
1 
 

Improving the diagnostic yield of exome-sequencing, by predicting 1 

gene-phenotype associations using large-scale gene expression 2 

analysis 3 

Patrick Deelen,1,2,4 Sipko van Dam,1,4 Johanna C. Herkert,1,5 Juha M. Karjalainen,1,5 Harm 4 

Brugge,1,5 Kristin M. Abbott,1 Cleo C. van Diemen,1 Paul A. van der Zwaag,1 Erica H. 5 

Gerkes,1 Pytrik Folkertsma,1 Tessa Gillett,1 K. Joeri van der Velde,1,2 Roan Kanninga,1,2 Peter 6 

C. van den Akker,1 Sabrina Z. Jan,1 Edgar T. Hoorntje,1,3 Wouter P. te Rijdt,1,3 Yvonne J. 7 

Vos,1 Jan D.H. Jongbloed,1 Conny M.A. van Ravenswaaij-Arts,1 Richard Sinke,1 Birgit 8 

Sikkema-Raddatz,1 Wilhelmina S. Kerstjens-Frederikse,1 Morris A. Swertz,1,2 Lude Franke1 9 

 10 
1 University of Groningen, University Medical Center Groningen, Department of Genetics, 11 

Groningen, 9700 VB, the Netherlands 12 
2 University of Groningen, University Medical Center Groningen, Genomics Coordination 13 

Center, Groningen, 9700 VB, the Netherlands 14 
3 Netherlands Heart Institute, Utrecht, the Netherlands 15 

 16 
4 These authors contributed equally to this work 17 
5 These authors contributed equally to this work 18 

 19 

Corresponding author:  20 

Lude Franke 21 

E-mail: Lude@ludesign.nl 22 

 23 

Abstract 24 

Clinical interpretation of exome and genome sequencing data remains challenging and time 25 

consuming, with many variants with unknown effects found in genes with unknown 26 

functions. Automated prioritization of these variants can improve the speed of current 27 

diagnostics and identify previously unknown disease genes. Here, we used 31,499 RNA-seq 28 

samples to predict the phenotypic consequences of variants in genes. We developed 29 

GeneNetwork Assisted Diagnostic Optimization (GADO), a tool that uses these predictions in 30 

combination with a patient’s phenotype, denoted using HPO terms, to prioritize identified 31 

variants and ease interpretation. GADO is unique because it does not rely on existing 32 
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knowledge of a gene and can therefore prioritize variants missed by tools that rely on 33 

existing annotations or pathway membership. In a validation trial on patients with a known 34 

genetic diagnosis, GADO prioritized the causative gene within the top 3 for 41% of the 35 

cases. Applying GADO to a cohort of 38 patients without genetic diagnosis, yielded new 36 

candidate genes for seven cases. Our results highlight the added value of GADO 37 

(www.genenetwork.nl) for increasing diagnostic yield and for implicating previously 38 

unknown disease-causing genes. 39 

Introduction 40 

With the increasing use of whole-exome sequencing (WES) and whole-genome sequencing 41 

(WGS) to diagnose patients with a suspected genetic disorder, diagnostic yield is steadily 42 

increasing 1. Although our knowledge of the genetic basis of Mendelian diseases has 43 

improved considerably, the underlying cause remains elusive for a substantial proportion of 44 

cases. The diagnostic yield of genome sequencing varies from 8% to 70% depending on the 45 

patient’s phenotype and the extent of genetic testing 2. Sequencing all ~20,000 protein-46 

coding genes by WES and entire genomes by WGS usually increases sensitivity but 47 

decreases specificity: it results in off-target noise and reveals many variants of uncertain 48 

clinical significance. In a study by Yang et al., proband-only WES identified approximately 49 

875 variants in each patient, even after removing low quality variants 3.  50 

One strategy to manage the list of genetic variants is to perform trio analysis of samples 51 

from the proband and both of his or her biological parents to ascertain, for instance, 52 

whether a variant has de novo status 4. Another strategy is to limit the analyses to a gene 53 

panel of Online Mendelian Inheritance in Men (OMIM) disease-annotated genes 5 or genes 54 

known to be directly related to the patient’s phenotype. However, determining the actual 55 

disease-causing variant requires further variant filtering based on information about its 56 

predicted functional consequence, population frequency data, conservation, disease-specific 57 

databases (such as the Human Gene Mutation Database 6), literature, and segregation 58 

analysis 7.  59 

Several tools have been developed that aid in variant filtering and prioritization 8,9. 60 

Annotation tools, such as VEP 10 and GAVIN 9, offer additional functionality that allows 61 

variants to be filtered according to their population frequency and variant class. Other tools 62 

use phenotype descriptions to rank potential candidates genes 11. The phenotypes are 63 

typically described in a structured manner, e.g. using Human Phenotype Ontology (HPO) 64 

terms 12. AMELIE (Automatic Mendelian Literature Evaluation), for example, prioritizes 65 
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candidate genes by their likelihood of causing the patient’s phenotype based on automated 66 

literature analysis 13. However, this focus on what is known may inadvertently filter out 67 

variants in potential novel disease genes. Alternatively, the causative gene defect could be 68 

missed if a patient’s phenotype differs from the features previously reported to be 69 

associated to a disease gene. Tools like Exomiser can identify novel human disease genes, 70 

as it prioritizes variants based on semantic phenotypic similarity between a patient’s 71 

phenotype described by HPO terms and HPO-annotated diseases, Mammalian Phenotype 72 

Ontology (MPO)-annotated mouse and Zebrafish Phenotype Ontology (ZPO)-annotated fish 73 

models associated with each exomic candidate and/or its neighbors in an interaction 74 

network 14. However, most available algorithms are based on existing knowledge on human 75 

disease genes, their orthologues in animal models, or well-described biological pathways 76 

(for a detailed review see 11).  77 

To overcome this, we hypothesized that co-regulation of expression data could be used to 78 

prioritize variants, including those in less well studied genes. We assumed that if a gene or 79 

a gene set is known to cause a specific disease or disease symptom, these genes will often 80 

have similar molecular functions or be involved in the same biological process or pathway. 81 

We reasoned that variants in genes with yet unknown function that are involved in the same 82 

biological pathway or co-regulated with known disease genes likely result in the same 83 

phenotype. In order to identify groups of genes with a related biological function, we used 84 

an expansive compendium of 31,499 RNA-sequencing (RNA-seq) gene expression samples 85 

to predict functions for genes with high accuracy. 86 

We then developed a user-friendly tool that can prioritize variants in known and unknown 87 

genes based on our functional predictions, which we designated GeneNetwork Assisted 88 

