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Abstract

Estimation of correlation matrices and correlations among variables is a ubiquitous
problem in statistics. In many cases – especially when the number of observations is
small relative to the number of variables – some kind of shrinkage or regularization is
necessary to improve estimation accuracy. Here, we propose an Empirical Bayes
shrinkage approach, CorShrink, which adaptively learns how much to shrink
correlations by combining information across all pairs of variables. One key feature of
CorShrink, which distinguishes it from most existing methods, is its flexibility in
dealing with missing data. Indeed, CorShrink explicitly accounts for varying amounts
of missingness among pairs of variables. Numerical studies suggest CorShrink is
competitive with other popular correlation shrinkage methods, even when there is no
missing data. We illustrate CorShrink on gene expression data from GTEx project,
which suffers from extensive missing observations, and where existing methods struggle.
We also illustrate its flexibility by applying it to estimate cosine similarities between
word vectors from word2vec models, thereby generating more accurate word similarity
rankings.

Keywords: correlation shrinkage, Empirical Bayes, missing data, genomics,
word2vec

1 Introduction

Estimating the correlation matrix of a set of variables is a fundamental problem in
statistics. The simplest estimator, the sample correlation matrix, can perform poorly
when the number of variables (p) is large compared with the number of samples (n).
This problem has motivated many alternative estimators, most of them based on
shrinkage or regularization methods. These include using a convex combination of the
sample correlation matrix with one or more target correlation matrices [Lancewicki and
Aladjem, 2014, Ledoit and Wolf, 2003, 2004, Schäfer and Strimmer, 2005, Touloumis,
2015]; thresholding-based approaches using either hard-thresholding [Bickel and Levina,
2008] or soft-thresholding [Rothman and others, 2009]; and L1-penalized shrinkage on
correlation or inverse correlation matrices [Bien and Tibshirani, 2011, Friedman and
others, 2008]. These methods, though often a considerable improvement on the sample
correlation matrix, have their own limitations. In particular, almost all of these
approaches assume that there are no missing observations. Here we present CorShrink,
a fast and simple shrinkage-based approach to estimating correlations that can deal
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with missing observations, and, in many settings, is competitive in accuracy with
existing methods.

In brief, CorShrink is a model-based extension of the approaches of Bickel and
Levina [2008] and Rothman and others [2009]. Those approaches perform shrinkage
using simple thresholding rules applied independently to each element of the correlation
matrix. Our approach also treats each element of the matrix as independent, but uses
an Empirical Bayes (EB) shrinkage approach that combines information across all
elements to learn how much to shrink. Within this EB approach, the amount of
shrinkage of each matrix element depends on the curvature of its likelihood, and so it
naturally adapts to differing amounts of data available on each element. Our methods
exploit semi-parametric EB methods [Stephens, 2016] that are both computationally fast
and stable, and avoid strong assumptions on the distributions of pairwise correlations.

We illustrate CorShrink on a dataset with extensive missingness: gene expression
data across 53 human tissues (and cell-lines) collected by Genotype Tissue Expression
(GTEx) project [Lonsdale and others, 2013]. The data matrix for each gene consists of
expression measurements on many post-mortem donors across many tissues. However,
for most donors, data are available on only a subset of tissues, and many elements of
this data matrix are missing. Some tissues are particularly rarely sampled, and so their
sample correlations are particularly noisy. Most existing correlation matrix estimation
procedures cannot be easily applied to these data. In contrast, as we illustrate here,
CorShrink is straightforward to apply. Further, the resulting shrinkage estimates are
more biologically plausible, and visually considerably less cluttered, than the sample
correlation matrix estimate. We also compare results with an alternative approach
based on first imputing the missing values in the data matrix, and conclude that for
data like these with high levels of missingness this imputation strategy is unappealing.

In addition to these results with missing data, we also use simple simulations to
show that even when no data are missing, CorShrink is often competitive in accuracy
with other methods, especially when the true correlation matrix is sparse. Furthermore,
CorShrink is easy to apply to other correlation-like quantities, and we illustrate this by
applying it to cosine similarities of vectors from word2vec models [Mikolov and others,
2013] that measure word-word similarities.

