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Abstract

Comprehensive disease gene discovery in both common and rare
diseases will require the efficient and accurate detection of all classes
of genetic variation across tens to hundreds of thousands of human
samples. We describe here a novel assembly-based approach to vari-
ant calling, the GATK HaplotypeCaller (HC) and Reference Confi-
dence Model (RCM), that determines genotype likelihoods indepen-
dently per-sample but performs joint calling across all samples within
a project simultaneously. We show by calling over 90,000 samples from
the Exome Aggregation Consortium (ExAC) that, in contrast to other
algorithms, the HC-RCM scales efficiently to very large sample sizes
without loss in accuracy; and that the accuracy of indel variant call-
ing is superior in comparison to other algorithms. More importantly,
the HC-RCM produces a fully squared-off matrix of genotypes across
all samples at every genomic position being investigated. The HC-
RCM is a novel, scalable, assembly-based algorithm with abundant
applications for population genetics and clinical studies.

1 Introduction

Next-generation sequencing technologies combined with large population co-
horts are facilitating the identification of rare allelic variants for population
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and medical genetic studies [I8] 4, 25 14]. Although high-throughput se-
quencing platforms currently generate up to four billion paired-end reads
per run, low signal-to-noise ratios necessitate the use of data processing al-
gorithms that differentiate true variants from machine-generated artifacts
[19, [11].

The first generation of variant calling algorithms scanned short read data
mapped to a reference sequence to identify mismatches [11 6], 15, 17, 22]. Ref-
erence sequence mismatches were probabilistically sorted using algorithms
that took into account the reported base quality and context prior to call-
ing variants [22]. These position-based or so-called “pileup” callers, which
include SAMtools Li et al 2009 and the GATK’s UnifiedGenotyper (UG),
proved highly effective at calling small nucleotide polymorphisms (SNPs) but
are unable to attain high accuracy for indel variants due to their reliance on
independent short read alignments to a reference sequence [11 6} 5], 17, 22].
In contrast, assembly-based variant callers including Platypus [22] and the
GATK’s HaplotypeCaller (HC), construct theoretical haplotypes via de
Bruijn-like graphs from a consensus of the reads covering the genomic re-
gion [13] 22], 7, 10}, 20]. Although assembly-based algorithms call indels with
greater accuracy, they do not scale well due in part to exponential increases in
graph complexity with the number of samples. Thus, calling variants jointly
on large numbers of samples becomes increasingly computationally intensive
until the requirements exceed hardware performance limitations [6].

One naive solution would be simply to discover and genotype variants in
each sample separately and then merge the independently discovered vari-
ants across all samples. In this way, data from a single sample would only be
retained at positions in which that sample is variant. A major shortcoming
of this approach is the only genotype calls present would be heterozygous or
homozygous variant. It would be impossible to determine whether missing
genotype calls were homozygous reference or void of any read data at all. As
an illustration of this shortcoming, take the case where a mutation is discov-
ered in a single sample within a cohort; a naively merged list would merely
contain “no-call” genotypes for all other samples making estimating the pop-
ulation allele frequency difficult. What is required for the most accurate
estimates of population allele frequencies is instead to jointly call variants
over all samples together, creating a “squared-off matrix” of samples by ge-
nomic position where each cell in the matrix contains genotype likelihoods
for all possible alleles (including the reference) at the corresponding genomic
position. In addition, is has been previously shown [6] that joint calling has
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Figure 1: GATK Variant Calling Best Practices. The HaplotypeCaller takes
in analysis-ready reads and performs variant calling per sample to produce
unfiltered genotype likelihoods.

several other advantages: it improves sensitivity at low coverage positions
and powers the training of a more accurate statistical filtering model, which
is a crucial step in the variant discovery pipeline (Figure [1)).