Diagnostic Optimization (GADO). GADO ranks variants based on gene co-regulation in 89 

publicly available expression data of a wide range of tissues and cell types using HPO terms 90 

to describe a patient’s phenotype. To validate our prioritization method, we tested how well 91 

our method predicts disease-causing genes based on features described for each of the 92 

genes in the OMIM database. We then used exome sequencing data of patients with a 93 

known genetic diagnosis to benchmark GADO. Finally, we applied our methodology to 94 

previously inconclusive WES data and identified several genes that contain variants that 95 

likely explain the phenotype of the respective patients. Thus, we show that our methodology 96 

is successful in identifying variants in novel, potentially relevant genes explaining the 97 

patient’s phenotype.  98 
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Results 99 

Gene prioritization using GADO 100 

We have developed GADO to perform gene prioritizations using the phenotypes observed in 101 

patients denoted as HPO terms 15. In combination with a list of candidate genes (i.e. genes 102 

harboring rare and possibly damaging variants), this results in a ranked list of genes with 103 

the most likely candidate genes on top (Figure 1a). The gene prioritizations are based on 104 

the predicted involvement of the candidate genes for the specified set of HPO terms. These 105 

predictions are made by analyzing public RNA-seq data from 31,499 samples (Figure 1b), 106 

resulting in a gene prediction score for each HPO term. These predictions are solely based 107 

on co-regulation of genes annotated to a certain HPO term with other genes. This makes it 108 

possible to also prioritize genes that currently lack any biological annotation. 109 
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 110 

Figure 1: Schematic overview of GADO. (a) Per patient, GADO requires a set of phenotypic 111 
features and a list of candidate genes (i.e. genes harboring rare alleles that are predicted to be 112 
pathogenic) as input. It then ascertains whether genes have been predicted to cause these features, 113 
and which ones are present in the set of candidate genes that has been provided as input. The 114 
predicted HPO phenotypes are based on the co-regulation of genes with sets of genes that are already 115 
known to be associated with that phenotype. (b) Overview of how disease symptoms are predicted 116 
using gene expression data from 31,499 human RNA-seq samples. A principal component analysis on 117 
the co-expression matrix results in the identification of 1,588 significant principal components. For 118 
each HPO term we investigate every component: per component we test whether there is a significant 119 
difference between eigenvector coefficients of genes known to cause a specific phenotype and a 120 
background set of genes. This results in a matrix that indicates which principal components are 121 
informative for every HPO term. By correlating this matrix to the eigenvector coefficients of every 122 
individual gene, it is possible to infer the likely HPO disease phenotype term that would be the result 123 
of a pathogenic variant in that gene. 124 

Public RNA-seq data acquisition and quality control 125 

To predict functions of genes and HPO term associations, we downloaded all human RNA-126 

seq samples publicly available in the European Nucleotide Archive (accessed June 30, 2016) 127 

(supplementary table 1) 16. We quantified gene-expression using Kallisto 17 and removed 128 

samples for which a limited number of reads are mapped. We used a principal component 129 

analysis (PCA) on the correlation matrix to remove low quality samples and samples that 130 

were annotated as RNA-seq but turned out to be DNA-seq. In the end, we included 31,499 131 
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samples and quantified gene expression levels for 56,435 genes (of which 22,375 are 132 

protein-coding).  133 

Although these samples are generated in many different laboratories, we previously 134 

observed that, after having corrected for technical biases, it is possible to integrate these 135 

samples into a single expression dataset 18. We validated that this is also true for our new 136 

dataset by visualizing the data using t-Distributed Stochastic Neighbor Embedding (t-SNE). 137 

We labeled the samples based on cell-type or tissue and we observed that samples cluster 138 

together based on cell-type or tissue origin (Figure 2a). Technical biases, such as whether 139 

single-end or paired-end sequencing had been used, did not lead to erroneous clusters, 140 

which suggests that this heterogeneous dataset can be used to ascertain co-regulation 141 

between genes and can thus serve as the basis for predicting the functions of genes. 142 

Prediction of gene HPO associations and gene functions 143 

To predict HPO term associations and putative gene functions using co-regulation (Figure 144 

1b), we used a method that we had previously developed and applied to public expression 145 

microarrays 19. Since these microarrays only cover a subset of the protein-coding genes (n 146 

= 14,510), we decided to use public RNA-seq data instead. This allows for more accurate 147 

quantification of lower expressed genes and the expression quantification of many more 148 

genes, including a large number of non-protein-coding genes. 20. 149 

We applied this prediction methodology 19 to the HPO gene sets and also to Reactome 21, 150 

KEGG pathways 22, Gene Ontology (GO) molecular function, GO biological process and GO 151 

cellular component 23 gene sets. For 5,088 of the 8,657 gene sets (59%) with at least 10 152 

genes annotated, the gene function predictions had significant predictive power (see 153 

materials and methods). For the 8,657 gene sets with at least 10 genes annotated, the 154 

median predictive power, denoted as Area Under the Curve (AUC), ranged between 0.73 155 

(HPO) to 0.87 (Reactome) (Figure 2b).  156 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2018. ; https://doi.org/10.1101/375766doi: bioRxiv preprint 

https://doi.org/10.1101/375766
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

 157 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2018. ; https://doi.org/10.1101/375766doi: bioRxiv preprint 

https://doi.org/10.1101/375766
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

Figure 2: A compendium of gene expression profiles that can be used for gene function 158 
prediction (a) 31,499 RNA-seq samples derived from many different studies show coherent clustering 159 
after correcting for technical biases. Generally, samples originating from the same tissue, cell-type or 160 
cell-line cluster together. The two axes denote the first t-SNE components. (b) Gene co-expression 161 
information of 31,499 samples is used to predict gene functions. We show the prediction accuracy for 162 
gene sets from different databases. AUC, Area Under the Curve, GO, Gene Ontology, HPO, Human 163 
Phenotype Ontology. 164 

Prioritization of known disease genes using the annotated HPO terms 165 

Once we had calculated the prediction scores of HPO disease phenotypes, we leveraged 166 

these scores to prioritize genes found by sequencing the DNA of a patient. For each 167 

individual HPO term–gene combination, we calculated a prediction z-score that can be used 168 

to rank genes. In practice, however, patients often present with not one feature but a 169 

combination of multiple features. Therefore, we combined the z-scores for each HPO term 24 170 

to generate an overall z-score that explains the full spectrum of features in a patient. GADO 171 

uses these combined z-scores to prioritize the candidate genes: the higher the combined z-172 

score for a gene, the more likely it explains the patient’s phenotype.  173 

Because many HPO terms have fewer than 10 genes annotated, and since we were unable 174 

to make significant predictions for some HPO terms, certain HPO terms are not suitable to 175 

use for gene prioritization. We solved this problem by taking advantage of the way HPO 176 

terms are structured. Each term has at least one parent HPO term that describes a more 177 

generic phenotype and thus has also more genes assigned to it. Therefore, if an HPO term 178 

cannot be used, GADO will make suggestions for suitable parental terms (supplementary 179 

figure 1). 180 

To benchmark our prioritization method, we used the OMIM database 5. We tested how well 181 

our method was able to retrospectively rank disease-causing genes listed in OMIM based on 182 

the annotated symptoms of these diseases. We took each OMIM disease gene (n = 3,382) 183 

and used the associated disease features (15 per gene on average) as input for GADO. 184 