2 Methods

Let (Xnp)N×P denote a data matrix with N samples and P variables, where some
values may be missing (recorded as NA). For each pair of variables i, j ∈ {1, 2, · · · , P}
let Rij denote their (unknown) true correlation, and R̂ij denote the sample correlation
computed using only the samples n that have observed values for both the variables i
and j (e.g. using the option use="pairwise.complete.obs", method = "pearson" in
the R function cor). Further, let Zij and Ẑij denote the corresponding Fisher
Z-transforms [Fisher, 1915]:

Zij = Z(Rij) =
1

2
log

(
1 +Rij
1−Rij

)
(1)

Ẑij = Z(R̂ij). (2)

Our goal is to estimate the matrix Z = (Zij) and hence R = (Rij) from the data

Ẑ = (Ẑij).
Our starting point is a result from Fisher [1921], who showed that, under a bivariate

normality assumption on each pair of variables, the observations Ẑij are approximately
normal:

Ẑij |Zij ∼ N(Zij , sij) ∀i < j. (3)
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Here the standard deviation sij is given by

sij =

√
1

(nij − 1)
+

2

(nij − 1)2
, (4)

where nij > 3 is the number of matched samples, for which both variables i and j are
observed:

nij := # {n : Xni 6= NA, Xnj 6= NA} . (5)

We take an Empirical Bayes approach, combining the likelihood (3) with an
assumption that the Zij are drawn from some underlying distribution g:

Zij ∼ g ∈ G (6)

where G denotes some pre-specified family of distributions. There are many possible
choices for G, and here we make use of the flexible nonparametric methods implemented
in the R package ashr [Stephens, 2016]. These include:

1. G = NP, the set of all real-valued distributions. This is the fully non-parametric
approach from Koenker and Mizera [2014];

2. G = U the set of all unimodal distributions;

3. G = SU the set of all symmetric unimodal distributions;

4. G = U+ (respectively G = U−) the set of unimodal distributions that are
constrained to be positive (respectively negative).

5. G = SN the set of all scale-mixtures of normals.

The rationale for the more restrictive unimodal choices (U ,SU ,U+,SN ) is that they
ensure shrinkage towards a common point, and also regularize the estimate of g
compared with a fully non-parametric approach. Stephens [2016] focused on the case
where the mode of g was at 0, but the ashr package also implements methods to
estimate the location of the mode, which may also be useful in this context. Results in
this paper were generated using G = U with mode at 0 unless otherwise stated.

We now make two simplifying assumptions: that the Zij are independent from (6)

and Ẑij |Zij are independent from (3). Neither of these assumptions is true, but
composite likelihood theory [Varin and others, 2011] suggests that point estimates of
both g and Z should be somewhat robust to dependence, and our numeric experiments
later show that point estimates from our method can outperform methods that do model
the dependence. These simplifying assumptions can be seen as a model-based analogue
of previous methods that apply simple thresholding rules independently to each element
of the correlation matrix [Bickel and Levina, 2008, Rothman and others, 2009].

We fit the above model to obtain the posterior mean of Zij , Z
?
ij , given R̂ij :

Z?ij := E
[
Zij |R̂ij

]
(7)

Z?ij are adaptively shrunk estimates of Ẑij that account for nij , the number of matched
samples between variables i and j. The smaller the nij , the larger would be sij in

Equation 4 and higher would be the level of shrinkage on Ẑij .
Next, we reverse transform Z?ij to correlation estimate R?ij :

R?ij :=
exp(2Z?ij)− 1

exp(2Z?ij) + 1
. (8)
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Just as with simple threholding methods the matrix R? = ((R?ij))P×P may not be
positive definite, so we select the nearest positive definite matrix R?? to R?, using the
method from Higham [2002].

If the variables are not pairwise normally distributed, then the representation of sij
as in Equation (4) does not hold. One approach in this context is to use
transformations of the data that are more robust to the non-normality of the data, for
example - Box-cox, ranks, rank-based inverse normal (RIN) transformations [Bishara
and Hittner, 2015, 2017]. Another approach would be to estimate sij using Bootstrap
methods [Diaconis and Efron, 1983, Efron, 1981]. The flexibility to use re-sampling
methods as above, extends the scope of the CorShrink method beyond correlations to
any correlation-like quantities -partial correlations, rank correlations, cosine similarities
between word vectors in a word2vec model etc.