To solve the problem of joint calling large cohorts using graph-based as-
sembly without introducing intractable computational complexity, the Ref-
erence Confidence Model was developed as a module for the HC (Figure .
In brief, this combined HaplotypeCaller-Reference Confidence Model (HC-
RCM) algorithm constructs candidate haplotypes for each individual sample
in the cohort, avoiding the exponential complexity of a graph describing
all samples simultaneously and ultimately accelerating variant calling com-
pared with the previous approach to joint calling. Constructed haplotypes
are used to calculate genotype likelihoods using a pair-hidden Markov model
(pair-HMM), and these likelihoods are stored in an intermediate file for subse-
quent joint variant calling across all samples (which includes allele frequency
estimation and genotype assignment). In addition to likelihoods for all alle-
les explicitly observed a sample’s reads, the model generates the likelihood
over the set of unobserved, non-reference alleles. Here it is shown that the
accuracy of the HC-RCM algorithm is comparable to or better than other
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Figure 2: HaplotypeCaller-Reference Confidence Model overview. The four
basic steps of variant calling with the HC-RCM including identification of
the ActiveRegions, assembly of candidate haplotypes using de Bruijn-like
graphs, determination of the per-read likelihoods of candidate haplotypes
using a pair-HMM, and genotype assignment.

widely used tools and that the computational performance on large sample
sizes is superior.

2 Results

2.1 Brief Methodology

The role of the HaplotypeCaller within the GATK variant calling pipeline
is shown in Figure [1| (see http://www.broadinstitute.org/gatk for more
details regarding the GATK Best Practices). High-throughput sequencing
analyses start with raw read data (FASTQ files) that are converted to recali-
brated, analysis-ready reads in the Binary sequence Alignment/Map (BAM)
format using SAMtools and GATK modules [I6 [6]. Reads are initially
aligned to a reference sequence e.g. human reference genome (GRCh37)
using an mapping/aligner program e.g. Burrows-Wheeler Aligner (BWA)
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[16, [5].

For computational efficiency, variant calling is focused on “ActiveRe-
gions”, or regions of the genome that vary significantly from the reference.
ActiveRegions are defined by genomic intervals where the BWA-aligned reads
contain evidence that they are in disagreement with the reference, using cri-
teria such as base mismatches, insertion/deletion markers in the reads and
high base-quality soft clips [16]. The reads from these ActiveRegions are split
into overlapping subsequences, or k-mers, and subsequently reassembled us-
ing de-Bruijn-like graphs into candidate haplotypes. This is followed by the
construction of a pair-HMM using state transition probabilities derived from
the read base qualities. This pair-HMM is then used to calculate the likeli-
hood that each read was derived from each haplotype (Supplemental Figure
5). These likelihoods are used to calculate the raw genotype likelihoods for
each candidate variant. Ultimately, genotype likelihoods across all samples
are used to call raw variants for the cohort.

The raw, unfiltered output of the HaplotypeCaller is not appropriate to
be used for downstream analyses. The HC-RCM aims to attain maximum
sensitivity with the consequence of retaining some false positive variants. The
subsequent steps of the GATK Best Practices pipeline (Figure (1)) identify
and filter out false positives to achieve maximum accuracy, as described in
previous in previous work [6]. For the accuracy results presented here, the
HC-RCM output is subjected to joint genotyping and variant recalibration
in accordance with the GATK Best Practices.

For further details on the HC-RCM algorithm, see the Supplemental
Methods section.

