed power laws, with exponential tails resulting from the finite length of the analyzed 
time series (Fig. 3, Supplementary Fig. 5a,b). Notably, the distributions were also similar within and 
between individual human and mouse gut microbiomes (#��� � 2.3 � 0.05, #��� � 1.2 � 0.02, mean � 
s.d. across humans, #��� � 2.2 � 0.04, #��� � 0.72 � 0.03, across mice on the LFPP diet), suggesting that 
the processes governing the local emergence and disappearance of gut bacteria are likely to be independent 
of the specific host. 

 

 
 
Fig. 3 | Residence and return times of gut microbiota. a-c,  Residence (�	
�) and return times (�	
�) were defined as 
the number of consecutive time points during which an OTU was detected at any abundance in the community or 
absent from the community respectively. Probability distributions for �	
� and �	
� follow power laws with exponential 

cutoffs of the form  ���� & �
�*
��, with the exponential tail resulting from the finite length of each time series. Power 
law exponents are +	
� � 2.3 � 0.04 ,  2.2 � 0.07, 2.2 � 0.04  for residence times and +	
� � 1.1 � 0.02, 1.2 �
0.05, 1.2 � 0.07, 1 for return times (mean � s.d., humans A and M3 and LFPP mice respectively, Methods). Residence 
and return times are aggregated across the three individual mice on the LFPP diet. Solid lines indicate fits to the data 
using MLE. 

 
Having characterized bacterial growth distributions and residence times, we next investigated the temporal 
variability of individual OTU abundances. One of the most general relationships in ecology that has been 
observed across hundreds of different biological communities is known as Taylor’s power law30–32, which 
connects a species’ average abundance to its temporal or spatial variance, 
 

%�� � & ' �
�	#�2�  
 
where & is a constant, �
� and %�� are the mean and variance of species abundances respectively, and ( is a 
positive scaling exponent. For processes following simple Poissonian fluctuations, the parameter ( � 1 and 
for processes with constant per capita growth variability,  ( � 2 . Values of (  have been empirically 
observed to lie between 1 and 2 for the vast majority of investigated plant and animal species33, suggesting 
that complex ecological interactions may contribute to the observed species dynamics34. Our analysis 
revealed that the temporal variability of gut microbiota also followed Taylor’s law (Fig. 4, Supplementary 
Fig. 6a,b), with exponents for human and mouse gut microbiomes generally consistent with values 
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observed previously in other ecological communities33 (( � 1.7 � 0.02 across humans, ( � 1.49 � 0.02 
across LFPP mice). Notably, dynamics consistent with Taylor’s law have also been observed in a recent 
short-term analysis of the healthy human vaginal microbiome35. 
 
Although Taylor’s law described well the overall dynamics of gut microbiota, some specific OTUs clearly 
deviated from the general trend (Fig. 4). To determine whether their behavior reflected specific ecological 
perturbations, we identified all OTUs that exhibited significant and abrupt increases in abundance during 
previously documented periods of travel in human A and enteric infection in human B7 (Methods). 
Interestingly, these travel and infection-related OTUs corresponded to the outliers from Taylor’s law (Fig. 
4a,b, blue circles), showing on average ~10-fold greater variance than expected based on the Taylor’s law 
trend (Supplementary Fig. 6a,c, Supplementary Table 1). Many of these OTUs were members of the 
Proteobacteria (OTU 13, family: Enterobacteriaceae, OTU 29, family: Pasteurellaceae, OTU 5771, family: 
Enterobacteriaceae in human A; OTU 13, family: Enterobacteriaceae in human B), which were associated 
with the microbiota perturbations7 (Supplementary Table 1). Moreover, other OTUs, primarily belonging to 
the Firmicutes, that exhibited abrupt changes in abundances (OTU 25, family: Peptostreptococcaceae in 
human A; OTU 95, family: Ruminococcaceae, OTU 110, family Ruminococcaceae in human B) also 
displayed higher than expected temporal variability (Fig. 4a,b, purple circles, Supplementary Fig. 6c, 
Supplementary Table 1). These results suggest that macroecological relationships can be used to identify 
and characterize specific microbial taxa that are likely involved in periods of dysbiosis and other context-
specific environmental perturbations. 