3 Results

3.1 Applications - Genetics

We first illustrate CorShrink on a data set with many missing observations. The
Genotype Tissue Expression (GTEx) Project [Lonsdale and others, 2013] collected gene
expression data from hundreds of post-mortem donors across many different tissues.
The version of the data we consider here (v6) contains ∼ 540 donors across 51 different
tissues and 2 cell lines. If every donor contributed every tissue then the expression data
at each gene would be a 540 by 53 matrix, each entry of which is a real number (a
measure of expression known as log-counts-per-million; Law and others [2014]).
Different donors, however, contributed different tissues leading to a large number of
missing observations (> 70%) in this matrix.

Figure 1 illustrates CorShrink using data from a single gene, PLIN1. Panel (a)
shows the pairwise sample correlation between tissues, which are input to CorShrink.
One notable feature of these sample correlations is strong positive correlation among
brain-derived tissues. Another feature is that many of the sample correlations are quite
strongly negative. Biologically, strong negative correlation among tissues are expected
to be rare, so these observations may be driven primarily by sampling variation. This
view is further supported by noting that the most negative values tend to occur in tissue
pairs that have fewer matching samples (e.g. nerve-tibial and cervix-endocervix have
correlation -0.89 with only 3 matching samples). Panel (b) shows the estimated ĝ, with
G = U and the mode fixed to 0. The estimate is skewed towards small positive values,
consistent with the biologically plausible scenario that most pairs of tissues are mildly
positively correlated. Panel (c) shows the resulting CorShrink shrinkage estimates of
the correlation. The sample correlations are all shrunk towards the mode of g, but the
amount of shrinkage for each tissue pair depends on matched sample sizes: pairs with
few matched samples undergo strong shrinkage while those with more matched samples
remain largely unperturbed (Panel (d)). The negative sample correlations are mostly
removed in the shrinkage estimates – due to both the concentration of ĝ on positive
values, and the stronger shrinkage of tissue pairs with small matched sample size.

Given the biological expectation that negative correlations among tissues are
unlikely, we might prefer to constrain the correlations to be positive here by using
G = U+. The results for this, in addition to several other choices of G are shown in
Supplementary Figure S1. The results in this case are largely consistent across these
choices of G, although only G = U+ completely removes negative estimates.

These illustrative results were “gene-based” - that is, they were based on data at the
PLIN1 gene alone, and involved shrinking correlations for all tissue-pairs using the same
prior distribution ĝ. However, for some tissue pairs (e.g. biologically-related tissues, like
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Figure 1. Illustration of CorShrink in action. (a) The image plot of the pairwise
correlation matrix between tissue pairs for the log CPM expression data [Law and others,
2014] of the PLIN1 gene. (b) The probability and cumulative density function plots for
the EB shrinkage prior in CorShrink generated using G = U . 0.38 is the empirically
determined prior probability mass of observing 0 correlation. (c) The image plot of
the estimated correlation matrix using CorShrink. The representation is visually more
parsimonious and arguably more interpretable than (a). (d) Scatter plot of the pairwise
sample correlation values against the CorShrink fitted estimates for all tissue pairs. Each
point is colored by the number of postmortem donors contributing the corresponding
tissue pair. Expectedly, the pairs with low numbers of matching samples (light colored
points) undergo high shrinkage while those with larger number of matching samples
remain largely unperturbed.
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the two heart tissues) strong correlations are more plausible than for others. Here, since
we have data on many genes for each tissue pair, we can instead separately estimate a
prior distribution ĝ for each tissue pair, by combining data across genes. That is, for
each tissue pair, we feed into Equation 3 the vector of pairwise correlation in expression
for this tissue pair across all genes, together with their corresponding standard errors.
Supplementary Figure S2 shows results from this “tissue-pair-based shrinkage” with the
“gene-based shrinkage” in Figure 1. The two results are reassuringly similar, especially
when compared with the original sample correlations.