2.2 Comparative Analyses

To validate the sensitivity and specificity of this new variant calling algo-
rithm, a set of analyses was performed comparing the HaplotypeCaller with
three other variant calling algorithms (Figure . These other algorithms
consisted of two pileup variant callers, SAMtools[17] and the GATK Unified
Genotyper (UG) [6], as well as Platypus, another assembly-based algorithm
[22]. SNPs and indels were called with each of the four variant calling al-
gorithms from whole genome and exome-capture sequencing data from the
well characterized CEU HapMap trio [2]. Variant caller accuracy was evalu-
ated using the Genome in a Bottle standard (GiaB) [26] as described in the
supplemental methods.
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Figure 3: Variant caller comparison. Accuracy comparisons of both SNP
and indel variant calls over all three samples in the CEU trio by the GATK
HaplotypeCaller, Platypus, SAMtools, and Unified Genotyper. WGS data
was PCR-free, 250bp paired-end reads sequenced by an Illumina HiSeq. WES
data was 76bp paired-end reads sequenced by an Illumina HiSeq. Sensitivity
is plotted as false negative rate (FNR), for which lower values equate to better
sensitivity. Specificity is plotted as false discovery rate FDR, for which lower
values are also better. For genotype concordance higher values indicate better
genotype call accuracy.
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Figure [3| shows the results of these analyses, which indicate that the Hap-
lotypeCaller effectively calls both SNP and indel variants from both whole
genome and exome-captured sequence data. Although Figure |3 shows that
SAMtools called a greater number of both SNP and indel variants compared
to the other callers, the specificity of these calls was substantially lower than
the other algorithms, especially for indel variants, as indicated by high false
discovery rates (FDR). In contrast, the HaplotypeCaller algorithm called
large numbers of SNP and indel variants with high sensitivity and low FDRs
on both whole genome and exome captured DNA, suggesting that the Hap-
lotypeCaller has both high sensitivity and specificity.

To determine algorithm genotype assignment accuracy, the genotype con-
cordance was determined. Genotype concordance measures the accuracy of
genotype assignments of true positive variants to a gold standard (GiaB).
In contrast to the other variant calling algorithms, the HaplotypeCaller had
exceptionally high genotype concordance values for indel variant calls from
both whole genome and exome captured data. These results suggest that the
HaplotypeCaller calls genotypes with superior accuracy compared with the
other algorithms.

2.3 Scaling

The Reference Confidence Model was integrated into the HaplotypeCaller to
enable scaling of joint calling up to hundreds of thousands of exomes. To
determine how this algorithm performs on large sample sets, runtime was ex-
amined as a function of the number of samples. Figure 4] shows the runtimes
for variant calling using GATK HaplotypeCaller, GATK UnifiedGenotyper,
Platypus and SAMtools. For the 20X exomes used here, HaplotypeCaller
requires slightly more CPU-hours than the other algorithms for up to 250
samples. Beyond 250 samples, HaplotypeCaller runtime continues to increase
linearly with the number of samples, while the other algorithms increase su-
perlinearly. Furthermore, the efficient scaling of the HC-RCM algorithm was
leveraged to produce a joint call set with over 90,000 exomes for the Exome
Aggregation Consortium [14].
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Figure 4: Scaling of whole exome calling with the HaplotypeCaller-Reference
Confidence Model. Comparison of computational runtimes as a function of
sample size. For each algorithm, variants were called over 1M bases of ge-
nomic territory and extrapolated to full exome runtime. Error bars represent
95% confidence intervals from 10 independent runs.
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3 Discussion

The above validation studies demonstrate that the HaplotypeCaller calls both
SNP and indel variants with high sensitivity and specificity. Now part of
the widely used GATK pipeline, the HC removes a critical bottleneck in
variant calling by enabling this algorithm to scale without losses in accuracy
or sensitivity.

Our analyses show that SAMtools is the most sensitive SNP variant caller
using both whole genome and exome-captured data. These results are consis-
tent with other studies for whole genomic data which have shown that locus-
based algorithms accurately call SNP variants [17], 22]. However, SAMtools
also has a high false discovery rate for SNP variant calls, suggesting that
though highly sensitive, it lacks the specificity of the other variant calling
algorithms evaluated in this study.

In our results, the HaplotypeCaller was the most sensitive indel variant
caller using both whole genome and exome-capture data, which is a con-
clusion consistent with other reports comparing variant callers [22] 211, [9].
However, in contrast with the report of Rimmer, et al., the results here show
that the HaplotypeCaller had the lowest FDR on whole genomic data, sug-
gesting that it had the highest specificity for indel variant calls [22]. Reasons
for the discrepancies between the two studies, include different versions of
the algorithm used; the current study used the HaplotypeCaller (v3.4) while
Rimmer, et al used a much older version (v2.5). It is likely that more recent
versions of the HaplotypeCaller software improved variant calling accuracy
as has been reported by Narzisi, et al. [20] and our internal tests (data
not shown). In addition to the different software versions used, there is a
substantial difference in the validation methods between the two studies. Al-
though Rimmer et al., used a fosmid dataset to validate their variant calls,
the majority of variants called as false-positives by Platypus were actually
present in dbSNP137, suggesting that their “truth” data contained a high
frequency of errors [22]. In contrast, this analysis used the GiaB standard
which contains variants validated using multiple data sets, platforms, variant
callers, and filtering strategies suggesting that the GiaB is a highly validated
“truth” dataset [26]. Using this high quality “truth” set it is demonstrated
that the HaplotypeCaller calls indel variants with both high sensitivity and
specificity.

