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ABSTRACT 
Dengue virus (DENV) is a pathogen spread by Aedes mosquitoes that has a considerable impact 
on global health. Agent-based models can be used to explicitly represent factors that are difficult 
to measure empirically, by focusing on specific aspects of DENV transmission dynamics that 
influence spread in a particular location. We present a new agent-based model for DENV 
dynamics, DTK-Dengue, that can be readily applied to new locations and to a diverse set of 
goals. It extends the vector-borne disease module in the Institute for Disease Modelling’s 
Epidemiological Modeling Disease Transmission Kernel (EMOD-DTK) to model DENV 
dynamics. There are three key modifications present in DTK-Dengue: 1) modifications to how 
climatic variables influence vector development for Aedes mosquitoes, 2) updates to adult vector 
behavior to make them more similar to Aedes, and 3) the inclusion of four DENV serotypes, 
including their effects on human immunity and symptoms. We demonstrate DTK-Dengue’s 
capabilities by fitting the model to four interrelated datasets: total and serotype-specific dengue 
incidences between January 2007 and December 2008 from San Juan, Puerto Rico; the age 
distribution of reported dengue cases in Puerto Rico during 2007; and the number of adult female 
Ae. aegypti trapped in two neighborhoods of San Juan between November 2007 and December 
2008. The model replicated broad patterns in the reference data, including a correlation between 
vector population dynamics and rainfall, appropriate seasonality in the reported incidence, 
greater circulation of DENV-3 than any other serotype, and an inverse relationship between age 
and the proportion of cases associated with each age group over 20 years old. This exercise 
demonstrates the potential for DTK-Dengue to assimilate multiple types of epidemiologic data 
into a realistic portrayal of DENV transmission dynamics. Due to the open availability of the 
DTK-Dengue software and the availability of numerous other modules for modeling disease 
transmission and control from EMOD-DTK, this new model has potential for a diverse range of 
future applications in a wide variety of settings. 
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INTRODUCTION 
With as many as 390 million infections in a given year and no evidence of decline, dengue virus 
(DENV) poses an ever-increasing public health problem (Bhatt et al., 2013). Although some 
DENV infections remain asymptomatic or cause clinically inapparent symptoms, others come 
with more burdensome manifestations, including dengue fever (DF), dengue hemorrhagic fever 
(DHF), and dengue shock syndrome (DSS). DENV is a mosquito-borne flavivirus with four 
distinct serotypes. Infection with one serotype is believed to cause lifelong homologous 
immunity, as well as temporary heterologous cross-immunity (Sabin 1950; Sabin 1952; Reich et 
al. 2013). Secondary infections carry an elevated risk of severe manifestations, likely due to non-
neutralizing antibodies from previous infections (Katzelnick et al. 2017). Although mild and 
inapparent infections are associated with lower levels of viremia, recent studies have found that 
these individuals too can contribute substantially to DENV transmission (Duong et al. 2015, ten 
Bosch et al. 2018). 
 Aedes aegypti is the primary vector of DENV. It is a diurnal, container-breeding 
mosquito found in urban, densely populated areas in the tropics. The eggs of Ae. aegypti are 
desiccation-resistant and only require a small amount of water to hatch and develop 
(Christophers 1960). As a result, they are commonly found in human-made containers such as 
waste materials, flowerpots, open sewers, and cisterns (Christophers 1960). The availability of 
these larval habitats is a major driver of the mosquito’s population dynamics and has been found 
to be linked to climatic factors such as rainfall and temperature (Moore et al. 1978, Barrera et al. 
2011), as well as social factors such as access to piped water, quality of waste removal programs, 
and public awareness (Barrera et al. 2011). These relationships are complex and context specific. 
Beyond reports of positive correlations between Ae. aegypti population sizes and rainfall, 
droughts have been associated with increased population sizes due to increases in water storage 
(Beebe et al. 2009). Moreover, dominant breeding sites vary greatly across settings (Scott et al. 
2000).  

Efforts to control the spread of DENV would benefit greatly from high-quality, multi-
level data on factors underlying its propagation. Unfortunately, many relevant local factors, such 
as population immunity, the proportion of unobserved infections, and the population dynamics of 
Ae. aegypti, are challenging to quantify. Mathematical models for DENV dynamics can help 
provide insights about these factors and explore how they interact to generate observed dynamics 
(Perkins et al. 2014). Such models need to be broad enough in scope to address the diversity of 
relevant factors and their interactions. Agent-based models are a class of models particularly 
suitable for describing systems such as DENV transmission, where dynamics emerge from the 
interplay of processes that span different temporal and spatial scales. 