 

 
Fig. 4 | Taylor’s power law in the gut microbiome. Mean and temporal variance of OTU abundances follow 

Taylor’s power law of the form ��� & "
%�, with . =1.66�0.09,  1.60�0.08, 1.49�0.02 for humans A, B and LFPP 

mice respectively (mean � s.d., see Methods). Each point corresponds to the average abundance and temporal 

variance of a single bacterial OTU. a,b, OTUs that exhibited temporary and abrupt increases in abundance are 

indicated as colored circles (Methods). Light blue circles indicate OTUs that exhibited significant increases in 

abundance specifically during periods of travel (human A) and enteric infection (human B). c, Data from each 

mouse on the LFPP diet are overlaid. Dashed lines indicate least-squares regression fits. 

 
It is well established that the dynamics of diverse ecosystems are strongly affected by their environment36. 
Host dietary intake is a major environmental factor influencing gut bacterial abundances8,17,37 and disease 
phenotypes38,39. Therefore, we next explored the effects of diet on the observed macroecological 
relationships describing gut microbiota dynamics. To that end, we used data from the study of Carmody et 
al.8, who investigated fecal bacterial abundances in individually-housed mice fed either a low-fat, plant 
polysaccharide-based (LFPP) diet, or a high-fat, high-sugar (HFHS) diet. Our analysis revealed that the 
short-term dynamics of gut microbiota were significantly affected by the diets. While daily growth 
variability declined rapidly with increasing abundance in the LFPP mice (Fig. 5a, green), it remained more 
homogeneous across OTU abundances in the HFHS mice (Fig. 5a, purple, regression slopes � � �0.17 �
0.03 for the LFPP diet, �0.08 � 0.02 for the HFHS diet, Z-test of regression coefficients p= 2.0e-5). The 
short-term behavior of gut microbiota in the LFPP mice reflects more pronounced diversity of bacterial 
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dynamics across OTU abundances. This diversity is partially lost on the HFHS diet, likely due to its 
significantly reduced nutrient complexity. 
 
In addition to short-term fluctuations, we also investigated how different diets affected the long-term drift 
of gut microbiota. Interestingly, Hurst exponents were significantly larger in the HFHS mice, indicating 
substantially faster drift of bacterial abundances on this diet (Fig. 5b, Supplementary Fig. 3b, � � 0.19 �
0.02  for the HFHS diet, 0.08 � 0.02  for the LFPP diet, Z-test p<1e-10). Previous studies have 
demonstrated diet-induced compositional shifts of gut microbiota8,17,37 and a reduced gut bacterial diversity 
in Western populations attributed in part to altered dietary habits40–42. Our analysis shows that different 
diets not only affect the composition, but also significantly change the long-term dynamics of gut 
microbiota. In addition, we found that while the abundance drift of the Bacteroidetes and Firmicutes, the 
two major phyla in the mouse gut, were relatively similar on the HFHS diet ( � � 0.18 � 0.1  for 
Bacteroidetes, � � 0.18 � 0.03 for Firmicutes), the Bacteroidetes exhibited significantly reduced drift on 
the LFPP diet as compared to the Firmicutes (� � 0.03 � 0.06, � � 0.09 � 0.02, Z-test p=3e-8). This 
suggests that while the LFPP diet decreased the long-term abundance drift of all taxa, the stability of the 
Bacteroidetes is particularly affected on this diet (see below). 
 