These comparison data show that all of the algorithms assign geno-
types with similar accuracy from SNP variants, consistent with the report
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of [22]. However, substantial differences in genotype concordance were ob-
served among algorithms for indel variants. HaplotypeCaller’s local assembly
and pairHMM likelihood calculation are more robust to errors in repetitive
contexts, leading to the higher genotyping accuracy.

Platypus FDRs were higher than expected for both SNPs and indels in
the WGS results. The orthogonal [llumina Platinum Genomes evaluation [9]
showed a FDR of less than 1

While variant calling accuracy on a single sample is of primary impor-
tance in some studies, in nearly all contexts the interpretation of variants
requires data derived from many samples. Analyses like genome-wide asso-
ciation studies leverage larger numbers of samples to increase their power to
detect genotype-phenotype associations. In a clinical research setting, ana-
lysts often interpret the effect of a given putatively causal mutation based
on population frequency estimated from a large joint call set of samples from
healthy individuals used as a reference panel. To produce such a reference
panel, it is crucial that all samples be jointly called and evaluated across
as many other samples as possible. The estimation of the frequencies of
rare alleles in large populations is possible only with accurate and confident
genotype calls for all samples, especially those that are homozygous for the
reference allele.

Joint calling increases variant calling sensitivity over low coverage regions
and improves filtering accuracy [6]. The HaplotypeCaller algorithm further
improves accuracy by using a local assembly method for variant discovery.
However joint calling across large sets of samples requires an algorithm that
can effectively scale. HC-RCM runtimes increase linearly with sample num-
ber, enabling the algorithm to produce data across tens of thousands of sam-
ples, as demonstrated by the production of a call set featuring over 90,000
exome samples used in the ExAC study [14].

4 Supplemental Methods

4.1 Data

Input data for the variant caller evaluations were obtained from the 1000
genomes repository [5]. Both data sets, consisting of the 2x250bp PCR-free
whole genome samples and 2x76bp exome samples, were retrieved as BAM
files of high coverage CEU trio samples. These samples, NA12891, NA12892,
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NA12878 representing the father, mother, and daughter respectively have
been described previously [2]. Prior to analysis, all sequencing data were
aligned with the Burrows-Wheeler transform algorithm (BWA) [16]. The
Genome in a Bottle (GiaB) standard version 2.18 for NA12878 was used for
the variant caller accuracy comparison [26].

4.2 Software

Software versions were Platypus version 0.7.8, SAMtools version 1.1 and the
UnifiedGenotyper and HaplotypeCaller-Reference Confidence Model (HC-
RCM) were obtained from the Genome Analysis Toolkit version 3.4. The
authors made a good faith effort to run each tool according to its respective
best practice recommendations by following the directions found on each tool
author’s webpage.

4.3 Evaluation Metrics

Figure |3|reports variant caller accuracy using false negative rate (FNR), false
discovery rate (FDR), and genotype concordance with respect to the Genome
in a Bottle (GiaB) reference standard as the truth set [26]. A variant at a
position listed in the truth set that also has an alternate allele matching the
truth set is considered a true positive (TP). A variant that is called within
the GiaB confidence region that does not occur in the list of truth variants
or have an alternate allele matching the truth variant is considered a false
positive (FP).

Algorithm sensitivity is calculated by dividing the number of true positive
variants by the total number of variants in the GiaB standard [26] 22]. Here
we report the FNR (1-sensitivity) to better visualize the differences between
algorithms.