There has been some effort to model Ae. aegypti and DENV dynamics in an agent-based 
context, each model differing in its emphasis and details. On one end of a spectrum are models 
that focus entirely on Ae. aegypti life history and population dynamics. For example, Skeeter 
Buster tracks interconnected subpopulations of Ae. aegypti through egg, larval, pupal, and adult 
life stages in relation to larval habitat availability and its relation to climatic factors (Magori et 
al., 2009). Model of Mosquito Aedes (MOMA) also traces subpopulations through each life 
stage, but particularly focuses on more accurate portrayals of vector behavior, especially as it 
pertains to blood feeding and oviposition (Maneerat & Daudé, 2016). On the other end of the 
spectrum are models that emphasize human populations and viral transmission without explicitly 
modeling the mosquitoes’ pre-adult life stages. Common features of these models include human 
mobility, viral incubation periods, serotype-specific and heterologous immunity, differentiation 
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between apparent and inapparent infections, and rainfall-mediated mosquito population 
dynamics (e.g., Chao et al. 2012; Hladish et al. 2016). Some models additionally incorporate 
spatial heterogeneity in mosquito populations and human attractiveness to mosquitoes (e.g., 
Perkins et al. 2016). Finally, some models strike a balance between these two extremes. For 
example, Karl et al. (2014) presented a model that was capable of including both pre-adult life 
stages and detailed human populations by focusing on a single serotype of DENV. 
 The current standard in DENV modelling is toward specialized and focused models. This 
means a close association between the model and a specific purpose (e.g., tracing mosquito 
genotypes in Magori et al. 2009) and/or a specific location (e.g., Cairns, Australia in Karl et al. 
2014). Implicit to this specialization toward a certain locality is a specialization toward a specific 
scale as well, be it city (e.g., Magori et al. 2009; Chao et al. 2012; Karl et al. 2014; Maneeret and 
Daudé 2016; Perkins et al. 2016), province/state (e.g., Karl et al. (2014)), or international (Zhang 
et al. 2017). In addition to these specialized models, though, it would be helpful to have a 
generalized model; i.e., one that can easily transition across locations, scales, and purposes. 
 Here we introduce a new climate-driven, agent-based model for DENV transmission that 
is flexible enough to represent a diverse set of locations at a user-selected scale but is also 
detailed enough to address a broad range of research questions. We call this model DTK-
Dengue. DTK-Dengue belongs to a preexisting suite of models from the Institute for Disease 
Modeling called Epidemiological Modeling Disease Transmission Kernel (EMOD-DTK). It was 
created and validated by a development team that has maintained a consistent and high standard 
for the underlying software. EMOD-DTK has the ability to address various spatial scales, from 
small communities to cities and entire countries. Although EMOD-DTK already has capacities to 
simulate vector population dynamics and diseases, DTK-Dengue differs from existing EMOD-
DTK modules through its focus on the life history of Ae. aegypti vectors, including egg, larval, 
immature, and adult life stages, and on the complexities that DENV’s four serotypes impose on 
immunity, infectiousness, and symptom onset. We provide an example of a DTK-Dengue 
implementation based on data from the San Juan-Carolina-Caguas Metropolitan Statistical Area 
(MSA) of Puerto Rico between January 2007 and December 2008. 
 
METHODS 
We developed a new climate-driven agent-based model for Aedes aegypti vectored DENV-
transmission. Using data on local climatic and demographic variables, we parameterized the 
model to be representative of the San Juan MSA. The model was fitted to entomological and 
epidemiological data using a modified steepest ascent algorithm. To increase our understanding 
of how processes related to viral transmission and population immunity interact to generate 
observed DENV dynamics, we used data from different levels of the transmission system, 
including annual disease incidence, the age-distribution of cases, the relative serotype 
abundance, and the population dynamics of female Ae. aegypti.  
 
Model description 
Epidemiological Modeling software (EMOD-DTK) is an agent-based model (ABM) of pathogen 
transmission and infectious disease occurrence. The software tracks the states and interactions of 
computational agents (specifically individual humans and mosquitoes for mosquito-borne 
diseases) through a set of probabilistic rules. These rules determine what events (demographic or 
epidemiological) the individual experiences at a given time and how these events affect the 
individual’s state. The model is stochastic in nature, as many of the agents’ rules and behaviors 
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are contingent upon random draws from predefined distributions. As a result, no single run is the 
same, and suites of simulations can be performed to sample from a range of plausible outcomes 
under a given scenario. The model can simulate numerous infectious diseases, including malaria 
(Eckhof 2011, 2012a,2012b,2013), tuberculosis (Huynh et al. 2015), polio (Wagner et al. 2014), 
and HIV-AIDS (Bershteyn et al. 2013).  We adapted it to simulate the life history of Ae. aegypti 
mosquitoes and the dynamics of multi-serotype transmission of DENV infection and disease.  
 