What we found was that for 49% of the diseases GADO ranks the causative gene in the top 185 

5% (Figure 3a, b). Moreover, we observed a statistically significant difference between the 186 

performance of GADO on true gene-phenotype combinations and its performance using a 187 

random permutation of gene-phenotype combinations (p-value = 2.16 × 10-532).  188 
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 189 

Figure 3: Performance of disease gene prioritization compared to random permutation. (a) 190 
OMIM disease genes and provisional disease genes have significantly stronger z-scores compared to 191 
permuted disease genes (T-test p-values: 2.16×10-532 & 5.38×10-80, respectively). We also observe 192 
that the predictions of the provisional OMIM genes are, on average, weaker than the other OMIM 193 
disease genes (T-test p-value: 1.89×10-7). (b) Ranking the disease based on z-scores shows GADO’s 194 
ability to prioritize the causative gene for a disease among all OMIM genes. For 49% of the disorders 195 
the causative gene is ranked in the top 5%. (c) We observe a clear relation between the prioritization 196 
z-scores and the gene predictability scores (Pearson r = 0.54). We don’t observe this relation in the 197 
permuted results. (d) GeneNetwork performs best for genes with high predictability scores. (e) The 198 
different groups have similar distributions of gene predictability scores. 199 

Gene predictability scores explains performance differences between genes 200 

For some combinations of genes and HPO terms listed in OMIM, GADO could not establish 201 

the gene-phenotype combination (Figure 3). For example, variants in SLC6A3 are known to 202 

cause infantile Parkinsonism-dystonia (MIM 613135) 25–27, but GADO was unable predict the 203 

annotated HPO terms related to the Parkinsonism-dystonia for this gene. This may, 204 

however, be due to very low expression levels of SLC6A3 in most tissues except specific 205 

brain regions 28. 206 

To better understand why we can’t predict HPO terms for all genes, we used the Reactome, 207 

GO and KEGG prediction scores. Jointly these databases comprise thousands of gene sets. 208 

Since these databases describe such a wide range of biology, we assumed that if a gene 209 

does not show any prediction signal for any gene set in these databases, gene co-210 
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expression is probably not informative for this gene. To quantify this, we calculated, per 211 

gene, the average skewness of the z-score distribution of the Reactome, GO and KEGG gene 212 

sets. From this we were able to derive a ‘gene predictability score’ for every gene that is 213 

independent of whether this gene is already known to play a role in any a disease or 214 

pathway (Figure 3c, d, e). We then ascertained whether these ‘gene predictability scores’ 215 

are correlated with the prediction z-score of the OMIM diseases, and found a strong 216 

correlation (Pearson r = 0.54, p-value = 1.14 × 10-332) between the gene predictability 217 

scores and GADO’s ability to identify a known disease gene (Figure 3c).  218 

To investigate why some genes have a high ‘gene predictability score’ but low prediction 219 

performance, we scored a set of genes known to cause cardiomyopathy (CM) for the 220 

amount of literature evidence that these genes cause CM. We found several genes for which 221 

the prediction score for the CM phenotype is lower than expected based on the gene 222 

predictability scores (supplementary figure 2a). Pathogenic variants in the TTR gene 223 

implicated in hereditary amyloidosis (MIM 105210) 29, for instance, cause accumulation of 224 

the transthyretin protein in different organ systems, including the heart, resulting in CM. 225 

However, this gene is primarily expressed in the liver. Therefore, its disease mechanism is 226 

different from other mechanisms resulting in CM, as many inherited CMs are caused by 227 

deleterious variants in genes highly expressed in the heart and directly affecting the 228 

function of the cardiac sarcomere. Therefore, the phenotypic function prediction for this 229 

gene may be worse than we would expect based on the predictability score. We performed a 230 

similar analysis using the HPO term ‘dilated cardiomyopathy’ and observed a low prediction 231 

performance for the TMPO gene, despite a high gene predictability score (supplementary 232 

figure 2b). Previously, this gene was reported to be related to dilated cardiomyopathy 233 

(DCM) and listed as such by OMIM. However, recent reclassification of the reported variants 234 

using the ExAC data revealed that the reported variant was far too common to be causative 235 

for DCM 30.   236 

Benchmarking GADO using solved cases with realistic phenotyping 237 

Although in silico benchmarking demonstrated the potential of GADO, it used all annotated 238 

HPO terms for a disease. In practice, however, patients may only present with a limited 239 

number of the annotated features. To perform a validation that was a more realistic 240 

reflection of clinical practice, we used exome sequencing data of 83 patients with a known 241 

genetic diagnosis. We used their phenotypic features as listed in their medical records prior 242 

to the genetic diagnosis (supplementary table 2). On average, per patient, GADO yielded 56 243 

possible disease-causing genes with variants that are rare and predicted to be deleterious.   244 
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In 41% of the patients the actual causative gene was ranked in the top 3 and in 50% of the 245 

cases it was in the top 5 (mean rank 10) (Figure 4a).  246 

Clustering of HPO terms  247 

In addition to ranking potentially causative genes based on a patient’s phenotype, we 248 

observed that GADO can be used to cluster HPO terms based on the genes that are predicted 249 

to be associated to these HPO terms. This can help identify pairs of symptoms that often occur 250 

together, as well as symptoms that rarely co-occur, and we actually observed this for a patient 251 

suspected of having two different diseases. This patient is diagnosed with a glycogen storage 252 

disease, GSD type Ib, caused by compound heterozygous variants in SLC37A4 (MIM 602671) 253 

and DCM that is probably caused by a truncating variant in TTN (MIM 188840). Clustering of 254 

the assigned HPO terms placed the phenotypic features related to GSD type Ib (‘leukopenia’ 255 

(HP:0001882) and ‘inflammation of the large intestine’ (HP:0002037)) together, while 256 

Cardiomyopathy (HP:0001638) was only weakly correlated to these specific features (Figure 257 

4b).  258 

 259 

Figure 4: Performance of GeneNetwork on solved cases (a) Rank of the known causative gene 260 
among the candidate disease causing variants. (b) Our cohort contained a case with two distinct 261 
conditions, and clustering showed the HPO terms of the same disease are closest to each other. Note, 262 
the HPO term “Inflammation of the large intestine” did not yield a significant prediction profile and 263 
therefore the parent terms “Abnormality of the large intestine”, “Increased inflammatory response” 264 
and “Functional abnormality of the gastrointestinal tract” where used for this case.  265 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2018. ; https://doi.org/10.1101/375766doi: bioRxiv preprint 

https://doi.org/10.1101/375766
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