HBB

MTURN

VSIR

pairwise sample 
correlation

gene-based  
CorShrink

tissue-pair-based  
CorShrink

Figure 2. Results from CorShrink applied to three different genes
(HBB,MTURN,VSIR) showing qualitatively different patterns of correlation. The
gene-based results illustrate how CorShrink adapts itself to different amounts of corre-
lation in different genes (e.g. compare the modest shrinkage for HBB with the stronger
shrinkage for MTURN ). See text for further discussion.

To further illustrate the flexibility of CorShrink, Figure 2 shows results for three
different genes that show different qualitative patterns of correlation. One gene (VSIR)
shows correlation patterns similar to those for PLIN1 above, with strong correlations
mostly among brain tissues; this type of pattern occurs in many genes in this data set
(not shown). In contrast the HBB gene (which encodes beta-globin, a sub-unit of
hemoglobin) shows high correlations across many tissue pairs – both brain, and
non-brain. We noticed similar patterns in other hemoglobin-related genes, HBA1 and
HBA2 (not shown). Finally, the gene MTURN shows little correlation in expression
across most pairs of tissues. These results particularly highlight the adaptiveness of the
gene-based analysis to gene-specific patterns. Effectively CorShrink learns that the
sample correlations in MTURN are mostly consistent with weak correlation, and so
shrinks these sample correlations strongly toward 0. By comparison the shrinkage in
HBB is considerably less pronounced.

One important feature of CorShrink is its ability to deal with a high rate of missing
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correlation on softImpute -imputed data correlation on FLASH-imputed data

(a) (b)

Figure 3. Illustration of impact of imputation on correlation matrix estimates. The
panels show sample correlation matrices for the same data (PLIN1 ) as in Figure 1, after
imputation using (a) softImpute [Mazumder and others, 2010] and (b) FLASH Wang
and Stephens [2018]. In both cases the results appear inconsistent with the observed
data, unlike the results from CorShrink (Figure 1a,c)

7/18

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 24, 2018. ; https://doi.org/10.1101/368316doi: bioRxiv preprint 

https://doi.org/10.1101/368316
http://creativecommons.org/licenses/by-nc-nd/4.0/


data (> 70% in these examples). One general and widely-used approach to deal with
missing data is to impute them, for example by using low-rank-based methods such as
softImpute [Hastie and Mazumder, 2015, Mazumder and others , 2010] or FLASH [Wang
and Stephens, 2018]. However, we have found that in this context, with its high rate of
missing data, imputation can grossly distort correlation estimates. For example, Figure
3 illustrates the dramatic effects of imputation for PLIN1. The imputed data from both
softImpute and FLASH show a strong upward bias in their correlation for most tissue
pairs, which appears inconsistent with the observed pairwise correlations.

3.2 Simulation studies

Although CorShrink is particularly well-suited to settings with missing data, it is also a
very competent correlation shrinkage method for complete data. Here we demonstrate
this using simulations to compare CorShrink with other correlation shrinkage methods:
soft thresholding estimator PDSCE [Rothman, 2012] and corpcor, which performs
shrinkage towards the identity matrix [Schäfer and Strimmer, 2004, 2005]. We also
compare with GLASSO [Friedman and others, 2008, Meinshausen and Buhlmann, 2006,
Witten and others, 2011], which is based on inducing sparsity in the precision matrix.

We simulated multivariate normal data with 0 mean and three types of correlation
structure: a hub correlation matrix (sparse correlation, sparse precision), a Toeplitz
correlation matrix (sparse correlation, non-sparse precision) and a banded precision
matrix (non-sparse correlation, sparse precision). In each case we simulated p = 100
features for sample size n = 30, 50, 100, 1000. We ran CorShrink with G = SN ; we ran
GLASSO at varying levels of the tuning parameter λ = 0.01, 0.1, 0.5 and 1.

Figure 4 compares the accuracy of each method in estimating the correlation matrix,
as measured by Correlation Matrix Distance (CMD) [Herdin and others, 2005] between
the true and estimated matrix. For both the hub and Toeplitz scenarios CorShrink was
consistently the most accurate, and for the sparse banded precision matrix case it
performed similarly to the best-performing of the GLASSO approaches. Similar results
hold if accuracy is measured using Frobenius distance instead of CMD (Supplementary
Figure S3).

