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Abstract

Genetic variants in functional regions of the genome are enriched for complex trait heritability.

Here, we introduce a new method for polygenic prediction, LDpred-funct, that leverages trait-

specific functional enrichments to increase prediction accuracy. We fit priors using the recently

developed baseline-LD model, which includes coding, conserved, regulatory and LD-related anno-

tations. We analytically estimate posterior mean causal effect sizes and then use cross-validation

to regularize these estimates, improving prediction accuracy for sparse architectures. LDpred-

funct attained higher prediction accuracy than other polygenic prediction methods in simulations

using real genotypes. We applied LDpred-funct to predict 16 highly heritable traits in the UK

Biobank. We used association statistics from British-ancestry samples as training data (avg

N=365K) and samples of other European ancestries as validation data (avg N=22K), to mini-

mize confounding. LDpred-funct attained a +27% relative improvement in prediction accuracy

(avg prediction R2=0.173; highest R2=0.417 for height) compared to existing methods that do

not incorporate functional information, consistent with simulations. For height, meta-analyzing

training data from UK Biobank and 23andMe cohorts (total N=1107K; higher heritability in UK

Biobank cohort) increased prediction R2 to 0.429. Our results show that modeling functional

enrichment substantially improves polygenic prediction accuracy, bringing polygenic prediction

of complex traits closer to clinical utility.
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Introduction

Genetic variants in functional regions of the genome are enriched for complex trait heritability1–6. In

this study, we aim to leverage functional enrichment to improve polygenic prediction7. Several studies

have shown that incorporating prior distributions on causal effect sizes can improve prediction accu-

racy8–11, compared to standard Best Linear Unbiased Prediction (BLUP) or Pruning+Thresholding

methods12–14. Recent efforts to incorporate functional information have produced promising re-

sults15,16, but may be limited by dichotomizing between functional and non-functional variants15 or

restricting their analyses to genotyped variants16.

Here, we introduce a new method, LDpred-funct, for leveraging trait-specific functional enrich-

ments to increase polygenic prediction accuracy. We fit functional priors using our recently devel-

oped baseline-LD model17, which includes coding, conserved, regulatory and LD-related annotations.

LDpred-funct first analytically estimates posterior mean causal effect sizes, accounting for functional

priors and LD between variants. LDpred-funct then uses cross-validation within validation samples

to regularize causal effect size estimates in bins of different magnitude, improving prediction accuracy

for sparse architectures. We show that LDpred-funct attains higher polygenic prediction accuracy

than other methods in simulations with real genotypes, analyses of 16 highly heritable UK Biobank

traits, and meta-analyses of height using training data from UK Biobank and 23andMe cohorts.

Material and Methods

Polygenic prediction methods

We compared 5 main prediction methods: Pruning+Thresholding13,14 (P+T), LDpred-inf11, P+T

with functionally informed LASSO shrinkage15 (P+T-funct-LASSO), and our new the LDpred-funct-

inf method, and our new LDpred-funct method. P+T and LDpred-inf are polygenic prediction

methods that do not use functional annotations. P+T-funct-LASSO is a modification of P+T that

corrects marginal effect sizes for winner’s curse, accounting for functional annotations. LDpred-funct-

inf is an improvement of LDpred-inf that incorporates functionally informed priors on causal effect

sizes. LDpred-funct is an improvement of LDpred-funct-inf that uses cross-validation to regularize

posterior mean causal effect size estimates, improving prediction accuracy for sparse architectures.

Each method is described in greater detail below. In both simulations and analyses of real traits, we

used squared correlation (R2) between predicted phenotype and true phenotype in a held-out set of

samples as our primary measure of prediction accuracy.

P+T. The P+T method builds a polygenic risk score (PRS) using a subset of independent SNPs

obtained via informed LD-pruning14 (also known as LD-clumping) followed by P-value thresholding13.
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Specifically, the method has two parameters, R2
LD and PT , and proceeds as follows. First, the method

prunes SNPs based on a pairwise threshold R2
LD, removing the less significant SNP in each pair.

Second, the method restricts to SNPs with an association P-value below the significance threshold

PT . Letting M be the number of SNPs remaining after LD-clumping, polygenic risk scores (PRS)

are computed as

PRS(PT ) =
M∑
i=1

1{Pi<PT }β̃igi, (1)

where β̃i are normalized marginal effect size estimates and gi is a vector of normalized genotypes for

SNP i. The parameters R2
LD and PT are commonly tuned using validation data to optimize predic-

tion accuracy13,14. While in theory this procedure is susceptible to overfitting, in practice, validation

sample sizes are typically large, and R2
LD and PT are selected from a small discrete set of parameter

choices, so that overfitting is considered to have a negligible effect13,14,18,19. Accordingly, in this work,

we consider R2
LD ∈ {0.1, 0.2, 0.5, 0.8} and PT ∈ {1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 3 ∗ 10−4, 10−4, 3 ∗

10−5, 10−5, 10−6, 10−7, 10−8}, and we always report results corresponding to the best choices of these

parameters. The P+T method is implemented in the PLINK software (see Web Resources).

LDpred-inf. The LDpred-inf method estimates posterior mean causal effect sizes under an

infinitesimal model, accounting for LD11. The infinitesimal model assumes that normalized causal

effect sizes have prior distribution βi ∼ N(0, σ2), where σ2 = h2g/M, h2g is the SNP-heritability, and

M is the number of SNPs. The posterior mean causal effect sizes are

E(β|β̃,D) = (
N

1− h2l
∗D +

1

σ2
I)−1N ∗ β̃, (2)

where D is the LD matrix between markers, I is the identity matrix, N is the training sample size, β̃

is the vector of marginal association statistics, and h2l ≈ kh2/M is the heritability of the k SNPs in

the region of LD; following ref. 11 we use the approximation 1− h2l ≈ 1, which is appropriate when

M >> k. D is typically estimated using validation data, restricting to non-overlapping LD windows.

We determined that an LD window size corresponding to approximately 0.15% of all (genotyped and

imputed) SNPs is sufficiently large in practice. h2g can be estimated from raw genotype/phenotype

data20,21 (the approach that we use here; see below), or can be estimated from summary statistics

using the aggregate estimator as described in ref. 11. To approximate the normalized marginal effect

size ref. 11 uses the p-values to obtain absolute Z scores and then multiplies absolute Z scores by

the sign of the estimated effect size. When sample sizes are very large, p-values may be rounded to

zero, in which case we approximate normalized marginal effect sizes β̂i by b̂i

√
2∗pi∗(1−pi)√

σ2
Y

, where b̂i is

the per-allele marginal effect size estimate, pi is the minor allele frequency of SNP i, and σ2
Y is the

phenotypic variance in the training data. This applies to all the methods that use normalized effect
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sizes.

Although the published version of LDpred-inf requires a matrix inversion (Equation 2), we have

implemented a computational speedup that computes the posterior mean causal effect sizes by effi-

ciently solving22 the system of linear equations ( 1
σ2 I +N ∗D)E(β|β̃,D) = N β̃.