Reanalysis of previously unsolved cases 266 

To assess GADO’s ability to discover new disease genes, we applied it to data from 38 267 

patients who are suspected to have a Mendelian disease but who have not had a genetic 268 

diagnosis. All patients had undergone prior genetic testing (WES with analysis of a gene 269 

panel according to their phenotype, supplementary table 3). On average three genes had a 270 

z-score ≥ 5 (which we used as an arbitrary cut-off and that correspond to a p-value of 5.7 X 271 

10-7) and were further assessed. In seven cases, we identified variants in genes not 272 

associated to a disease in OMIM or other databases, but for which we could find literature or 273 

for which we gained functional evidence implicating their disease relevance (Table 1). For 274 

example, we identified two cases with DCM with rare compound heterozygous variants in 275 

the OBSCN gene (MIM 608616) that are predicted to be damaging. In literature, inherited 276 

variant(s) in OBSCN, encoding obscurin, are associated with hypertrophic CM 31 and DCM 32. 277 

Furthermore, obscurin is a known interaction partner of titin (TTN), a well-known DCM-278 

related protein 31. Another example came from a patient with ichthyotic peeling skin 279 

syndrome, which is caused by a damaging variant in FLG2 (MIM 616284). We recently 280 

published this case where we prioritized this gene using an alpha version of GADO 33.  281 
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HP:0001644 247 5 OBSCN NM_001098623.2: 
c.[15037C>T]; 
[20963delC] 

24.8 
25.2 

8.0 x 10-5 
1.7 x 10-3 

31,

32 
Yes 

HP:0001644 226 3 OBSCN NM_001098623.2: 
c.[5545C>T]; 
[22384+3_22384
+21del] 

14.7 
7.8 

3.2 x 10-4 
0 
 

31,

32 
Yes 

HP:0008066 
HP:0008064 

359 3 FLG2 NM_001014342.2: 
c.[632C>G]; 
[632C>G] 

35.0 
35.0 

1.1 x 10-5 
1.1 x 10-5 

34 Yes 

HP:0001263 
HP:0001249 
HP:0000717 
HP:0000708 
HP:0002167 
HP:0002360 
HP:0000664 

206 12 INO80 NM_017553.2: c. 
[898C>T] 

34 0 35,

36 
Yes 

HP:0001644 346* 2 MB NM_00203377.1: 
c.[214G>A] 

22.4 3.6 x 10-5 37 Yes 

HP:0001644 126* 1 SYNPO2L** NM_001114133.2: 
c.[473G>A] 

24.1 5.4 x 10-4 38 Yes 

HP:0001638 336 4 NRAP** NM_001261463.1: 
c.[ 4648C>T] 

20.4 8.7 x 10-4 39 Yes 

Table 1: unsolved cases with new candidate genes. Out of the 38 unsolved patients investigated, 282 
we identified candidate genes in seven patients. For these genes we have found literature that 283 
indicates these genes fit the phenotype of these patients or for which we gained functional evidence 284 
implicating their disease relevance. *These variants where pre-filtered for family segregation. **The 285 
variants in these genes do not fully explain the phenotype but are likely contributing to the phenotype.  286 

www.genenetwork.nl 287 

All analyses described in this paper can be performed using our online toolbox at 288 

www.genenetwork.nl. Users can perform gene prioritizations using GADO by providing a set 289 

of HPO terms and a list of candidate genes (Figure 5a). Per gene, it is also possible to 290 

download all prediction scores for the HPO terms and pathways. Our co-regulation scores 291 

between genes can be used for clustering. Furthermore, the predicted pathway and HPO 292 
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annotations of genes can be used to perform function enrichment analysis (Figure 5b). We 293 

also support automated queries to our database. 294 
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Figure 5: www.genenetwork.nl (a) Prioritization results of one of our previously solved cases. This 296 
patient was diagnosed with Kleefstra syndrome. The patient only showed a few of the phenotypic 297 
features associated with Kleefstra syndrome and additionally had a neoplasm of the pituitary (which is 298 
not associated with Kleefstra syndrome). Despite this limited overlap in phenotypic features, GADO 299 
was able to rank the causative gene (EHMT1) second. Here, we also show the value of the HPO 300 
clustering heatmap, the two terms related to the neoplasm cluster separately from the intellectual 301 
disability and the facial abnormalities that are associated to Kleefstra syndrome. (b) Clustering of a set 302 
of genes allowing function / HPO enrichment of all genes or specific enrichment of automatically 303 
defined sub clusters. Here we loaded all known DCM genes and OBSCN, and we focus on a sub-cluster 304 
of genes containing OBSCN (highlighted by the arrow). We see that it is strongly co-regulated with 305 
many of the known DCM genes. Pathway enrichment of this sub-cluster reveals that these genes are 306 
most strongly enriched for the muscle contraction Reactome pathway. DCM, Dilated Cardiomyopathy. 307 

Discussion 308 

Prioritizing genes from WES or WGS data remains challenging. To meet this challenge, we 309 

developed GADO, a novel tool to prioritize genes based on the phenotypic features of a 310 

patient. Since the classification of variants is labor-intensive, prioritization of the most likely 311 

candidate variants saves time in the diagnostic process.  312 

Importantly, GADO can also aid in the discovery of currently unknown disease genes. The 313 

main advantage of our methodology is that it does not rely on any prior knowledge about 314 

disease-gene annotations. Instead, we used predicted gene functions based on co-315 

expression networks extracted from a large compendium of publicly available RNA-seq 316 

samples. RNA-seq has previously shown to be very helpful to accurately quantify expression 317 

levels of lowly expressed genes and non-coding genes 18. To evaluate our diagnostic 318 

algorithm, we developed a testing scenario based on simulated patients presenting with all 319 

clinical features listed in OMIM for a certain disease or syndrome. This validation test 320 

showed that for 49% of the diseases the causative gene ranks in the top 5%. We also 321 

investigated the OMIM “provisional” category of genes for which there is limited evidence. 322 

Both the OMIM disease-gene annotation and the provisional annotations perform 323 

significantly better than a random permutation. While we do find a small but significant 324 

difference in prediction performance between the provisionally annotated genes and the 325 

more established disease associated genes, we conclude, based on our findings, that these 326 

provisional OMIM annotations are generally of similar reliability to the other OMIM disease 327 

annotations.  328 

Benchmarking on sequence data of patients with a known genetic diagnosis revealed that 329 

GADO returned the real causative variant within the top 3 results for 41% of the samples, 330 

indicating the potential power of GADO for a large number of diseases. Finally, in seven 331 

patients, GADO was able to identify potential novel disease genes that are strong candidates 332 

based on literature or functional evidence. For other cases we have identified genes with a 333 
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strong prediction score harboring variants that might explain the phenotype. However, since 334 

very little is known about these genes it is not yet possible to draw firm conclusions. 335 

Hopefully this will become possible in the near future through initiatives like Genematcher 336 
40.  337 

Potential to discover novel human disease genes 338 

Over the last decade, several computational tools have been developed to prioritize variants 339 

in genes. Some, such as GAVIN, focus on variant filtering and prioritization based on 340 

deleteriousness scores, allele frequency and inheritance model 9. Other methods measure 341 

the similarity between the clinical manifestations observed in a patient and those 342 

representing each of the diseases in a database or literature. Exomiser is closely related to 343 