The FDR describes the frequency of incorrect variant calls in a call set
and is calculated by dividing the number of false-positive (FP) variant calls
by total number of called variants (the sum of both true and false positive
variant calls) as described [22, [6]. Genotype concordance (GT concordance),
measures the accuracy of genotype calls and is calculated by dividing the
number of correctly assigned genotypes (both heterozygous and homozygous
variant) by the total number of true positive variants [26].
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4.4 HaplotypeCaller Algorithm

HaplotypeCaller is the method responsible for variant calling in the cur-
rent best practices version of the GATK pipeline for the processing of high-
throughput sequencing data. This component was developed to address the
shortcomings of previous locus-based callers, primarily an inability to call
structural variants including indels and repetitive sequences [22]. The Haplo-
typeCaller’s approach to variant calling is reference-based local reassembly of
genomic regions containing non-reference evidence. Using this approach, the
method presented here avoids many of the pitfalls of global alignment to the
reference sequence used in mapping/locus-based approaches e.g. SAMtools
and the Unified Genotyper [I7, [6]. Given that this local assembly approach
becomes exponentially more computationally intensive with increasing num-
bers of samples, the reference confidence model (RCM) was developed to
reduce the computational burden associated with the tandem local reassem-
bly of multiple samples. The combined algorithm is described in detail below.
There are several preprocessing steps (Figure (1)) that are explained in detail
on the GATK website www.broadinstitute.org/gatk and in previous pub-
lications [0, [3]. Initially, raw sequence data is aligned and de-duplicated using
BWA and Picard Tools, respectively [17, [15]. Additional preprocessing steps
used to produce analysis-ready reads, including the Base Quality Score Re-
calibrator (BQSR), are part of the GATK pipeline and have been described
previously [0 B]. Note also that reads with mapping quality less than 20 are
filtered by the tool engine and excluded from HaplotypeCaller.

4.4.1 Defining ActiveRegions

To define an ActiveRegion of a sample’s genome using data from that sam-
ple’s reads, the HaplotypeCaller operates in three phases. It computes an
“active probability” for each locus, smoothes the probability signal via convo-
lution, and thresholds the resulting signal to define the ActiveRegion bound-
aries. Using the original alignment assigned by BWA, the HaplotypeCaller
performs genotyping at each pileup position comparing the reference allele
with any non-reference possibility, incorporating mismatch evidence, but also
insertions, deletions, and soft-clips. Sites are assigned an “active probabil-
ity” based on these genotype likelihoods and a heterozygosity prior (0.001 for
SNPs and 0.0001 for indels by default). That probability is then convolved
across loci with a Gaussian kernel (sigma of 17bp by default) to expand
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the activity signal. An ActiveRegion is thus defined as an interval of con-
tiguous loci where the active probability exceeds a certain threshold (0.002
by default.) By default, HaplotypeCaller incorporates data from reads that
cover an interval of up to 100bp adjacent to but outside the thresholded
ActiveRegion during assembly, but these reads do not contribute to geno-
type likelihoods. Reads outside the ActiveRegion and its extension are not
considered at all. Minimum ActiveRegion size is by default 50bp while the
maximum size is 300bp. If an ActiveRegion exceeds the maximum size af-
ter the thresholding step then is it split into two, such that the regions for
which each will emit variants abut, but reads overlapping the junction will
be considered in both.