LDpred11 is an extension of LDpred-inf that uses a point-normal prior to estimate posterior mean

effect sizes via Markov Chain Monte Carlo (MCMC). In this work, we do not include LDpred in our

main analyses; we determined in our secondary analyses that LDpred performs worse than LDpred-inf

when applied to the UK Biobank data set that we analyze here (see Results).

P+T-funct-LASSO. Ref. 15 proposed an extension of P+T that corrects the marginal effect

sizes of SNPs for winner’s curse and incorporates external functional annotation data (P+T-funct-

LASSO). The winner’s curse correction is performed by applying a LASSO shrinkage to the marginal

association statistics of the PRS:

PRSLASSO(PT ) =
M∑
i=1

sign(β̃i)||β̃i| − λ(PT )|1{Pi<PT }gi, (3)

where λ(PT ) = Φ−1(1− PT

2 )sd(β̃i), where Φ−1 is the inverse standard normal CDF.

Functional annotations are incorporated via two disjoint SNPs sets, representing ”high-prior”

SNPs (HP) and ”low-prior” SNPs (LP), respectively. We define the HP SNP set for P+T-funct-

LASSO as the set of SNPs in the top 10% of expected per-SNP heritability under the baseline-LD

model17, the baseline-LD model includes coding, conserved, regulatory and LD-related annotations,

whose enrichments are jointly estimated using stratified LD score regression5,17 (see Baseline-LD

model annotations section). We also performed secondary analyses using the top 5% (P+T-funct-

LASSO-top5%). We define PRSLASSO,HP (PHP ) to be the PRS restricted to the HP SNP set, and

PRSLASSO,LP (PLP ) to be the PRS restricted to the LP SNP set, where PHP and PLP are the optimal

significance thresholds for the HP and LP SNP sets, respectively. We define PRSLASSO(PHP , PLP ) =

PRSLASSO,HP (PHP )+PRSLASSO,LP (PLP ). We also performed secondary analyses were we allow an

additional regularization to the two PRS, that is: PRSLASSO(PHP , PLP ) = α1PRSLASSO,HP (PHP )+

α2PRSLASSO,LP (PLP ), we refer to this method as P+T-funct-LASSO-weighted.

LDpred-funct-inf. We modify LDpred-inf to incorporate functionally informed priors on causal

effect sizes using the baseline-LD model17, which includes coding, conserved, regulatory and LD-

related annotations, whose enrichments are jointly estimated using stratified LD score regression5,17.

Specifically, we assume that normalized causal effect sizes have prior distribution βi ∼ N(0, c ∗ σ2
i ),

where σ2
i is the expected per-SNP heritability under the baseline-LD model (fit using training data
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only) and c is a normalizing constant such that
∑M
i=1 1{σ2

i>0}cσ
2
i = h2g; SNPs with σ2

i ≤ 0 are

removed, which is equivalent to setting σ2
i = 0. The posterior mean causal effect sizes are

E[β|β̃,D, σ2
1 , . . . , σ

2
M+

] = W−1N ∗ β̃ =

N ∗D +
1

c


1
σ2
1

. . . 0

...
. . .

...

0 . . . 1
σ2
M+



−1

N ∗ β̃, (4)

where M+ is the number of SNPs with σ2
i > 0.

The posterior mean causal effect sizes are computed by solving the system of linear equations

WE[β|β̃,D, σ2
1 , . . . , σ

2
M ] = N ∗ β̃. h2g is estimated as described above (see LDpred-inf). D is esti-

mated using validation data, restricting to windows of size 0.15%M+.

LDpred-funct. We modify LDpred-funct-inf to regularize posterior mean causal effect sizes

using cross-validation. We partition the posterior mean causal effect sizes into K bins (similar to

reference 23), where each bin has roughly the same sum of squared posterior mean effect sizes. Let

S =
∑
iE[βi|β̃i]2. To define each bin, we first rank the posterior mean effect sizes based on their

squared values E[βi|β̃i]2. We define bin b1 as the smallest set of top SNPs with
∑
i∈b1 E[βi|β̃i]2 ≥ S

K ,

and iteratively define bin bk as the smallest set of additional top SNPs with
∑
i∈b1,...,bk E[βi|β̃i]2 ≥ kS

K .

Let PRS(k) =
∑
i∈bk E[βi|β̃i]gi. We define

PRSLDpred−funct =
K∑
k=1

αkPRS(k), (5)

where the bin-specific weights αk are optimized using validation data via 10-fold cross-validation. For

each held-out fold in turn, we estimate the weights αk using the samples from the other nine folds

and compute PRS on the held-out fold using these weights. We then compute the average prediction

R2 across the 10 held-out folds. We set the number of bins (K) to be between 1 and 100, such that

the number of samples used to estimate the K weights in each fold is ∼300 times larger than K:

K = min(100, d0.9N
300
e), (6)

where N is the number of validation samples. Thus, if there are ∼300 validation samples or fewer,

LDpred-funct reduces to the LDpred-funct-inf method. In simulations, we set K to 20 (based on

8,441 validation samples; see below), approximately concordant with Equation 6.
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Simulations

We simulated quantitative phenotypes using real genotypes from the UK Biobank interim release

(see below). We used up to 50,000 unrelated British-ancestry samples as training samples, and 8,441

samples of other European ancestries as validation samples (see below). We made these choices to

minimize confounding due to shared population stratification or cryptic relatedness between train-

ing and validation samples (which, if present, could overstate the prediction accuracy that could be

obtained in independent samples24), while preserving a large number of training samples. We re-

stricted our simulations to 459,284 imputed SNPs on chromosome 1 (see below), fixed the number of

causal SNPs at 2,000 or 5,000 (we also performed secondary simulations with 1,000 or 10,000 causal

variants), and fixed the SNP-heritability h2g at 0.5. We sampled normalized causal effect sizes βi

for causal SNPs from a normal distribution with variance equal to
σ2
i

p , where p is the proportion

of causal SNPs and σ2
i is the expected causal per-SNP heritability under the baseline-LD model17,

fit using stratified LD score regression (S-LDSC)5,17 applied to height summary statistics computed

from unrelated British-ancestry samples from the UK Biobank interim release (N=113,660). We

computed per-allele effect sizes bi as bi = βi√
2pi(1−pi)

, where pi is the minor allele frequency for SNP

i estimated using the validation genotypes. We simulated phenotypes as Yj =
∑M
i bigij + εj , where

εj ∼ N(0, 1 − h2g). We set the training sample size to either 10,000, 20,000 or 50,000. The motiva-

tion to perform simulations using one chromosome is to be able to extrapolate performance at larger

sample sizes11 according to the ratio N/M , where N is the training sample size. We compared each

of the five methods described above. For LDpred-funct-inf and LDpred-funct, we set baseline-LD

model parameters for each functional annotation equal to the baseline-LD model parameters used

to generate the data, representing a best-case scenario for LDpred-funct-inf and LDpred-funct. For

LDpred-funct, we report adjusted-R2 defined as R2 − (1 − R2) K
N−K−1 , with N is the number of

validation samples and K the number of bins.