GADO as it prioritizes genes based on specified HPO terms and also infers HPO annotation 344 

for unknown genes 14. The gene prioritization by Exomiser is based on the effects of 345 

orthologs in model organisms and applies a guilt-by-association method using protein-346 

protein associations provided by STRING 41. Exomiser performs better than GADO in ranking 347 

known disease-causing genes (supplementary table 4) and is also able to identify potential 348 

new genes in human disease. However, Exomiser has a limitation in that only a subset of 349 

the protein-coding genes has orthologous genes in other species for which a knockout 350 

model also exists. Additionally, the used STRING interactions are biased towards well 351 

studied genes and rely heavily on existing annotations to biological pathways 352 

(supplementary figure 4). There are however, still 3,922 protein-coding genes that are not 353 

currently annotated in any of the databases we used, and there are even more non-coding 354 

genes for which the biological function or role in disease is unknown. Since GADO does not 355 

rely on prior knowledge, it can be used to prioritize variants in both coding and non-coding 356 

genes (for which no or limited information is available). GADO thus enables the discovery of 357 

novel human disease genes and can complement existing tools in analyzing the genomic 358 

data of patients who have a broad spectrum of phenotypic abnormalities. 359 

Limitations 360 

The gene predictability score indicates for which genes we can reliably predict phenotypic 361 

associations and for which genes we cannot based on gene co-regulation. This score gives 362 

insight into which genes are expected to perform poorly in our prioritization. We found 363 

strong correlation between these gene predictability scores and the gene prioritization z-364 

scores. Thus, genes with a high predictability score have more accurate HPO term 365 

predictions. However, since our predictions primarily rely on co-activation patterns that we 366 

identified from RNA-seq data, our method does not perform well for genes where gene-367 

expression patterns are not informative of their function. This could, for instance, be the 368 
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case for proteins relying heavily on post-translation modifications for regulation or genes for 369 

which different transcripts have distinct functions. This last limitation can potentially be 370 

overcome by predicting HPO-isoform associations by using transcript-based expression 371 

quantification.  372 

Insufficient statistical power to obtain accurate predictions may be another explanation for 373 

the low predictability scores of certain genes. This may be true for genes that are poorly 374 

expressed or expressed in only a few of the available RNA-seq samples. The latter issue we 375 

expect to overcome in the near future as the availability of RNA-seq data in public 376 

repositories is rapidly increasing. Initiatives such as Recount enable easy analysis on these 377 

samples 42, allowing us to update our predictions in the future, thereby increasing our 378 

prediction accuracy. 379 

For some genes we are unable to predict annotated disease associations despite having a 380 

high gene predictability scores. Some genes, such as TTR, simply act in a manner unique to 381 

a specific phenotype. Other genes, such as TMPO, turned out to be false positive disease 382 

associations. These examples show that our gene predictability score has the potential to 383 

flag genes acting in a unique manner as well as genes that might be incorrectly assigned to 384 

a certain disease or phenotype.  385 

We noted that the median prediction performance of HPO terms is lower compared to the 386 

other gene sets databases used in our study, such as Reactome. This may be due to the 387 

fact that phenotypes can arise by disrupting multiple distinct biological pathways. For 388 

instance, DCMs can be caused by variants in sarcomeric protein genes, but also by variants 389 

in calcium/sodium handling genes or by transcription factor genes 43. As our methodology 390 

makes guilt-by-association predictions based on whether genes are showing similar 391 

expression levels, the fact that multiple separately working processes are related to the 392 

same phenotype can reduce the accuracy of the predictions (although it is often still 393 

possible to use these predictions as the DCM HPO phenotype prediction performance AUC = 394 

0.76). 395 

Complexity 396 

Given that nearly 5% of patients with a Mendelian disease have another genetic disease 44, 397 

it is important to consider that multiple genes might each contribute to specific phenotypic 398 

effects. Clinically, it can be difficult to assess if a patient suffers from two inherited 399 

conditions, which may hinder variant interpretation based on HPO terms. We showed that 400 

GADO can disentangle the phenotypic features of two different diseases manifesting in one 401 

patient by correlating and subsequently clustering the profiles of HPO terms describing the 402 
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patient’s phenotype. If the HPO terms observed for a patient do not correlate, it is more 403 

likely that they are caused by two different diseases. An early indication that this might be 404 

the case for a specific patient can simplify subsequent analysis because the geneticist or 405 

laboratory specialist performing the variant interpretation can take this in consideration. 406 

GADO also facilitates separate prioritizations on subsets of the phenotypic features. 407 

Conclusion 408 

Connecting variants to disease is a complex multistep process. The early steps are usually 409 

highly automated, but the final most critical interpretations still rely on expert review and 410 

human interpretation. GADO is a novel approach that can aid users in prioritizing genes 411 

using patient-specific HPO terms, thereby speeding-up the diagnostic process. It prioritizes 412 

variants in coding and non-coding genes, including genes for which there is no current 413 

knowledge about their function and those that have not been annotated in any ontology 414 

database. This gene prioritization is based on co-regulation of genes identified by analyzing 415 

31,499 publicly available RNA-seq samples. Therefore, in contrast to many other existing 416 

prioritization tools, GADO has the capacity to identify novel genes involved in human 417 

disease. By providing a statistical measure of the significance of the ranked candidate 418 

variants, GADO can provide an indication for which genes its predictions are reliable. GADO 419 

can also detect phenotypes that do not cluster together, which can alert users to the 420 

possible presence of a second genetic disorder and facilitate the diagnostic process in 421 

patients with multiple non-specific phenotypic features. GADO can easily be combined with 422 

any filtering tool to prioritize variants within WES or WGS data and can also be used in gene 423 

panels such as PanelApp 45. GADO is freely available at www.genenetwork.nl to help guide 424 

the differential diagnostic process in medical genetics. 425 

Materials and Methods 426 

Sample acquisition 427 

All RNA-seq data used in this project was acquired from the European Nucleotide Archive 428 

(ENA) database 46. Of the 67,090 human RNA-seq samples, with at least 500,000 reads, 429 

registered in the ENA on June 30, 2016 (supplementary table 1), 67,019 were successfully 430 

downloaded. For 71 of the registered samples, the files were missing. Sample annotations 431 

were acquired from 18,47 and through manual curation based on study meta-information in 432 

the ENA database (supplementary table 1). 433 
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Gene expression quantification 434 

The 67,019 downloaded samples were mapped to transcript annotations from Ensemble 435 

release 83 which uses build GRCh38.p5 of the human genome 48 using Kallisto 17 version 436 