Different diets may not only change overall gut microbiota dynamics, but also alter the temporal variability 
of individual taxa relative to the rest of the community. To understand taxa-specific changes, we examined 
Taylor’s law in mice on the LFPP and HFHS diets (Fig. 5c,d). This analysis showed that power law 
exponents were significantly different between the two diets (( = 1.49 � 0.02 for the LFPP diet, ( = 1.86 
� 0.07 for the HFHS diet, Z-test p=1.5e-6). Interestingly, the temporal fluctuations of the Bacteroidetes 
(Fig. 5c,d, blue circles) exhibited significantly lower variability given their abundances on the LFPP diet, 
but not on the HFHS diet (hypergeometric test, p=2.4e-4, Supplementary Table 2, Methods). Notably, 
Bacteroidetes are known to metabolize a wide range of dietary fibers present in the LFPP diet43,44 and are 
significantly lost during multigenerational propagation of mice on a low-fiber diet41. This suggests that 
specific members of the Bacteroidetes (OTU 118, OTU 237, OTU 364, family: Porphyromonadaceae, 
Supplementary Table 2) may exhibit both lower temporal variability and abundance drift by directly 
exploiting stable niches that are present on the LFPP diet and likely lost on the HFHS diet. Our results also 
demonstrate that macroecological analyses may be used to identify specific taxa whose temporal dynamics 
are altered between different diets. 
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Fig. 5 | Dynamics of gut microbiota in mice fed different diets. a, OTUs in mice fed a low-fat plant-polysaccharide-
based (LFPP) diet show a stronger dependence of daily growth rate variability (��� on mean daily abundance ( �� � 

compared to those fed a high-fat high-sugar (HFHS) diet (regression slopes � = -0.17� 0.03, � = -0.08� 0.02; mean� 
s.d., LFPP and HFHS mice respectively). Data are aggregated across the three mice on each diet with dashed lines 
indicating least-squares regression fits. b, OTU abundances in the LFPP mice exhibit reduced long-term abundance 
drift compared to those in the HFHS mice (' � 0.08 � 0.02, ' �  0.19 � 0.02).  c,d, Taylor’s law analysis shows 
differences in overall scaling of average OTU abundance versus temporal variance on each diet (. = 1.49 � 0.02, . = 
1.86 � 0.07),  driven by the temporal behavior of the Bacteroidetes in the LFPP mice (blue circles). Plots correspond to 
data combined from the three mice on each diet. Dashed lines indicate least-squares regression performed on the 
combined data.  

 
Despite vastly different length and interaction scales, our study reveals that global dynamical patterns in the 
gut microbiome are strikingly similar to those observed in other highly diverse ecosystems. This similarity 
suggests that the temporal processes in both macroscopic and microbial communities are likely to be 
governed by a universal set of underlying mechanisms and principles. Thus, we envision that the 
quantitative statistical framework developed in macroecology4,5,9,28 will also be important for analyzing gut 
microbiota dynamics. Moreover, the ability to easily perturb the composition and environment of gut 
bacteria, as well as monitor their abundances at high temporal resolution, creates an exciting opportunity to 
use the gut microbiome as a model system to explore general ecological relationships. We also anticipate 
that a quantitative ecological framework will be useful for understanding how host-specific and 
environmental factors influence the dynamics of gut microbiota. Our results suggest that the observed 
macroecological relationships can be used to identify both global dynamical changes and also specific taxa 
whose abnormal temporal behavior may serve as biomarkers for periods of illness and other ecological 
perturbations. Therefore, to further understand the role of the gut microbiome in human health, it will be 
important to investigate how quantitative macroecological relationships describing microbiota dynamics 
vary across large and densely-sampled human cohorts. 
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Methods 
 