4.4.2 Graph Construction

The second step involves de Bruijn-like graph construction for each ActiveRe-
gion [23]. The reads within the current ActiveRegion and the reference se-
quence corresponding to that ActiveRegion are parsed into k-mers of 10 and
25 nucleotides in length. If the k-mer-ized reference sequence contains non-
unique k-mers, then the value k in incremented by 10 until a maximum of 65.
If the reference sequence for the ActiveRegion contains non-unique 65-mers,
then assembly is aborted. The graph is initialized by connecting overlap-
ping reference k-mers into a single path. Edges in the graph are assigned
weights according to how many reads contain each pair of k-mers the edge
connects. The graph is simplified by merging paths with entire k-mers in
common. FKEdges with limited k-mer support are pruned out of the graph
and potential haplotypes are removed if supported by fewer than two reads
by default. Paths that do not have a terminal kmer that connects back to
the reference haplotype, referred to as “dangling tails”, are attempted to be
merged to the reference using Smith-Waterman alignment [24]. If no overlap
with the reference is found, paths containing the dangling tail will be dis-
carded. Each candidate haplotype is aligned to the reference sequence using
Smith-Waterman . The output of this alignment generates a CIGAR string
for each candidate haplotype (H;) [17]. This CIGAR is used to help translate
the haplotypes into the variants that will be output in the VCF.
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Figure 5: Pair-HMM overview. This diagram shown depicts the states, tran-
sitions, and transition rates for the read-haplotype alignment. The alignment
of a read to a candidate haplotype is allowed to take on one of three states;
match, insertion, or deletion (M, I, or D). € represents the gap extension
penalty while § is the gap open penalty. Other transition probabilities are
defined based on the constraint that the sum of the transition probabilities
must equal one.

4.4.3 Pair-HMM

A paired Hidden Markov Model (pair-HMM) is used to determine the likeli-
hood for each combination of candidate haplotype (H;) and read data (R;),
namely P(R;|H;) [12, §].

Figure 5 shows a graphical representation of a global alignment model,
which is a simplified version of the pair-HMM used herein. For additional
details and a description of the complete model, the reader is referred to
Durbin et al., [8]. The pair-HMM calculates an alignment score for each read
(R;) and candidate haplotype (H;). There are three primary “states” of the
algorithm, match (M;;), insertion (I;;), and deletion (D;;). An alignment
of a read to a haplotype can be described by a sequence of these states.
The transition probability from the match to the insertion or deletion state
is given by the gap open penalty (§). The probability that an alignment
stays in either the insertion or deletion state is given by the gap extension
penalty (¢). The gap extension penalty is held constant (default 10) while
the gap open penalty may be derived from GATK’s BQSR if base insertion
and deletion qualities have been output in the recalibrated BAM. If BQSR
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base insertion and deletion qualities are not available, a constant value of 45
is assigned. For alignments in the match state, the probability of emitting a
base identical to the reference (P;;) is given by the complement of the base
error probability given by the base quality.

Recurrence relations for the states with respect to position i in the read
and position j in the haplotype are given as follows:

M;; =P(ri|hj, qi) (Mi—1 j—1 T + Licaj—1 T + Dicy j—1T o) (1)
Lij =M; 1 jTnr + Lioa jT7r (2)
Di; =M; ; 1Tyvip + D;j—1Tpp (3)

where TM[ = TMD = (5, TMM =1- 2(5, T[] = TDD = €, T]M = TDM =1- €,
and T[D = TD[ =0

The pair-HMM can be used to correct for PCR errors that can lead to
spurious indel calls. In this error correction mode, when the alignment se-
quence is being calculated for a tandem repeat sequence in the reference,
the base insertion and deletion qualities are decreased in order to convey the
reduced confidence in indels occurring within repetitive contexts. The de-
fault is to use a conservative correction. For PCR~free genomes, the authors
recommend setting the PCR indel model to “NONE”.

4.4.4 Assigning Genotypes

The CIGAR derived from the Smith-Waterman alignment of the discovered
haplotypes is used to translate the haplotypes into variant events with re-
spect to the reference. Genotyping is then performed at each of the events
discovered in any haplotype. Per-read haplotype likelihood output from the
pair-HMM is used to calculate raw genotype likelihoods using a Bayesian
model. Given that multiple haplotypes may support a variant allele, the
per-read allele likelihood at a given variant position is taken as the maxi-
mum of the likelihoods for haplotypes containing the allele. Equation 1 gives
the genotype likelihood for a diploid genotype G; composed of one copy of
allele Ay and one copy of allele A,. Briefly, the probability of a candidate
genotype P(R;|G)), is the product over all the reads of the mean read likeli-
hoods for the alleles in the specified genotype

<P(RZ-|A1) n P(Rz‘|A2)>

P(Ri|G)) = H

%

5 5 (4)

15


https://doi.org/10.1101/201178
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/201178; this version posted July 24, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

To determine the posterior probability of each candidate genotype
P(Gy|R;), the raw genotype likelihoods P(R;|G;) are marginalized using a
Bayesian model:.