Full UK Biobank data set

The full UK Biobank data set includes 459,327 European-ancestry samples and ∼20 million imputed

SNPs25 (after filtering as in ref. 20, excluding indels and structural variants). We selected 16 UK

Biobank traits with phenotyping rate > 80% (> 80% of females for age at menarche, > 80% of

males for balding), SNP-heritability h2g > 0.2, and low correlation between traits (as described in

ref. 20). We restricted training samples to 409,728 British-ancestry samples25, including related

individuals (avg N=365K phenotyped training samples; see Table S1). As in our simulations, we

computed association statistics from training samples using BOLT-LMM v2.320. We have made

these association statistics publicly available (see Web Resources). We restricted validation samples to

25,112 samples of non-British European ancestry, after removing validation samples that were related
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(> 0.05) to training samples and/or other validation samples (avg N=22K phenotyped validation

samples; see Table S1). As in our simulations, we made these choices to minimize confounding due to

shared population stratification or cryptic relatedness between training and validation samples (which,

if present, could overstate the prediction accuracy that could be obtained in independent samples24),

while preserving a large number of training samples. We analyzed 6,334,603 genome-wide imputed

SNPs, after removing SNPs with minor allele frequency < 1%, removing SNPs with imputation

accuracy < 0.9, and removing A/T and C/G SNPs to eliminate potential strand ambiguity. We used

h2g estimates from BOLT-LMM v2.320 as input to LDpred-inf, LDpred-funct-inf and LDpred-funct.

UK Biobank interim release

The UK Biobank interim release includes 145,416 European-ancestry samples26. We used the UK

Biobank interim release both in simulations using real genotypes, and in a subset of analyses of height

phenotypes (to investigate how prediction accuracy varies with training sample size).

In our analyses of height phenotypes, we restricted training samples to 113,660 unrelated (≤ 0.05)

British-ancestry samples for which height phenotypes were available. We computed association statis-

tics by adjusting for 10 PCs27, estimated using FastPCA28 (see Web Resources). For consistency,

we used the same set of 25,030 validation samples of non-British European ancestry with height

phenotypes as defined above. We analyzed 5,957,957 genome-wide SNPs, after removing SNPs with

minor allele frequency < 1%, removing SNPs with imputation accuracy < 0.9, removing SNPs that

were not present in the 23andMe height data set (see below), and removing A/T and C/G SNPs to

eliminate potential strand ambiguity. We analyzed the same set of 5,957,957 SNPs both in the height

meta-analysis of interim UK Biobank and 23andMe data sets and in the height meta-analysis of full

UK Biobank and 23andMe data sets.

In our simulations, we restricted training samples to up to 50,000 of the 113,660 unrelated British-

ancestry samples, and restricted validation samples to 8,441 samples of non-British European ancestry,

after removing validation samples that were related (> 0.05) to training samples and/or other valida-

tion samples. We restricted the 5,957,957 genome-wide SNPs (see above) to chromosome 1, yielding

459,284 SNPs after QC.

23andMe height summary statistics

The 23andMe data set consists of summary statistics computed from 698,430 European-ancestry

samples (23andMe customers who consented to participate in research) at 9,898,287 imputed SNPs,

after removing SNPs with minor allele frequency < 1% and that passed QC filters (which include

filters on imputation quality, avg.rsq< 0.5 or min.rsq< 0.3 in any imputation batch, and imputation

batch effects). Analyses were restricted to the set of individuals with > 97% European ancestry,
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as determined via an analysis of local ancestry29. Summary association statistics were computed

using linear regression adjusting for age, gender, genotyping platform, and the top five principal

components to account for residual population structure. The summary association statistics will be

made available to qualified researchers (see Web Resources).

We analyzed 5,957,935 genome-wide SNPs, after removing SNPs with minor allele frequency < 1%,

removing SNPs with imputation accuracy < 0.9, removing SNPs that were not present in the full

UK Biobank data set (see above), and removing A/T and C/G SNPs to eliminate potential strand

ambiguity.

Meta-analysis of full UK Biobank and 23andMe height data sets

We meta-analyzed height summary statistics from the full UK Biobank and 23andMe data sets. We

define

PRSmeta = γ1PRS1 + γ2PRS2, (7)

where PRSi is the PRS obtained using training data from cohort i. The PRS can be obtained using

P+T, P+T-funct-LASSO, LDpred-inf or LDpred-funct. The meta-analysis weights γi can either be

specified via fixed-effect meta-analysis (e.g. γi = Ni∑
Ni

) or optimized using validation data30. We

use the latter approach, which can improve prediction accuracy (e.g. if the cohorts differ in their

heritability as well as their sample size). In our primary analyses, we fit the weights γi in-sample

and report prediction accuracy using adjusted R2 to account for in-sample fitting30. We also report

results using 10-fold cross-validation: for each held-out fold in turn, we estimate the weights γi using

the other nine folds and compute PRS on the held-out fold using these weights. We then compute

the average prediction R2 across the 10 held-out folds.

When using LDpred-funct as the prediction method, we perform the meta-analysis as follows.

First, we use LDpred-funct-inf to fit meta-analysis weights γi. Then, we use γi to compute (meta-

analysis) weighted posterior mean causal effect sizes (PMCES) via PMCES = γ1PMCES1 +

γ2PMCES2, which are binned into k bins. Then, we estimate bin-specific weights αk (used to com-

pute (meta-analysis + bin-specific) weighted posterior mean causal effect sizes
∑K
k=1 αkPMCES(k))

using validation data via 10-fold cross validation.

Baseline-LD model annotations.

The baseline-LD model contains a broad set of 75 functional annotations (including coding, conserved,

regulatory and LD-related annotations), whose enrichments are jointly estimated using stratified LD

score regression5,17. For each trait, we used the τc values estimated for that trait to compute σ2
i , the
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expected per-SNP heritability of SNP i under the baseline-LD model, as

σ2
i =

∑
c

ac(i)τc, (8)

where ac(i) is the value of annotation c at SNP i.

Joint effect sizes τc for each annotation c are estimated via

E[χ2
i ] = N

∑
c

τcl(i, c) + 1, (9)

where l(i, c) is the LD score of SNP i with respect to annotation ac and χ2
i is the chi-square statistic

for SNP i. We note that τc quantifies effects that are unique to annotation c. In all analyses of real

phenotypes, τc and σ2
i were estimated using training samples only.

In our primary analyses, we used 489 unrelated European samples from phase 3 of the 1000

Genomes Project31 as the reference data set to compute LD scores, as in ref. 17.

To verify that our 1000 Genomes reference data set produces reliable LD estimates, we repeated

our LDpred-funct analyses using S-LDSC with 3,567 unrelated individuals from UK10K32 as the

reference data set (as in ref. 33), ensuring a closer ancestry match with British-ancestry UK Biobank

samples. We also repeated our LDpred-funct analyses using S-LDSC with the baseline-LD+LDAK

model (instead of the baseline-LD model), with UK10K as the reference data set. The baseline-

LD+LDAK model (introduced in ref. 33) consists of the baseline-LD model plus one additional

continuous annotation constructed using LDAK weights34, which has values (pj(1− pj))1+α wj ,

where α = −0.25, pj is the allele frequency of SNP j, and wj is the LDAK weight of SNP j computed

using UK10K data.