16S rRNA Sequence Analysis. Raw 16S rRNA sequencing data for humans A and B was obtained from 
the European Nucleotide Archive (accession number: PRJEB65187). Raw sequencing data from humans 
M3, F4 and mice was obtained from the MG-RAST database45 (4457768.3-4459735.3 for humans; 
4597621.3-4599933.3 for mice). Sequences were analyzed with USEARCH 8.146 using an open clustering 
approach. For studies including unfiltered sequencing reads, filtering was performed using the –fastq_filter 
command with expected errors of 2. All reads were then truncated to 100bp, with shorter reads discarded. 
Following a conventional approach, reads were de-replicated and clustered at 97% sequence similarity 
using the –cluster_otus command to generate OTUs with a minimum of 2 sequences. Sequences were then 
assigned to OTUs using the –usearch_global command, resulting in OTU tables for each study. Taxonomic 
assignments were made to OTUs using the RDP classifier47. Sequencing reads from each sample were then 
rarefied to a depth of 25K, 17K and 25K for the two human studies (A/B, M3/F4) and one mouse study 
respectively using Qiime 1.848. 
 
OTU Inclusion Criteria. To control for technical factors such as sample preparation and sequencing noise, 
analysis was restricted to OTUs passing two sets of criteria. First, OTUs were required to be present in over 
half of the samples within respective subjects.  Second, OTUs were required to have a mean relative 
abundance > 1e-3 over the time series. The abundance cutoff corresponded to a mean of 25 (A, B,  
LFPP/HFHS mice) and 17 (M3 and F4) reads over respective sampling periods. The final analysis of 
human individuals included ~75 OTUs comprising ~90% of the reads assigned to an OTU in any given 
sample. For mice, these criteria resulted in the inclusion of ~70 OTUs in the HFHS diet and ~55 OTUs in 
the LFPP diet, comprising ~90% of reads assigned to an OTU in a given sample. Because the HFHS mice 
initially received a LFPP diet, the analysis of these mice began 5 days after the diet shift. For the 
calculation of residence and return times, different criteria were imposed (see below), as these analyses 
would be biased by a prevalence cutoff and were more robust to noise in OTU abundance levels. 
 
Daily growth rates. Daily growth rates were defined as ����� � log � 
��� � 1� / 
����), where 
���� is 
the relative abundance of a given OTU 
  on day �. Distributions reflect community averages, with growth 
rates calculated for each OTU at all time points and aggregated over all OTUs. To estimate the variability 
of daily growth rate distributions within human subjects, each time series was divided into six consecutive 
time frames of equal length (estimates were insensitive to this number). Within each time frame, daily 
growth rates were calculated and maximum-likelihood estimation (MLE) was used to fit the Laplace 
distribution exponent, with the mean and standard deviation of these values reported in the main text. For 
the mouse study, standard deviations reflected variability across the three individual mice on each diet. 
Mean daily abundances +
  were defined as the mean of consecutive log OTU abundances, +
 �
 �
�

,log-
�� � 1�. �  log �
����/. To estimate daily growth rate variability as a function of abundance, 

growth rates were binned by values of +
 using a bin size of 0.4 and standard deviations %� were then 
calculated on the binned growth rates. For diet comparisons, growth rates were aggregated across the three 
mice on each diet. Growth rates and mean daily abundances were calculated using the base ten logarithm in 
all figures, with the natural log used for parameter estimation.   
 
Hurst exponents. The mean-squared-displacement (MSD) of log OTU abundances was estimated as: 
 

����Δ��� � 1
0�1 � ∆�� 3 34 +���
 � ∆�� � +���
� 5�


�
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where the angled brackets denote a community average (over time and OTUs). Here, +���
 � ∆�� is the log 
relative abundance of OTU 
 at time �
, 0 is the total number of OTUs and 1 is the total length of the time 
series. A maximum time lag of 100 and 15 days were chosen for human and mice subjects respectively due 
to the finite length of each time series. Hurst exponents were then calculated by regressing ����Δ��� against 
Δ� on log-transformed axes. To estimate the variability of Hurst exponents within human subjects, time 
series were divided into six equal-length time frames as was done for growth rate calculations. Hurst 
exponents for individual OTUs were estimated in a similar fashion but with displacements restricted to time 
averages. For diet comparisons, Hurst exponents were additionally averaged over mice within each diet: 
 

����Δ����
�� � 1
6 3 1

0��1� � ∆�� 3 34 +�,���
 � ∆�� � +�,���
� 5�

��

 

 
 where the outermost summation is over individual mice (6 =3) on each diet. 
 