> P(Ri|Gr)P(Gy)

The numerator consists of the product of the prior probability of a geno-
type P(G) and a raw genotype likelihood divided by the sum of the likeli-
hoods of all the possible genotypes for the set of alleles called in the vari-
ant. At this stage in the best practices pipeline, the genotype prior is flat
such that the prior probability of all genotypes are equal. The GATK tool
CalculateGenotypePosteriors can be used in post-processing to apply more
informed priors.

P(Gi|R;) =

4.4.5 Reference Confidence Model

The two main requirements for joint calling large cohorts using local assem-
bly are maintaining manageable compute complexity and outputting data
for every variant in every sample. The reference confidence model addresses
the former requirement by processing the samples individually, reducing the
number of probable paths through the assembly graph, resulting in fewer
candidate haplotypes, and decreasing the number of computationally expen-
sive likelihood calculations that must be performed for each sample. The
solution to the latter involves the addition of the symbolic non-reference al-
lele (KNON_REF>) to aggregate evidence for a variant that was not explicitly
called as an alternate allele. This additional candidate allele category en-
ables the estimation of likelihoods to genotypes featuring an allele not seen
in the sample in question. For variant sites, for each read the non-reference
likelihood is set to the median of the set of allele likelihoods that are worst
than the best allele. For sites that appear to be reference, non-reference
likelihoods are estimated using a SNP model and an indel model.

Under the SNP model, base qualities are used to assign oer-read allele
likelihoods for the reference and non-reference alleles. The per-read allele
likelihoods for reference bases are assigned using the base error probability
(€) derived from the base quality. Bases that do not match the reference or
are adjacent to soft clips, insertions, or deletions are considered non-reference
evidence. The likelihood for read R; with base b; and base quality ¢ compared
to the reference allele with base b, is given by:
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P ={ 00 )

Where € = 107910 for base quality ¢. Deletions are assigned a constant
quality of 30. Bases with base quality of 6 or below are discarded.

Under the indel model, only reads that are considered informative for
all possible indels of up to size 10bp (by default) are considered. For each
event size up to the maximum to be considered, bases are removed from the
reference to simulate a deletion or from the read to simulate an insertion.
A read is considered informative if, for the pair of sequences with the indel
modification, the sum of the base qualities for mismatching bases in the read
is greater than the sum of the base qualities for bases that are mismatched
according to the original alignment. The number of reads informative for
indels is capped at 40. A constant reference quality of 45 is used for each
indel-informative read.

Genotype likelihoods for genotypes incorporating the non-reference allele
are calculated in the same way as described above for likelihoods derived
from both SNP and indel models. The likelihoods with the lower genotype
quality are then assigned to the site.

Output from the HC-RCM is captured in a new intermediate file format
called genomic variant call format (gVCF) that contains likelihood data for
every position in the genome (or specified intervals). This is an intermediate
output that is not appropriate for analysis until the data has been processed
with the full GATK Best Practices pipeline.

4.5 Running HaplotypeCaller-Reference Confidence
Model

Use of the Reference Confidence Model is not the HaplotypeCaller de-
fault and must be specified on the commandline. (See https://software.
broadinstitute.org/gatk/documentation/article?id=3893 for exact
command lines.) Output from this mode will be intermediate gVCF files
that are not appropriate for analysis. The reader is encouraged to visit
the GATK Forums website for more information about the gVCF intermedi-
ate file format used by the HC-RCM (https://software.broadinstitute.
org/gatk/documentation/article.php?id=4017). gVCFs must be geno-
typed with the GATK GenotypeGVCFs tool to remove low quality, likely
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artifactual alleles and assign a quality score to each variant. For many of the
scaling analyses presented here, per-sample gVCFs were first combined into
multi-sample gVCFs using the GATKS3 tool CombineGVCFs before genotyp-
ing that output with GenotypeGVCFs. For multi-sample analysis, Geno-
typeGVCFs also produces the finalized annotation values that will be used
as features in VQSR filtering.
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