Results

Simulations

We performed simulations using real genotypes from the UK Biobank interim release and simulated

phenotypes (see Material and Methods). We simulated continuous phenotypes with SNP-heritability

h2g = 0.5, using 476,613 imputed SNPs from chromosome 1. We selected either 2,000 or 5,000 variants

to be causal; we refer to these as ”sparse” and ”polygenic” architectures, respectively. We sampled

normalized causal effect sizes from normal distributions with variances based on expected causal

per-SNP heritabilities under the baseline-LD model17, fit using stratified LD score regression (S-

LDSC)5,17 applied to height summary statistics from British-ancestry samples from the UK Biobank

interim release. We randomly selected 10,000, 20,000 or 50,000 unrelated British-ancestry samples as
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training samples, and we used 8,441 samples of non-British European ancestry as validation samples.

By restricting simulations to chromosome 1 (≈ 1/10 of SNPs), we can extrapolate results to larger

sample sizes (≈ 10x larger; see Application to 16 UK Biobank traits), analogous to previous work11.

We compared prediction accuracies (R2) for five main methods: P+T13,14, LDpred-inf11, P+T-

funct-LASSO15, LDpred-funct-inf and LDpred-funct (see Material and Methods). Results are re-

ported in Figure 1, Figure S1, Table S2 and Table S3. Among methods that do not use functional

information, the prediction accuracy of LDpred-inf was similar to P+T for the sparse architecture

and superior to P+T for the polygenic architecture, consistent with previous work11. Incorporating

functional information via LDpred-funct-inf produced a 13.6% (resp. 13.4%) relative improvement

for the sparse (resp. polygenic) architecture, compared to LDpred-inf. Accounting for sparsity using

LDpred-funct further improved prediction accuracy, particularly for the sparse architecture, resulting

in a 24.8 % (resp. 18.8%) relative improvement, compared to LDpred-inf. LDpred-funct performed

slightly better than P+T-funct-LASSO for the sparse architecture and much better than P+T-funct-

LASSO for the polygenic architecture. The difference in prediction accuracy between LDpred-inf and

each other method, as well as the difference in prediction accuracy between LDpred-funct and each

other method, was statistically significant in most cases (see Table S3). Although LDpred-funct used

K=20 posterior mean causal effect size bins to regularize effect sizes in our main simulations, results

were not sensitive to this parameter (Table S4); K=50 bins consistently performed slightly better,

but we did not optimize this parameter. Simulations with 1,000 or 10,000 causal variants generally

recapitulated these findings, although P+T-funct-LASSO performed better than LDpred-funct for

the extremely sparse architecture (Table S2).

Our simulations are supportive of the potential advantages of LDpred-funct-inf and LDpred-

funct. However, we caution that all of our simulations use the same model (the baseline-LD model)

to simulate phenotypes and to compute predictions. Thus, our simulations should be viewed as a best

case scenario for LDpred-funct-inf and LDpred-funct; a more realistic assessment of the advantages

of these methods can only be obtained by analyzing real traits.

Application to 16 UK Biobank traits

We applied P+T, LDpred-inf, P+T-funct-LASSO, LDpred-funct-inf and LDpred-funct to 16 UK

Biobank traits. We selected the 16 traits based on phenotyping rate> 80%, SNP-heritability h2g > 0.2,

and low correlation between traits (as described in ref. 20). We analyzed training samples of British

ancestry (avg N=365K; see Table S1) and validation samples of non-British European ancestry (avg

N=22K). We included 6,334,603 imputed SNPs in our analyses (see Material and Methods). We

computed summary statistics and h2g estimates from training samples using BOLT-LMM v2.320 (see

Table S5). We estimated trait-specific functional enrichment parameters for the baseline-LD model17
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by running S-LDSC5,17 on these summary statistics.

Results are reported in Figure 2 and Table S6, Table S7 and Table S8. Among methods that

do not use functional information, LDpred-inf outperformed P+T (average relative improvement:

+4%), consistent with simulations under a polygenic architecture. We previously developed a different

method, LDpred11, which uses a point-normal prior to estimate posterior mean effect sizes via Markov

Chain Monte Carlo (MCMC), but we determined that LDpred performs worse than LDpred-inf in

UK Biobank data (Table S8).

Incorporating functional information via LDpred-funct-inf produced a +17% average relative im-

provement, consistent with simulations (relative improvements ranged from +6% for body mass index

to +35% for tanning ability). Accounting for sparsity using LDpred-funct further improved predic-

tion accuracy (avg prediction R2=0.173; highest R2=0.417 for height), resulting in a +27% average

relative improvement compared to LDpred-inf, consistent with simulations under a polygenic archi-

tecture (relative improvements ranged from +5% for body mass index to +104% for tanning ability).

LDpred-funct also performed substantially better than P+T-funct-LASSO (+18% average relative

improvement), consistent with simulations under a polygenic architecture. Although LDpred-funct

used an average of K = 67 posterior mean causal effect size bins to regularize effect sizes in these

analyses (see Equation 6), results were not sensitive to this parameter (Table S9); K=100 bins con-

sistently performed slightly better, but we did not optimize this parameter. In addition, although our

main analyses involved very large validation sample sizes (up to 25,032; Table S1), which aids the reg-

ularization step of LDpred-funct, the bulk of the improvement of LDpred-funct vs. LDpred-funct-inf

remained when restricting to smaller validation sample sizes (as low as 1,000; see Table S10). We also

evaluated a modification of P+T-funct-LASSO in which different weights were allowed for the two

predictors (P+T-funct-LASSO-weighted; see Material and Methods), but results were little changed

+4% average relative improvement vs. P+T-funct-LASSO (see Table S8). Similar results were also

obtained when defining the ”high-prior” (HP) SNP set for P+T-funct-LASSO using the top 5% of

SNPs with the highest per-SNP heritability, instead of the top 10% (see Table S8).

We performed several secondary analyses using LDpred-funct-inf. First, we determined that

incorporating baseline-LD model functional enrichments that were meta-analyzed across traits (31

traits from ref. 17), instead of the trait-specific functional enrichments used in our primary analyses,

slightly reduced prediction accuracy (Table S8). Second, we determined that using our previous

baseline model5, instead of the baseline-LD model17, slightly reduced prediction accuracy (Table

S8). Third, we determined that inferring functional enrichments using only the SNPs that passed

QC filters and were used for prediction had no impact on prediction accuracy (Table S8). Fourth,

we determined that using UK10K (instead of 1000 Genomes) as the LD reference panel had virtually

no impact on prediction accuracy (Table S8). Additional secondary analyses are reported in the
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Discussion section.