0.42.4, and the number of reads assessed. The number of reads mapped per sample was 437 

obtained from the Kallisto summary file. The following genome files were used: 438 

ftp://ftp.ensembl.org/pub/release-439 

83/fasta/homo_sapiens/cdna/Homo_sapiens.GRCh38.cdna.all.fa.gz 440 

ftp://ftp.ensembl.org/pub/release-441 

83/fasta/homo_sapiens/ncrna/Homo_sapiens.GRCh38.ncrna.fa.gz 442 

These files were merged and used to build the Kallisto reference index file. The following 443 

setting, in addition to all default settings, was used: –k 31. 444 

The following Kallisto settings were used mapping all 67,019 samples using default settings 445 

for paired-end data mapping. For single-end data mapping we used the following settings in 446 

addition to the defaults: –l 200 and –s 20 –bias. 447 

After obtaining the transcript counts per sample, these transcript-level counts were summed 448 

to gene-level counts for each sample. 449 

 450 

Gene quality control 451 

We quantified 66,233 genes, which were filtered on the criteria described below, after which 452 

56,435 genes remained. Twenty-nine gene names were duplicates/identical. After these 453 

were removed, 66,203 genes remained. Of these, 3,628 genes are not expressed (0 reads 454 

detected among 31,499 samples) and were removed, leaving 62,575 genes. Next, we 455 

detected a number of duplicate genes (100% sequence similarity). Since these genes with 456 

perfect sequence similarity have exactly the same number of reads mapping, we were 457 

concerned they would appear as perfectly co-expressed genes in our analysis. Most of these 458 

genes are either incorrectly mapped genes in the genome build or duplicates of their 459 

biological counterpart. Due to their high sequence similarity they are indistinguishable to the 460 

mapping tool (potentially introducing false correlations). To avoid potential biases resulting 461 

in deceptively high co-expression values, we decided to remove this bias prior to our 462 

analysis. 5,471 of these were not located on chromosomes (but on scaffolds), and were 463 

removed, leaving 57,104 genes. Another 665 genes had identical transcripts: different IDs, 464 

but 100% identical sequences (e.g. ENST00000442165 and ENST00000446969).  465 

An additional four genes had no expression in any of the remaining samples after removing 466 

outlier/poor-quality samples, as described below, and were also removed prior to the PCA 467 
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analysis. The 56,435 genes that remained were used for our analyses (supplementary figure 468 

5).  469 

RNA-seq sample quality control 470 

We excluded all samples in which less than 70% of the reads successfully mapped to the 471 

genome, as reported by Kallisto, resulting in 36,761 samples. 472 

Principal component analysis to identify outlier samples 473 

To identify outlier samples, we conducted a principal component analysis (PCA) along the 474 

following steps. First, all estimated counts were log2 transformed. Second, the data was 475 

quantile normalized. Third, the covariance over the samples was calculated. Fourth, genes 476 

without variance were removed from the dataset. Fifth, a PCA was conducted on the 477 

covariance matrix. An arbitrary cut-off on PC 1 was selected at 0.0049 (supplementary 478 

figure 6), leaving us with 32,142 samples. 479 

Removal of non-Illumina samples 480 

Since only a small number of samples that passed quality control (147 samples, <0.5% of 481 

the total number of samples) were not sequenced on Illumina machines, we removed these 482 

to avoid potential biases as a result of these different sequencing tools. This left 31,995 483 

samples in our dataset.  484 

Removing duplicate samples 485 

A number of samples had identical values for all genes. Upon inspection, some of these 486 

samples appeared to be have been used by multiple studies and uploaded to the ENA 487 

database multiple times. To remove duplicate samples, we identified all samples with a 488 

correlation >0.9999, randomly selected one of them to include and removed the other. 489 

After this step, 31,499 samples remained. 490 

Removal of technical biases 491 

To identify potential technical biases in our data, we calculated the correlation between the 492 

PC-scores for each PC and the following potential confounders: read length, paired/single 493 

end, total reads in the dataset and percentage mapping reads (supplementary figure 7). We 494 

found that all these factors significantly correlated to our sample PC scores for multiple PCs 495 

(p-value < 0.01), indicating that these technical factors would affect the co-expression 496 

detected in the dataset, if not removed. We decided not to correct for GC content per gene 497 

as this may also have biological meaning 49. For a manual of the covariate removal pipeline 498 

we refer to: https://github.com/molgenis/systemsgenetics/tree/master/eqtl-mapping-499 

pipeline. To remove covariates, we used the “adjustcovariates” option. 500 
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PCA 501 

After correcting our dataset for technical biases, we conducted the following steps on the 502 

matrix. First, we calculated the correlation over the genes. Second, we conducted a PCA 503 

over the correlation matrix over the genes. Third, we calculated PC scores for each sample 504 

for all PCs. 505 

Inspection of gene PC eigencoefficients 506 

To investigate if any technical biases were present for the different gene types (coding, 507 

miRNA, pseudogene, etc.), we plotted the gene eigencoefficients for the first 10 PCs and 508 

colored the genes by biotype (supplementary figure 8) and detected an outlier cluster on 509 

PC8 and PC9, which were further investigated (supplementary figure 9). 510 

Inspection of sample PC scores 511 

To better understand the origin of the outlier genes in eigenvector coefficients of PC 8 and 512 

PC 9, we investigated the PC scores of the samples for these PCs. Additionally, we created a 513 

plot for each of the sample PC scores of the first 10 PCs (supplementary figure 10). We 514 

observed that there is a clear biological explanation for these outliers, and therefore we 515 

decided to retain these signals in the data (supplementary figure 11). 516 

Gene co-regulation analysis 517 

After the quality control steps described above, we conducted a co-regulation analysis using 518 

the 31,499 sample by 56,435 gene matrix. The co-regulation analysis was performed using 519 

the PC eigencoefficients of the genes for each of the reliable PCs obtained from our gene-co-520 

expression matrix. To determine which PCs are reliable, Cronbach’s alpha 50 was calculated 521 

for each PC (based on PCA of the gene-correlation matrix). Those PCs with a Cronbach’s 522 

Alpha ≥ 0.7 were considered reliable, and is a commonly used cutoff 51. In total, 1,588 PCs 523 

have a Cronbach’s Alpha ≥ 0.7. Additionally, we calculated the variance explained by each 524 

of these PCs and found the first 1588 PCs explain 66 percent of the variance 525 

(supplementary figure 12). By including signals from only these PCs, we aimed to remove 526 

signals that are not reliable from our analysis. This method was previously shown to 527 

perform better than using the correlation matrix directly 19. The co-regulation scores were 528 

calculated by calculating the correlation between the eigencoefficients of each gene pair. 529 

Prior to this step the eigencoefficients were standard normalized per gene, after which the 530 

eigencoefficients per PC were standard normalized. The logic to this step is to let the signal 531 

a gene has for each PC weigh equally when determining the correlation between 2 genes. 532 