Figure 5 compares, for each method, the largest eigenvalues of the estimated
correlation matrices with those of the population correlation matrix. Again, for hub and
Toeplitz scenarios, CorShrink estimates consistently follow the population eigenvalues
more closely than other methods.

In some applications interest may be focused on estimating the inverse of the
correlation matrix, or the partial correlation matrix, rather than the correlation matrix
itself. As currently implemented CorShrink is not well suited to such applications: in
particular the correlation matrix estimate from CorShrink is typically close to singular
when n << p, so its inverse is unstable, and does not generally provide a good estimate
for the inverse-correlation matrix (in Frobenius norm, say). In contrast GLASSO is
specifically designed for estimating (sparse) inverse correlation matrices, and indeed for
this task GLASSO outperforms the other methods considered here on our examples
(Supplementary Figure S4), which all involve sparse precision matrices.

3.3 Applications - Natural Language Processing

CorShrink can also be applied to perform shrinkage estimation of other correlation-like
quantities. Here we illustrate this in an application from Natural Language Processing:
estimating cosine similarities between vector representations of words, as obtained from
a word2vec [Mikolov and others, 2013] or GLOVE [Pennington and others] model for
example. The aim here is to generate more robust estimates of the cosine similarities
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Hub correlation Toeplitz correlation Banded precision

Figure 4. Box plot of the Correlation Matrix Distance (CMD) [Herdin and others,
2005] between population correlation matrix and the estimated matrix from different
methods –corpcor [Schäfer and Strimmer, 2004, 2005], CorShrink, PDSCE [Rothman,
2012], GLASSO [Friedman and others, 2008] and the empirical pairwise correlation
matrix. Three types of population correlation structure were considered - hub structure,
Toeplitz structure and the banded precision matrix structure. Image plots for these
population correlation matrices are shown in the topmost panel. GLASSO was fitted
using a broad range of tuning parameters (λ = 0.01, 0.1, 0.5 and 1), and their relative
performance was also compared. CorShrink outperforms the other methods for the
sparse structured population correlation model examples (hub and Toeplitz), closely
followed by PDSCE.
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Hub correlation Toeplitz correlation Banded precision

Figure 5. Plots of sorted square-root eigenvalue trends of the population correlation
matrix against those of the estimated correlation matrices using different methods
– corpcor [Schäfer and Strimmer, 2004, 2005], CorShrink, PDSCE [Rothman, 2012],
GLASSO [Friedman and others, 2008] and the empirical pairwise correlation matrix.
Three types of population correlation structure were considered - hub structure, Toeplitz
structure and the banded precision matrix structure. Image plots for these population
correlation matrices are shown in the topmost panel. GLASSO was fitted using a broad
range of tuning parameters (λ = 0.01, 0.1, 0.5 and 1), and their relative performance was
also compared. The trend of sorted eigenvalues from CorShrink more closely follow the
sorted population eigenvalues, in particular for the hub and the Toeplitz model examples.
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between words, less affected by sampling variation due to some words appearing
relatively infrequently in a corpus.

We obtained text data from the monthly issues of Ebony magazine published in 1968.
This year marked a major moment in American history with the assassination of Dr.
Martin Luther King (MLK) and the subsequent effect on the civil rights movement, and
these events are reflected in many of the articles. We fitted word2vec on the combined
text data from these issues, obtained vector representations and computed (sample)
cosine similarities between words based on the vector representations. We transformed
these to Fisher Z-scores using (1).