Application to height in meta-analysis of UK Biobank and 23andMe cohorts

We applied P+T, LDpred-inf, P+T-funct-LASSO, LDpred-funct-inf and LDpred-funct to predict

height in a meta-analysis of UK Biobank and 23andMe cohorts (see Material and Methods). Training

sample sizes were equal to 408,092 for UK Biobank and 698,430 for 23andMe, for a total of 1,106,522

training samples. For comparison purposes, we also computed predictions using the UK Biobank and

23andMe training data sets individually, as well as a training data set consisting of 113,660 British-

ancestry samples from the UK Biobank interim release. (The analysis using the 408,092 UK Biobank

training samples was nearly identical to the analysis of Figure 2, except that we used a different set

of 5,957,935 SNPs, for consistency throughout this set of comparisons; see Material and Methods.)

We used 25,030 UK Biobank samples of non-British European ancestry as validation samples in all

analyses.

Results are reported in Figure 3 and Table S11. The relative improvements attained by LDpred-

funct-inf and LDpred-funct were broadly similar across all four training data sets (also see Figure

2), implying that these improvements are not specific to the UK Biobank data set. Interestingly,

compared to the full UK Biobank training data set (R2=0.416 for LDpred-funct), prediction accuracies

were only slightly higher for the meta-analysis training data set (R2=0.429 for LDpred-funct), and

were lower for the 23andMe training data set (R2=0.343 for LDpred-funct), consistent with the ≈ 30%

higher heritability in UK Biobank as compared to 23andMe and other large cohorts17,20,21; the higher

heritability in UK Biobank could potentially be explained by lower environmental heterogeneity. We

note that in the meta-analysis, we optimized the meta-analysis weights using validation data (similar

to ref. 30), instead of performing a fixed-effect meta-analysis. This approach accounts for differences

in heritability as well as sample size, and attained a > 3% relative improvement compared to fixed-

effects meta-analysis (see Table S11).

Discussion

We have shown that leveraging trait-specific functional enrichments inferred by S-LDSC with the

baseline-LD model17 substantially improves polygenic prediction accuracy. Across 16 UK Biobank

traits, we attained a +17% average relative improvement using a method that leverages functional

enrichment (LDpred-funct-inf) and a +27% average relative improvement using a method that per-

forms an additional regularization step to account for sparsity (LDpred-funct), compared to the most

accurate method tested that does not model functional enrichment (LDpred-inf).

Previous work has highlighted the potential advantages of leveraging functional enrichment to
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improve prediction accuracy15,16. We included one such method15 (which we call P+T-funct-LASSO)

in our analyses, determining that LDpred-funct attains a +18% average relative improvement vs.

P+T-funct-LASSO across 16 UK Biobank traits. Another method of interest is the AnnoPred method

of ref. 16, which is closely related to LDpred-funct-inf. However, ref. 16 considers only genotyped

variants and binary annotations. We determined that functional enrichment information is far less

useful when restricting to genotyped variants (+1% improvement for LDpred-funct-inf (typed) vs.

LDpred-inf (typed); Table S8), likely because tagging variants may not belong to enriched functional

annotations; also, as noted above, the additional regularization step of LDpred-funct substantially

improves prediction accuracy.

Our work has several limitations. First, LDpred-funct analyzes summary statistic training data

(which are publicly available for a broad set of diseases and traits35), but methods that use raw

genotypes/phenotypes as training data have the potential to attain higher accuracy20; incorporating

functional enrichment information into prediction methods that use raw genotypes/phenotypes as

training data remains a direction for future research. Second, the regularization step employed by

LDpred-funct to account for sparsity relies on heuristic cross-validation instead of inferring posterior

mean causal effect sizes under a prior sparse functional model; we made this choice because the ap-

propriate choice of sparse functional model is unclear, and because inference of posterior means via

MCMC may be subject to convergence issues. As a consequence, the improvement of LDpred-funct

over LDpred-funct-inf is contingent on the number of validation samples available for cross-validation;

in particular, for small validation samples, the number of cross-validation bins is equal to 1 (Equation

6) and LDpred-funct is identical to LDpred-funct-inf. Third, we have considered only single-trait

analyses, although leveraging genetic correlations among traits has considerable potential to improve

prediction accuracy36,37. Fourth, we have not considered how to leverage functional enrichment for

polygenic prediction in related individuals38. Fifth, we have not investigated the application of our

methods to polygenic prediction in diverse populations30, for which very similar functional enrich-

ments have been reported39,40. Finally, the improvements in prediction accuracy that we reported are

a function of the baseline-LD model17, but there are many possible ways to improve this model, e.g.

by incorporating tissue-specific enrichments1–6,41–44, modeling MAF-dependent architectures45,46,

and/or employing alternative approaches to modeling LD-dependent effects34; we anticipate that

future improvements to the baseline-LD model will yield even larger improvements in prediction ac-

curacy. As an initial step to explore alternative approaches to modeling LD-dependent effects, we

repeated our analyses using the baseline-LD+LDAK model (introduced in ref. 33), which consists of

the baseline-LD model plus one additional continuous annotation constructed using LDAK weights34.

(Recent work has shown that incorporating LDAK weights increases polygenic prediction accuracy

in analyses that do not include the baseline-LD model47.) We determined that results were virtu-
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ally unchanged (avg prediction R2=0.1600 for baseline-LD+LDAK vs. 0.1601 for baseline-LD using

LDpred-funct-inf with UK10K SNPs; see Table S8 and Table S12). Despite these limitations and

open directions for future research, our work unequivocally demonstrates that leveraging functional

enrichment using the baseline-LD model substantially improves polygenic prediction accuracy.
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Figure 1: Accuracy of 5 polygenic prediction methods in simulations using UK Biobank
genotypes. We report results for P+T, LDpred-inf, P+T-funct-LASSO, LDpred-funct-inf and LDpred-
funct in chromosome 1 simulations with 2,000 causal variants (sparse architecture) and 5,000 causal variants
(polygenic architecture). Results are averaged across 100 simulations. Top dashed line denotes simulated
SNP-heritability of 0.5. Bottom dashed lines denote differences vs. LDpred-inf; error bars represent 95%
confidence intervals. Results for other values of the number of causal variants are reported in Figure S1, and
numerical results are reported in Table S2 and Table S3.
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Figure 2: Accuracy of 5 polygenic prediction methods across 16 UK Biobank traits. We report
results for P+T, LDpred-inf, P+T-funct-LASSO, LDpred-funct-inf and LDpred-funct. Dashed lines denote
estimates of SNP-heritability. Numerical results are reported in Table S6 and Table S8. Jackknife s.e. for
differences vs. LDpred-inf are reported in Table S7; for Average across traits, each jackknife s.e. is < 0.0009.
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Figure 3: Accuracy of 5 prediction methods in height meta-analysis of UK Biobank and
23andMe cohorts. We report results for P+T, LDpred-inf, P+T-funct-LASSO, LDpred-funct-inf and
LDpred-funct, for each of 4 training data sets: UK Biobank interim release (113,660 training samples), UK
Biobank (408,092 training samples), 23andMe (698,430 training samples) and meta-analysis of UK Biobank
and 23andMe (1,107,430 training samples). Nested training data sets are connected by solid lines. Dashed
line denotes estimate of SNP-heritability in UK Biobank. Numerical results are reported in Table S11.
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Figure S1: Accuracy of 5 polygenic prediction methods in simulations using UK Biobank
genotypes, for 4 values of the number of causal variants. We report results for P+T, LDpred-
inf, P+T-funct-LASSO, LDpred-funct-inf and LDpred-funct in chromosome 1 simulations with 1,000 causal
variants (extremely sparse architecture), 2,000 causal variants (sparse architecture), 5,000 causal variants
(polygenic architecture) and 10,000 causal variants (extremely polygenic architecture). Results are averaged
across 100 simulations. Top dashed line denotes simulated SNP-heritability of 0.5. Bottom dashed lines denote
differences vs. LDpred-inf; error bars represent 95% confidence intervals. Numerical results are reported in
Table S2 and Table S3.
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Supplementary Tables