Residence and return times. Residence times (����,�� of an OTU 
  corresponded to the number of 

consecutive time points between its appearance (1�,�� and disappearance (1�,�� in the community (����,� � 

1�,� � 1�,� ). Here, 1�,� is any time point at which the OTU was detected at a finite read count with no 

reads detected on the previous collection date, and  1�,� is the next time point at which reads were no 
longer detected.  Return times ����  were similarly defined as the number of consecutive time points 
between local disappearance (1�,�� and reappearance (1�,�� in the community (����,� � 1�,� � 1�,�). Only 
intervals that fell entirely within the time frame of the study were included. A series of alternative criteria 
were also considered to ensure robustness of distributions. 1) To ensure results were not biased by detection 
sensitivity of sequencing, distributions were calculated for data subsampled to various sequencing depths 
(down to 1,000 reads per sample). 2) To account for false negatives in read detections, single read counts of 
zero interrupting a run of consecutive nonzero abundances were neglected. That is, an OTU with zero reads 
at time � was considered to be present in the community if that OTU was also present at times � � 1 and 
� � 1. 3) To control for false positives, single read abundances were neglected and treated as a zero count. 
Results were qualitatively insensitive to both sampling depth and the alternative read detection criteria. To 
estimate variability of distribution parameters within human individuals, OTUs were randomized into six 
equal-sized groups. Residence and return times were calculated within each group and exponents were then 
fitted using MLE, with means and standard deviations reported in the main text. Within diets, means and 
standard deviations were calculated across individual mice.  
 
Taylor’s power law. The mean abundance �
��  and variance %���  for each OTU 
 was calculated over the 

time series. Taylor’s exponents were obtained by performing linear regression of the log-transformed mean 
and variance across OTUs in each subject. To estimate variability of exponents within subjects, time series 
were divided into six consecutive time frames as described before. Spiking OTUs were defined as those 
whose abundance on any single day was greater than the average abundance over all other days by over 25-
fold. Travel-related and infection-related OTUs in humans A and B were identified as those whose 
abundances spiked over 25-fold during the documented time periods7. For mice, Taylor’s law outliers were 
identified using a likelihood-based approach. Briefly, linear regression on the log-transformed means and 
variances were performed on all but a single OTU 
. The probability of observing the left out OTU 
 was 
assigned using a Gaussian likelihood function based on estimated residuals. All OTUs with probability less 
than # = 0.025 were taken to be outliers. For diet comparisons, means and variances were aggregated 
across individual mice within diets groups. 
 
Statistics. All statistical analysis was performed using custom scripts written in MATLAB 
(https://www.mathworks.com). Comparisons of various exponents between mouse diet groups were 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 18, 2018. ; https://doi.org/10.1101/370676doi: bioRxiv preprint 

https://doi.org/10.1101/370676
http://creativecommons.org/licenses/by-nd/4.0/


performed by first calculating the relevant coefficient and associated standard error of combined data 
across the three mice in each diet group. Z-tests were then performed comparing the two coefficients 
associated with each diet group assuming normality of standard errors. Reported p-values refer to one-sided 
tests. 
 
Data availability. All sequencing data used in this study can be downloaded from the ENA 
(https://www.ebi.ac.uk/ena/data/view/PRJEB6518 for humans A and B) and MG-RAST databases 
(https://www.mg-rast.org/linkin.cgi?project=mgp93 for humans M3 and F4; https://www.mg-
rast.org/linkin.cgi?project=mgp11172 for mice). These data were used to generate all figures in the main 
text and supplement with the exception of Supplementary Figure 2.  
 
Code availability. All MATLAB scripts used to perform data analysis and generate figures will be 
available on GitHub at the time of publication.   
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