Unlike correlations, there is no obvious way to compute standard errors of the Fisher
Z-scores for these cosine similarities. Consequently we used re-sampling methods –
specifically 100 bootstrap samples [Diaconis and Efron, 1983, Efron, 1981], with
magazine issues being the sampling unit – to estimate standard errors. We used issues
rather than articles as the sampling unit to preserve the feature that each issue typically
contains a range of different article types (e.g. on sports, politics, lifestyle etc).

beloved 0.53
mckissick 0.51

baez 0.51
rev 0.50

nationality 0.48
apostle 0.48

assassination 0.48
assassinated 0.47
jamaican 0.45

joan 0.45
king 0.44
fpo 0.42

death 0.42
newcomer 0.41
requested 0.41

floyd 0.40
matthew 0.40

fiery 0.39
late 0.39

yesterday 0.39

assassination 0.35
thursday 0.31
baez 0.30

beloved 0.29
nationality 0.23

death 0.22
king 0.21
grief 0.20
rev 0.20

movement 0.64
workers 0.49
legislation 0.45
morrow 0.44
kennedys 0.44
andrew 0.41
freedom 0.41

coordinating 0.40
separatist 0.39
involvement 0.39

voices 0.39
distress 0.39

schwemer 0.39
leaders 0.39

documentary 0.39
anthem 0.38
goodman 0.38
aided 0.38
tucker 0.37
politics 0.37

movement 0.50
workers 0.42

documentary 0.26
leaders 0.25
national 0.25
legislation 0.25
democrat 0.24

involvement 0.23
separatist 0.22
political 0.21
freedom 0.20
nonviolent 0.20
andrew 0.20

war 0.54
combat 0.53
infantry 0.48
binh 0.47

veteran 0.47
wounded 0.47
submarine 0.46

korea 0.46
airborne 0.46
corso 0.45
raul 0.43

stationed 0.43
senegalese 0.43

dying 0.43
soldier 0.41

criminals 0.41
army 0.40

brigade 0.40
adjusted 0.40
homefront 0.40

war 0.54
infantry 0.38

submarine 0.36
corso 0.35

criminals 0.32
korea 0.32

senegalese 0.29
homefront 0.27
draftees 0.25

raul 0.24
brigade 0.23

allowances 0.23
adjusted 0.23
platoons 0.22
pentagon 0.22
mortar 0.22
battalion 0.22
wound 0.22

stationed 0.22
airborne 0.22

Words close in context to  
martin-luther-king

before  
CorShrink

after 
CorShrink

after 
CorShrink

before 
CorShrink

after 
CorShrink

before 
CorShrink

Words close in context to  
civil-rights

Words close in context to  
vietnam

Figure 6. Results of CorShrink applied to estimates of cosine similarities between words.
The tables show the top ≤ 20 words estimated to be most similar to the word/phrase
(s) martin-luther-king (left), civil-rights (middle) and vietnam (right), before and
after applying CorShrink. Only words with estimated similarity score > 0.2 are shown.
The “before CorShrink” results were generated by running word2vec [Mikolov and others,
2013] on the monthly issues of the Ebony magazine in the year of 1968. Words/phrases
that occur infrequently in the context of the focal word/phrase are shrunk more strongly
by CorShrink.

We focused on three words/phrases: martin luther king, civil rights and vietnam,
treating each as a single “word” for our analysis. For each of these phrases we applied
CorShrink to the corresponding Fisher Z-scores, with re-sampling standard errors
computed as above. Figure 6 shows the top words contextually similar to the focal
phrases based on cosine similarities before and after CorShrink shrinkage.

As expected, the cosine similarities after CorShrink are consistently smaller, due to
shrinkage towards 0. However, CorShrink also reorders the similarities because some
words are shrunk more strongly than others. For example, the word apostle, which is
strongly connected to the phrase martin-luther-king before CorShrink (ranked 6), has
its cosine similarity shrunk strongly (from cosine similarity 0.48 to 0.13). This strong
shrinkage occurs because the word occurred overall in 5 issues, and in only one of these
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issues was it very strongly associated with MLK (in the context of eulogizing him,
immediately following his death in the May 1968 issue). In contrast, Thursday, which
was the day of MLK’s assassination, was shrunk much less strongly (from cosine
similarity 0.38 to 0.31), because it occurs overall in 2 issues and consistently in
connection with MLK in the May 1968 issue.

This shrinkage helps to highlight the words that are truly very strongly associated.
For example, in connection with MLK the word assassination appears much higher up
the list post shrinkage (moving from 7th to 1st). And although the word war is very
strongly associated with vietnam both before and after shrinkage, its connection is
clearer post-shrinkage because other words like combat and infantry are shrunk more
strongly.