Trait Training Validation
N N (ancestry distribution)

1 Height 408092 25030 (43.5% Irish, 56.5% Other)
2 Hair color 403024 24773 (43.5% Irish, 56.5% Other)
3 Platelet count 395747 24277 (43.5% Irish, 56.5% Other)
4 Bone mineral density 397274 24167 (43.6% Irish, 56.4% Other)
5 Red blood cell count 396464 24305 (43.5% Irish, 56.5% Other)
6 FEV1-FVC ratio 331786 19929 (42.5% Irish, 57.5% Other)
7 Body mass index 407667 25000 (43.5% Irish, 56.5% Other)
8 RBC distribution width 394258 24175 (43.5% Irish, 56.5% Other)
9 Eosinophil count 391787 24030 (43.4% Irish, 56.6% Other)

10 Forced vital capacity 331786 19929 (42.5% Irish, 57.5% Other)
11 White blood cell count 395835 24293 (43.5% Irish, 56.5% Other)
12 Blood pressure 376437 23127 (43.2% Irish, 56.8% Other)
13 Age at menarche 214860 13999 (39.7% Irish, 60.3% Other)
14 Tanning ability 400721 24608 (43.5% Irish, 56.5% Other)
15 Balding type I 186506 10578 (48.9% Irish, 51.1% Other)
16 Waist hip ratio 408196 25032 (43.5% Irish, 56.5% Other)

Table S1: List of 16 UK Biobank traits. We list the training sample size and validation sample size for
each trait.
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Training sample size
# Causal 10,000 20,000 50,000
variants Model Average R2(s.e.) Average R2(s.e.) Average R2(s.e.)

1,000

P+T 0.2061 ( 0.0022 ) 0.2536 ( 0.0021 ) 0.2900 ( 0.0019 )
LDpred-inf 0.1423 ( 0.0020 ) 0.1865 ( 0.0031 ) 0.2369 ( 0.0045 )
P+T-funct-LASSO 0.2292 ( 0.0024 ) 0.2723 ( 0.0024 ) 0.3044 ( 0.002 )
LDpred-funct-inf 0.1681 ( 0.0024 ) 0.2119 ( 0.0028 ) 0.2688 ( 0.0033 )
LDpred-funct 0.2021 ( 0.0021 ) 0.2462 ( 0.0019 ) 0.2968 ( 0.0025 )

2,000

P+T 0.1658 ( 0.0022 ) 0.2215 ( 0.0026 ) 0.2683 ( 0.0029 )
LDpred-inf 0.1442 ( 0.0019 ) 0.1905 ( 0.0023 ) 0.2432 ( 0.0028 )
P+T-funct-LASSO 0.1869 ( 0.0026 ) 0.2383 ( 0.0028 ) 0.2817 ( 0.0031 )
LDpred-funct-inf 0.1697 ( 0.0022 ) 0.2135 ( 0.0026 ) 0.2703 ( 0.003 )
LDpred-funct 0.1881 ( 0.0017 ) 0.2347 ( 0.0019 ) 0.2936 ( 0.0016 )

5,000

P+T 0.1352 ( 0.0016 ) 0.1909 ( 0.0020 ) 0.2472 ( 0.0024 )
LDpred-inf 0.1447 ( 0.0017 ) 0.1898 ( 0.0022 ) 0.2430 ( 0.0027 )
P+T-funct-LASSO 0.1550 ( 0.0018 ) 0.2098 ( 0.0021 ) 0.2610 ( 0.0026 )
LDpred-funct-inf 0.1698 ( 0.0019 ) 0.2125 ( 0.0022 ) 0.2693 ( 0.0027 )
LDpred-funct 0.1783 ( 0.0012 ) 0.2232 ( 0.0013 ) 0.2809 ( 0.0015 )

10,000

P+T 0.1273 ( 0.0015 ) 0.1806 ( 0.002 ) 0.2379 ( 0.0024 )
LDpred-inf 0.1442 ( 0.0017 ) 0.1908 ( 0.0021 ) 0.2449 ( 0.0026 )
P+T-funct-LASSO 0.1419 ( 0.0017 ) 0.1954 ( 0.0022 ) 0.2477 ( 0.0026 )
LDpred-funct-inf 0.1700 ( 0.0020 ) 0.2136 ( 0.0023 ) 0.2698 ( 0.0028 )
LDpred-funct 0.1750 ( 0.0012 ) 0.2196 ( 0.0012 ) 0.2761 ( 0.0013 )

Table S2: Accuracy of 5 polygenic prediction methods in simulations using UK Biobank geno-
types, for 4 values of the number of causal variants. We report results for P+T, LDpred-inf, P+T-
funct-LASSO, LDpred-funct-inf and LDpred-funct in chromosome 1 simulations with 1,000 causal variants
(extremely sparse architecture), 2,000 causal variants (sparse architecture), 5,000 causal variants (polygenic
architecture) and 10,000 causal variants (extremely polygenic architecture). Results are averaged across 100
simulations.
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(a)
Training sample size

# Causal 10,000 20,000 50,000
variants Model Diff. R2(s.e.) Diff. R2(s.e.) Diff. R2(s.e.)

1,000

P+T 0.0622 (0.0017) 0.0649 (0.0028) 0.0508 (0.0038)
LDpred-inf 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)
P+T-funct-LASSO 0.0855 (0.0018) 0.0833 (0.0027) 0.0654 (0.0038)
LDpred-funct-inf 0.0258 (0.0010) 0.0255 (0.0025) 0.0322 (0.0038)
LDpred-funct 0.0583 (0.0026) 0.0578 (0.0030) 0.0572 (0.0048)

2,000

P+T 0.0216 (0.0012) 0.0312 (0.0011) 0.0253 (0.0011)
LDpred-inf 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)
P+T-funct-LASSO 0.0427 (0.0016) 0.0481 (0.0012) 0.0389 (0.0011)
LDpred-funct-inf 0.0258 (0.0010) 0.0233 (0.0010) 0.0275 (0.0011)
LDpred-funct 0.0443 (0.0021) 0.0448 (0.0021) 0.0487 (0.0020)