Here we presumed each PC represents some biological process and those genes that are co-533 

expressed in multiple processes should be reported as strongly co-expressed. This is 534 
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illustrated and further explained in 19. The p-values of co-regulated genes can be queried via 535 

the website. 536 

Data visualization of sample PC scores using a t-SNE plot 537 

To identify clusters for each cell type and tissue type, we used the sample PC scores, which 538 

indicate how strong the signal of each sample is for each PC in the data. Here, each PC is a 539 

gene expression signature for the complete set of genes. To visualize how the samples 540 

cluster in a two dimensional figure, we constructed a t-SNE plot 52 based on these sample 541 

PC-scores using the Rtsne library 53 (version 0.13). The t-SNE was run with a perplexity of 542 

50, and we ran 10,000 iterations on our sample PC score matrix. We found that single 543 

clusters were visible for many cell- and tissue-types (Figure 2a). Most of these clusters 544 

contain samples from different studies, which suggests that these clusters are not merely a 545 

representation of study-specific biases. The fact that studies with multiple cell/tissue types 546 

show multiple clusters further supports the suggestion that the clusters are not driven by 547 

non-biological inter-study differences. 548 

Gene function and HPO association predictions 549 

Next, we used the PC eigenvector coefficients calculated in the previous steps to predict 550 

functions for genes and to predict which phenotypes they are most likely to play a role in 551 

(also described in 19). For each of the 1,588 reliable PCs, we determined the extent to which 552 

each PC captures the activity of a biological module (defined as a group of genes annotated 553 

to a term, e.g. a GO function term or HPO phenotype).  554 

To do this, the following steps were taken. First, for each PC, a student’s T-test was 555 

conducted between the eigencoefficients of the genes annotated to a particular term and a 556 

group of genes serving as a background. This background consisted of all genes annotated 557 

to any term in a specific database, except for those annotated to the term for which the T-558 

test was conducted. Genes that were not annotated to any term in a database were 559 

excluded from this background, as these genes have not yet been annotated to any 560 

biological functions/terms (because they have not been studied yet). Second, the resulting 561 

p-values were transformed into a z-score, which are indicating to which extend each PC 562 

represents a biological function/term. This was repeated for each of the 1,588 significant 563 

PCs, resulting in a z-score for each PC-term combination. Higher absolute z-values between 564 

a term and a PC indicate that the signal for that PC is more strongly related to that term. 565 

We applied this methodology to the gene sets described by terms in the following 566 

databases: Reactome and KEGG pathways, Gene Ontology (GO) molecular function, GO 567 

biological process and GO cellular component terms and finally to HPO terms. We excluded 568 
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terms for which fewer than 10 genes are annotated because predictions for smaller groups 569 

of genes are less accurate and might be misleading. Predictions were made for 8,657 gene 570 

sets in total. For each term, we calculated how well each PC captured the signal of the 571 

genes that are annotated to that term. Third and last, to predict which genes are correlated 572 

to a particular HPO term, we correlated the 1,588 z-scores for that term (as calculated 573 

above) with the 1,588 eigenvector coefficients of a gene. These correlations were 574 

transformed into z-scores, which we refer to as prioritization scores. This can be done for 575 

any gene-to-HPO term combination. However, when a gene is already explicitly annotated 576 

to the term and we wish to predict whether that gene is predicted to be involved in that 577 

term, there is a small circular bias as the z-scores for this term were partly calculated based 578 

on this gene. To remove this bias in these circumstances, the 1,588 z-scores for a gene set 579 

were first re-calculated while assuming these gene is not involved in that term, after which 580 

the prediction for this gene was made. 581 

Validation of the GO, HPO and Reactome term predictions 582 

To determine the accuracy of our GO, HPO and Reactome term predictions, we calculated 583 

how well we could predict genes that are part of a term. To do so, we used the prioritization 584 

z-scores that the genes had for a particular term. For each term, we calculated an Area 585 

Under the Curve (AUC), using a Mann-Whitney U test, on the prioritization scores of the 586 

genes that are part of the term versus those that are not part of the term. These AUCs 587 

indicate how accurate the predictions were, with an AUC of 1 indicating perfect predictions 588 

and an AUC of 0.5 indicating no predictive power. The average AUC for each category was 589 

calculated based on all terms with at least 10 genes annotated and for which the p-value 590 

was less than 0.05 (Bonferroni corrected for the number of pathways for the category 591 

tested) (Figure 2b). 592 

GADO predictions 593 

To identify potential causative variants in patients, we used HPO term annotations 594 

describing the patient’s features. The gene prediction z-scores for an HPO term were used 595 

to rank the genes. If a patient’s phenotype was described by more than one HPO term, a 596 

meta-analysis was conducted. In this case a weighted z-score was calculated by adding the 597 

HPO z-scores for all the patient's HPO terms and then dividing by the square root of the 598 

number of HPO terms. In this calculation, we used only those HPO terms, which have 599 

significant predictive power (based on whether genes annotated to this term have 600 

significantly absolute higher z-scores than those not annotated to the term as calculated in 601 

the section “Gene function and HPO association predictions”). If the predictions for a 602 

patient's HPO term were not significant, the parent/umbrella HPO term(s) was used. (The 603 
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online GADO tool supplies the user with a list of parent terms from which the user can then 604 

manually select which terms should be used in the analysis (supplementary figure 1)). If 605 

this parent term also did not have significant predictive power, the parent's parent term was 606 

used (thus moving up the HPO tree until a parent term is found which has significant 607 

predictive power). If an HPO term has multiple parents, predictions were made using each 608 

parent and the results are reported separately. The genes with the highest z-scores are 609 

most relevant for the patient according to GADO’s predictions. This analysis can be 610 

conducted at: https://www.genenetwork.nl/gado.   611 

Validation of disease-gene predictions 612 

To benchmark our method we used the OMIM morbid map 5 downloaded on March 26, 613 

2018, containing all disease-gene-phenotype entries. From this list, we extracted the 614 

disease-gene associations, excluding non-disease and susceptibility entries. We extracted 615 

the provisional disease-gene associations separately. For each disease in OMIM, we used 616 

GADO to determine the rank of the causative gene among all genes in the OMIM morbid 617 

map. For this we used all phenotypes annotated to the OMIM disease. If any of the HPO 618 

terms did not have significant predictive power, the parent term(s) was used.  619 

To determine if these distributions were significantly different from what we expect by 620 

chance, we permuted the data. We replaced the existing gene-OMIM annotation but 621 

assigned every gene to a new disease (keeping the phenotypic features for a disease 622 

together), assuring that the randomly selected gene was not already annotated to any of 623 

the phenotypes of the original gene.  624 

Cohort of previously solved cases 625 

To test if GADO could help prioritize genes that contain the causative variant, we used 83 626 

samples of patients who were previously genetically diagnosed through whole exome 627 

analysis or gene panel analysis. These samples encompass a wide variety of different 628 

Mendelian disorders (supplementary table 2). To assess which genes harbor potentially 629 

causative variants, we first called and annotated the variants from the exome sequencing 630 

files. 631 

Variant calling 632 

We used the available WES or WGS data from patients with and without genetic diagnosis. 633 