4 Discussion

We presented CorShrink, an application of the adaptive shrinkage framework from
[Stephens, 2016] to shrinkage estimation of correlation matrices and related quantities.
Unlike most correlation matrix estimation approaches (corpcor, GLASSO), CorShrink
can deal with missing values in the data matrix, and in this setting adjusts the degree of
shrinkage based on the number of observations contributing to each matrix element
(Figure 1). Even with no missing data, CorShrink can outperform the other methods
when the true correlation matrix is sparse (see Figures 4, 5). In addition CorShrink has
the flexibility to be applied to any set of correlation-like quantities, and not only
correlation matrices. Here we illustrated this by shrinking cosine similarities between
word pairs from text data (Figure 6).

The basic strategy underlying CorShrink is very simple, and involves shrinking each
correlation term independently (after using all terms to learn how much to shrink). A
similar simple strategy is also used in corpcor, and Bickel and Levina [2008] provide
theoretical results for another (even simpler) strategy of this form. The simplicity of
this strategy is very attractive, and is what allows CorShrink to easily deal with
missing data for example. However, when the true correlation matrix is highly
structured – for example, low rank plus diagonal – then methods that exploit this
structure [Fan and others, 2016] may be more accurate.

In terms of speed, CorShrink is comparable to corpcor, and considerably faster than
glasso and PDSCE when one takes account of the need to tune these methods using
cross-validation. As noted in the Results, the current implementation of CorShrink is
not suited to estimating inverse correlations, and it may be interesting to consider
whether modifications to the approach could rectify this. CorShrink is available as an
R package on CRAN and is also under active development on Github
https://github.com/kkdey/CorShrink; code implementing the analyses presented
here are available at https://kkdey.github.io/CorShrink-pages/.
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Supplementary Figures

(a) (c)

(b) (d)

Figure S1. Image plots from applying CorShrink shrinkage on the donor by tissue
expression data for PLIN1 gene using choices of G (in Equation 6) other than G = U
already reported in Fig 1. (a) G = SU (0) where 0 is the mode of the distribution. (b)
G = SU (µ̂) where the mode µ̂ is not necessarily 0 and is estimated from the data. (c)
G = U+ and (d) G = NP. See text for explanation of terminology and discussion.
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tissue-pair-based 
CorShrink

gene-based 
 CorShrink

Figure S2. Image plots of the estimated correlation matrices after applying CorShrink

on the subject by tissue expression matrix data for the PLIN1 gene for two different
models - (a) “‘tissue-pair-based shrinkage” and (b) “‘gene-based shrinkage” models and
with G = U . Both representations are re-assuringly similar.
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Hub correlation Toeplitz correlation Banded precision

Figure S3. Box plot of the Frobenius distance between population correlation matrix
and the estimated matrix using different methods – corpcor [Schäfer and Strimmer, 2004,
2005], CorShrink, PDSCE [Rothman, 2012], GLASSO [Friedman and others , 2008] and
the empirical pairwise correlation matrix – for different structural assumptions on the
underlying population correlation, hub structure, Toeplitz structure and the banded
precision matrix structure. Image plots for the population correlation matrices are shown
in the topmost panel. GLASSO was fitted using a broad range of tuning parameters,
and their relative performance was also compared. CorShrink outperforms the other
methods for the structured/sparse covariance models (hub and Toeplitz), closely followed
by PDSCE.
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Hub correlation Toeplitz correlation Banded precision

partial correlation

correlation

Figure S4. Comparing the accuracy (using Frobenius distance with respect to pop-
ulation partial correlation matrix) of the estimated partial correlation matrix from
CorShrink relative to the partial correlation matrix obtained from correlation estimates
of competing methods –corpcor [Schäfer and Strimmer, 2004, 2005], PDSCE [Rothman,
2012] and GLASSO [Friedman and others, 2008] – where the population correlation
matrix profiles are as in Supplementary Figure S3 with image plots of these correlation
matrices shown in the topmost panel. GLASSO was fitted using a broad range of tuning
parameters, and their relative performance was also compared. GLASSO expectedly
performed better than the other competing methods, since it is designed to shrink inverse
correlation matrices.
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