5,000

P+T -0.0098 (0.0006) 0.0006 (0.0008) 0.0037 (0.0010)
LDpred-inf 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)
P+T-funct-LASSO 0.0103 (0.0007) 0.0196 (0.0008) 0.0177 (0.0011)
LDpred-funct-inf 0.0254 (0.0008) 0.0226 (0.0008) 0.026 (0.0009)
LDpred-funct 0.0339 (0.0015) 0.0336 (0.0019) 0.0377 (0.0019)

10,000

P+T -0.0172 (0.0007) -0.0104 (0.0007) -0.0072 (0.0008)
LDpred-inf 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)
P+T-funct-LASSO -0.0024 (0.0007) 0.0046 (0.0008) 0.0027 (0.0009)
LDpred-funct-inf 0.0262 (0.0008) 0.0230 (0.0008) 0.0250 (0.0007)
LDpred-funct 0.0311 (0.0015) 0.0288 (0.0016) 0.031 (0.0016)

(b)
Training sample size

# Causal 10,000 20,000 50,000
variants Model Diff. R2(s.e.) Diff. R2(s.e.) Diff. R2(s.e.)

1,000

P+T -0.004 (0.0029) -0.0071 (0.0027) 0.0064 (0.0034)
LDpred-inf 0.0583 (0.0026) 0.0578 (0.003) 0.0572 (0.0048)
P+T-funct-LASSO -0.0272 (0.003) -0.0255 (0.0028) -0.0082 (0.0035)
LDpred-funct-inf 0.0325 (0.0028) 0.0323 (0.0025) 0.025 (0.0034)
LDpred-funct 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

2,000

P+T 0.0227 (0.0024) 0.0136 (0.0023) 0.0234 (0.0023)
LDpred-inf 0.0443 (0.0021) 0.0448 (0.0021) 0.0487 (0.002)
P+T-funct-LASSO 0.0017 (0.0026) -0.0033 (0.0023) 0.0098 (0.0023)
LDpred-funct-inf 0.0185 (0.0021) 0.0215 (0.002) 0.0212 (0.0022)
LDpred-funct 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

5,000

P+T 0.0437 (0.0016) 0.033 (0.0018) 0.034 (0.0018)
LDpred-inf 0.0339 (0.0015) 0.0336 (0.0019) 0.0377 (0.0019)
P+T-funct-LASSO 0.0237 (0.0016) 0.0139 (0.0018) 0.0201 (0.0019)
LDpred-funct-inf 0.0086 (0.0015) 0.0109 (0.0017) 0.0118 (0.0018)
LDpred-funct 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

10,000

P+T 0.0483 (0.0014) 0.0393 (0.0015) 0.0382 (0.0016)
LDpred-inf 0.0311 (0.0015) 0.0288 (0.0016) 0.031 (0.0016)
P+T-funct-LASSO 0.0336 (0.0015) 0.0243 (0.0016) 0.0283 (0.0017)
LDpred-funct-inf 0.0049 (0.0015) 0.0058 (0.0016) 0.006 (0.0017)
LDpred-funct 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

Table S3: Differences between polygenic prediction methods in simulations using UK Biobank
genotypes, for 4 values of the number of causal variants. We report results for P+T, LDpred-
inf, P+T-funct-LASSO, LDpred-funct-inf and LDpred-funct in chromosome 1 simulations with 1,000 causal
variants (extremely sparse architecture), 2,000 causal variants (sparse architecture), 5,000 causal variants
(polygenic architecture) and 10,000 causal variants (extremely polygenic architecture). Results are averaged
across 100 simulations. (a) Difference between R2 for each method vs. R2 for LDpred-inf. (b) Difference
between R2 for LDpred-funct vs. R2 for each method.
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Training sample size
# Causal 10,000 20,000 50,000
variants Model Average R2(s.e.) Average R2(s.e.) Average R2(s.e.)

1,000

LDpred-funct-inf 0.1681 ( 0.0024 ) 0.2119 ( 0.0028 ) 0.2688 ( 0.0033 )
LDpred-funct-10 0.1958 ( 0.002 ) 0.2402 ( 0.0019 ) 0.2937 ( 0.0019 )
LDpred-funct-20 0.2021 ( 0.0021 ) 0.2462 ( 0.0019 ) 0.2968 ( 0.0025 )
LDpred-funct-50 0.2130 ( 0.0021 ) 0.2561 ( 0.0021 ) 0.3089 ( 0.0021 )
LDpred-funct-100 0.2243 ( 0.0022 ) 0.2647 ( 0.0025 ) 0.2976 ( 0.0074 )

2,000

LDpred-funct-inf 0.1697 ( 0.0022 ) 0.2135 ( 0.0026 ) 0.2703 ( 0.0030 )
LDpred-funct-10 0.1840 ( 0.0024 ) 0.2296 ( 0.0027 ) 0.2912 ( 0.0015 )
LDpred-funct-20 0.1881 ( 0.0024 ) 0.2347 ( 0.0028 ) 0.2936 ( 0.0015 )
LDpred-funct-50 0.1978 ( 0.0025 ) 0.2439 ( 0.0028 ) 0.3005 ( 0.0017 )
LDpred-funct-100 0.2054 ( 0.0028 ) 0.2528 ( 0.0028 ) 0.3019 ( 0.0054 )

5,000

LDpred-funct-inf 0.1698 ( 0.0019 ) 0.2125 ( 0.0022 ) 0.2693 ( 0.0027 )
LDpred-funct-10 0.1758 ( 0.0019 ) 0.2206 ( 0.0023 ) 0.2788 ( 0.0028 )
LDpred-funct-20 0.1783 ( 0.0019 ) 0.2232 ( 0.0023 ) 0.2809 ( 0.0028 )
LDpred-funct-50 0.1836 ( 0.0019 ) 0.229 ( 0.0024 ) 0.2861 ( 0.0028 )
LDpred-funct-100 0.1899 ( 0.002 ) 0.2344 ( 0.0026 ) 0.2915 ( 0.0028 )

10,000

LDpred-funct-inf 0.1700 ( 0.0020 ) 0.2136 ( 0.0023 ) 0.2698 ( 0.0028 )
LDpred-funct-10 0.1746 ( 0.0012 ) 0.2199 ( 0.0012 ) 0.2746 ( 0.0028 )
LDpred-funct-20 0.1750 ( 0.002 ) 0.2196 ( 0.0023 ) 0.2761 ( 0.0028 )
LDpred-funct-50 0.1799 ( 0.002 ) 0.2240 ( 0.0024 ) 0.2800 ( 0.0028 )
LDpred-funct-100 0.1849 ( 0.0021 ) 0.2289 ( 0.0024 ) 0.2835 ( 0.0029 )

Table S4: Sensitivity of LDpred-funct results to number of bins used for regularization in
simulations using UK Biobank genotypes. We report results with the number of posterior mean causal
effect size bins used for regularization (K) set to 10, 20, 50 or 100. LDpred-funct-K denotes each respective
value of K. We also report results for LDpred-funct-inf, which is identical to LDpred-funct with K set to 1.
Results are averaged across 100 simulations.
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Trait Training N h2g c