These samples were genotyped using a relatively standard BWA and GATK pipeline. For a 634 

detailed description of the genotype pipeline see: https://molgenis.gitbooks.io/ngs_dna/ 635 

(version 3.4.0). For the WGS samples, we confined our analysis to the exome. 636 
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Variant annotation 637 

We used GAVIN to annotate our variants to obtain a list of candidate variants. GAVIN 638 

prioritizes genes based on, among other factors, minor allele frequency and gene-639 

recalibrated CADD scores (for details see 9). For 11 of the previously solved cases, GAVIN 640 

did not flag the causative variant as a candidate. To be able to include these samples in our 641 

GADO benchmark, we added  the causative genes for these cases manually to the candidate 642 

list. 643 

GADO ranking 644 

The phenotypic features of a patient were translated into HPO terms, which were used as 645 

input to GADO for ranking all genes based on how likely they are to cause that set of 646 

features. If any of the HPO terms did not have significant predictive power, the parent 647 

term(s) was used. From the resulting list of ranked genes, the known disease genes 648 

harboring a potentially causative variant were selected. Next, we determined the rank of the 649 

gene with the known causative variant among the selected genes. If a patient harbored 650 

multiple causative variants in different genes, in case of di-genic inheritance or two 651 

inherited conditions, the median rank of these genes was reported (supplementary table 2). 652 

Benchmark comparison with Exomiser 653 

To evaluate GADO’s performance, we compared GADO with Exomiser 54 (version 10.1.0, 654 

with exomiser-phenotype-1802 and exomiser-genome-hg19-1805 files from 655 

https://data.monarchinitiative.org/exomiser/data/). Both GADO and Exomiser were given 656 

each patient candidate gene list along with their respective set of phenotypes as input. 657 

Default settings were used. We used the gene rankings based on 658 

“EXOMISER_GENE_COMBINED_SCORE” and identified the rank of the causative gene 659 

(supplementary table 4). In case of a tie, the average rank of the ties was reported. If a 660 

patient harbored multiple causative variants, the median rank of the genes harboring the 661 

causative variants was reported. To ensure a fair comparison, we used GADO on the set of 662 

genes reported by Exomiser (supplementary table 4).   663 

Unsolved cases cohorts 664 

In addition to the patients with a known genetic diagnosis, we tested 38 unsolved cases 665 

(supplementary table 3). These are patients with mainly cardiomyopathies or developmental 666 

delay. All patients were previously investigated using exome sequencing, by analyzing a 667 

gene panel appropriate for their phenotype. To allow discovery of potential novel disease 668 

genes, we used GADO to score all genes with candidate variants. For genes with a 669 
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prediction z-score ≥ 5, a literature search for supporting evidence was performed to assess 670 

whether these genes are likely candidate genes.  671 

GADO web-tool 672 

To make the gene-co-regulation-based HPO predictions publicly available a website was 673 

constructed: www.genenetwork.nl 674 

On this website the user can conduct the following analyses: 675 

1. Predict putative functions of genes. This can be achieved by querying a gene, for which 676 

gene-network will then predict the function based on the functional enrichment of its co-677 

regulation partners. Enrichment for GO, Reactome, KEGG and HPO phenotypes can be 678 

retrieved. 679 

2. Prioritize potential causative disease genes for patients: Based on HPO terms or a group 680 

of genes annotated to a patient, the GADO tool will rank all genes based on how likely they 681 

are to be related to the patient’s phenotype. These can be further filtered for genes of 682 

interest, by providing a list of genes known to harbor likely causative variants. 683 

Gene network visualization 684 

Edges are drawn between two genes/nodes based on a z-score cutoff. The cutoff at which a 685 

line/edge between two genes should be drawn can be manually altered with the bar in the 686 

top right corner. The network is drawn based on a force directed layout and clusters are 687 

assigned using affinity propagation 55  688 

HPO, Reactome, KEGG and GO enrichment calculations 689 

On the network page it is possible to retrieve which HPO, Reactome, KEGG and GO 690 

categories are enriched among the visualized genes. It is also possible to retrieve this for a 691 

sub-selection of these genes. The enrichment is calculated based on the z-scores of each of 692 

these genes for each category. For each category/term, a Mann-Whitney U test is conducted 693 

between the z-scores of the genes in the network versus the z-scores of genes that are not 694 

part of the visualized network. The pathways with the most significant p-values are then 695 

ranked highest. 696 

It is also possible to identify which other genes are strongly co-regulated with those 697 

visualized in the network. This is done similarly to how the correlation between a gene and 698 

a pathway is calculated, as described above in “Gene function and HPO association 699 

predictions”. First, the z-scores for each PC of the genes visualized in the network is 700 

calculated. After the z-scores of this group of genes have been calculated for each4 701 
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pathway, the correlation of the PC coefficients for each gene not in the network with these 702 

z-scores is calculated. The genes with the most significant correlation are ranked highest. 703 

Gene predictability scores 704 

To explain why for some genes we cannot predict known HPO annotation, we have 705 

established a gene predictability score. We have calculated this gene predictability using the 706 

prioritization z-scores based on Reactome, GO and KEGG. For each gene and for each 707 

database we calculated the skewness in the distribution of the prioritization z-scores of the 708 

gene sets. We used the average skewness as the gene predictability score. 709 

Description of Supplemental Data 710 

Supplementary figure 1. Selection of parent HPO term if GADO does not have significant 711 

predictive power for query term 712 

Supplementary figure 2. Comparison of GADO performance with the level of evidence for 713 

each cardiomyopathy-related gene 714 

Supplementary figure 3. Comparison between GADO and Exomiser rankings 715 

Supplementary figure 4. Correcting for biases in co-expression networks 716 

Supplementary figure 5. Histogram of the gene types included in our analyses 717 

Supplementary figure 6. PCA plot of 36,761 samples 718 

Supplementary figure 7. Investigation of principal components capturing technical biases 719 

Supplementary figure 8. Visualization of PC1 to PC 10 of PCA over gene correlation matrix 720 

Supplementary figure 9. Outlier genes in PC 8 and PC 9 of PCA over gene correlation matrix  721 

Supplementary figure 10. PC sample scores to distinguish different tissues 722 

Supplementary figure 11. Outlier samples in PC sample scores of PC 8 and PC 9 723 

Supplementary figure 12. Variance explained by first 1588 PCs 724 

Supplementary table 1. A list of samples annotated in the European Nucleotide Archive June 725 

30, 2016 726 

Supplementary table 2. A list of 83 diagnosed patients with Mendelian disorders and 727 

corresponding predictions with GADO 728 
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Supplementary table 3. A list of 38 undiagnosed patients with suspected Mendelian 729 

disorders 730 

Supplementary table 4. A comparison between GADO and Exomiser predictions using a list 731 

of 83 diagnosed patients with Mendelian disorders 732 
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