1 Height 408092 0.58 0.45
2 Hair color 403024 0.45 0.23
3 Platelet count 395747 0.40 0.30
4 Bone mineral density 397274 0.40 0.27
5 Red blood cell count 396464 0.32 0.22
6 FEV1-FVC ratio 331786 0.31 0.24
7 Body mass index 407667 0.31 0.28
8 RBC distribution width 394258 0.29 0.20
9 Eosinophil count 391787 0.28 0.19

10 Forced vital capacity 331786 0.28 0.22
11 White blood cell count 395835 0.27 0.22
12 Blood pressure 376437 0.27 0.21
13 Age at menarche 214860 0.26 0.20
14 Tanning ability 400721 0.24 0.09
15 Balding type I 186506 0.22 0.11
16 Waist hip ratio 408196 0.21 0.16

Table S5: Parameter values for 16 UK Biobank traits. For each trait, we list the training sample
size, h2

g estimate (from BOLT-LMM v2.3; used by LDpred-inf, LDpred-funct-inf and LDpred-funct) and c
parameter (used by LDpred-funct-inf and LDpred-funct).
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Table S6: Accuracy of 5 polygenic prediction methods across 16 UK Biobank traits. We report
results for P+T, LDpred-inf, P+T-funct-LASSO, LDpred-funct-inf and LDpred-funct. Jackknife s.e. for
differences vs. LDpred-inf are reported in Table S7. Results for Average across traits are reported in Table
S8.
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Table S7: Differences between polygenic prediction methods across 16 UK Biobank traits. We
report results for P+T, LDpred-inf, P+T-funct-LASSO, LDpred-funct-inf and LDpred-funct. We report the
difference between R2 for each method vs. R2 for LDpred-inf.
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Method Average R2

1 P+T 0.1368
2 LDpred-inf 0.1390
3 P+T-funct-LASSO 0.1475
4 LDpred-funct-inf 0.1606
5 LDpred-funct 0.1739
6 LDpred-inf (typed) 0.1360
7 LDpred-funct-inf (typed) 0.1378
8 LDpred (typed) 0.1117
9 P+T-funct-LASSO-weighted 0.1549

10 P+T-funct-LASSO (5%) 0.1538
11 LDpred-funct-inf (meta31) 0.1560
12 LDpred-funct-inf(baseline) 0.1573
13 LDpred-funct-inf(QCfilters) 0.1606
14 LDpred-funct-inf(UK10K) 0.1601
15 LDpred-funct-inf(UK10K, baseline-LD+LDAK) 0.1600

Table S8: Accuracy of secondary polygenic prediction methods across 16 UK Biobank traits.
For each method, we report the average prediction R2 across 16 UK Biobank traits. Rows 1-5 correspond
to the ”Average across traits” panel of Figure 2. Rows 6-8 are methods that analyze only genotyped SNPs
(601,728 genotyped SNPs after QC). Rows 9-10 are slightly modified versions of P+T-funct-LASSO. Row 11
uses baseline-LD model functional enrichments that were meta-analyzed across 31 traits. Row 12 uses the
baseline model, instead of the baseline-LD model. Row 13 restricts the baseline-LD model to the 6,334,603
SNPs that passed QC filters and were used for prediction. Row 14 infers baseline-LD model parameters using
UK10K SNPs, instead of 1000 Genomes SNPs. Row 15 uses UK10K SNPs and uses the baseline-LD+LDAK
model, instead of the baseline-LD model.
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Table S9: Sensitivity of LDpred-funct results to number of bins used for regularization across
16 UK Biobank traits. We report results with the number of posterior mean causal effect size bins used
for regularization (K) set to 10, 20, 50, 75 or 100. LDpred-funct-K denotes each respective value of K. We
also report results for LDpred-funct-inf, which is identical to LDpred-funct with K set to 1. For each trait,
the column with highest prediction R2 is denoted in bold font.
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Table S10: Sensitivity of LDpred-funct results to number of validation samples across 16 UK
Biobank traits. We report results with the number of validation samples set to 1,000, 2,000, 5,000, 10,000
(the number of regularization bins is proportional to the number of validation samples; see Equation 6.
Results are averaged across 20 random subsets of each size. ALL denotes results of LDpred-funct using the
total number of validation samples (reported in Table S1). We also report results for LDpred-funct-inf, which
is equivalent to LDpred-funct in the limit of a very small number of validation samples.
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Data Set Training N P+T LDpred-inf P+T-funct LDpred-funct-inf LDpred-funct
-LASSO

UK Biobank in-
terim release

113,660 0.2223 0.2305 0.2524 0.2777 0.2926

UK Biobank 408,092 0.3448 0.3677 0.3644 0.3995 0.4132
23andMe 698,430 0.2903 0.2882 0.2985 0.3148 0.3279
Meta-analysis
of UK Biobank
and 23andMe

1,107,430 0.3710 0.3874 0.3778 0.4193 0.4292

Fixed-effect
meta-analysis

1,107,430 0.3687 0.3653 0.3663 0.3965 0.4051

Table S11: Accuracy of 5 prediction methods in height meta-analysis of UK Biobank and
23andMe cohorts. We report results for P+T, LDpred-inf, P+T-funct-LASSO, LDpred-funct-inf and
LDpred-funct, for each of 4 training data sets: UK Biobank interim release (113,660 training samples), UK
Biobank (408,092 training samples), 23andMe (698,430 training samples) and meta-analysis of UK Biobank
and 23andMe (1,107,430 training samples). We also report results for a fixed-effect meta-analysis of UK
Biobank and 23andMe.
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LDpred-funct-inf under different priors:
Trait h2g baselineLD

(1000G)
baselineLD
(UK10K)

baselineLD +
LDAK (UK10K)

1 Height 0.579 0.4019 0.4011 0.4018
2 Hair color 0.454 0.2472 0.2501 0.2501
3 Platelet count 0.404 0.2290 0.2294 0.2298
4 Bone mineral

density
0.401 0.2105 0.2122 0.2117

5 Red blood cell
count

0.324 0.1572 0.1566 0.1544

6 FEV1-FVC ra-
tio

0.313 0.1306 0.1309 0.1323

7 Body mass in-
dex

0.308 0.1501 0.1503 0.1502

8 RBC distribu-
tion width

0.288 0.1429 0.1432 0.1451

9 Eosinophil
count

0.277 0.1336 0.1335 0.1342

10 Forced vital ca-
pacity

0.277 0.1148 0.1147 0.1140

11 White blood cell
count

0.272 0.1249 0.1246 0.1251

12 Blood pressure 0.271 0.1111 0.1113 0.1136
13 Age at menar-

che
0.255 0.1071 0.0995 0.0930

14 Tanning ability 0.242 0.1234 0.1206 0.1190
15 Balding type I 0.223 0.1065 0.1040 0.1070
16 Waist hip ratio 0.210 0.0786 0.0793 0.0785

Table S12: Accuracy of LDpred-funct-inf(1000G), LDpred-funct-inf(UK10K) and LDpred-
funct-inf(UK10K, baseline-LD+LDAK) across 16 UK Biobank traits. We report results for each
trait. Results for Average across traits are reported in Table S8.
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