Aquatic habitat 
Mosquito populations are tightly linked to the availability of aquatic habitats where adult females 
oviposit and eggs proceed through aquatic life stages to emerge as adults. EMOD-DTK contains 
representations of multiple types of aquatic habitat, each of which contribute to the overall 
carrying capacity (K) of the aquatic habitat at a given time as a function of climatic variables 
and/or human density (Eckhoff 2011). For Ae. aegypti, we incorporated two habitat types, a 
temporary, rain-filled habitat and a constant habitat. In the temporary, rain-filled habitat, the 
larval carrying capacity (𝐾"#$%) per unit area (𝐷'#(() fluctuated in response to rainfall (𝑃*+,-), 
temperature (𝑇/), and relative humidity (𝑅𝐻)   

𝐾"#$%+= 𝑃*+,-𝑘"#$%𝐷'#((5 − 𝐾"#$%
𝛿𝑡

𝜏"#$%
.    

 
Here, the evaporation rate τ<=>? was affected by TA and RH    

1
𝜏"#$%

= 5.1x10FFPa 𝑒J
KL5M.F/
NO 𝑘"#$%P#'+Q

0.018𝑘𝑔	𝑚𝑜𝑙JF

2𝜋𝑅𝑇/
(1 − 𝑅𝐻), 

where the 𝑘"#$%P#'+Q was a constant that scaled the evaporation per unit area to habitat loss. The 
habitat available for the simulated mosquito population was scaled by k<=>? (further detailed 
under Model Fitting). Under the constant habitat, the larval carrying capacity remains fixed, 
regardless of weather. In combination, the constant and temporary rainfall habitats dictated that 
there is a baseline carrying capacity for larval Ae. aegypti but that this carrying capacity can be 
augmented based on recent climatic events. 
 
Aquatic mosquito life stages 
For computational efficiency, the aquatic life stages of the mosquitoes (eggs, larvae, pupae) in 
EMOD-DTK were not modeled on an individual basis but rather as cohorts that advanced 
towards the adult stage. Each aquatic stage of Ae. aegypti had base development and mortality 
rates that could be further adjusted based on habitat availability and temperature. The base daily 
mortality rate for eggs was 1% and was unaffected by rainfall or temperature (Romeo Aznar et 

al. 2013). Eggs hatched at a daily Arrhenius temperature-dependent rate 𝑟_ = a1𝑒
−𝑎2𝑇𝐾 (fitted to 

laboratory data presented in Focks et al. 1993) (SFig. 1A). The model had the ability to reduce	𝑟_ 
by a drought reduction factor of 0.33 if available habitat dropped to zero, either due to persistent 
drought or through control programs focused on habitat destruction (Otero, Schweigmann, and 
Solari 2008); because aquatic habitat had a constant component, though, this feature was never 
invoked. When the larval population exceeded the carrying capacity (K), 𝑟_ was reduced by a 
factor relative to the larval count (𝐿) and the number of eggs in the cohort ready to hatch (𝛿𝐸) to 
	(𝐾 − 𝐿)/𝛿𝐸, but never by more than the drought reduction factor. Upon hatching, the base daily 
mortality rate for the larvae was 12%, but was further adjusted to account for density-
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dependence, such as would arise through cannibalism of 1st instar larvae by 4th instars or limited 
food availability. Whenever the daily survival resulted in the larval population exceeding K, 
larval mortality was increased by the degree of overpopulation 𝐿 ∗ 𝐾JF. Surviving larvae 
emerged via a pupal stage (not explicitly modeled) into adult mosquitoes at a third Arrhenius 
temperature-dependent rate 𝑟# (fitted to laboratory data from Yang et al. 2009) (SFig. 1B).  
 

 
SFig 1: Functional forms for mosquito life traits relative to reference data from laboratory studies 
(black dots) with A) duration of egg hatching, B) duration of development from aquatic stages to 
adult, C) extrinsic incubation period, and D) gonotrophic cycle length for the first cycle (solid 
line) and subsequent cycles (dashed line).   

 
Adult mosquito populations 
Upon emergence, adult mosquitoes matured for a fixed duration of two days before they took 
their first blood meal. Since only female mosquitoes were modeled, adults subsequently entered 
a cycle of host-seeking, feeding, and egg-laying similar to the Anopheles implementations 
(Eckhoff 2011). The average duration of the first gonotrophic cycle (GC) was modeled as the 
inverse of a temperature-dependent Arrhenius rate 𝑟ef  (fitted to data from MacDonald 1956; 
McClelland 1971; Pant and Yasuno 1973; Nayar 1981) (Error! Reference source not found.D). 
After the first cycle, this length was reduced by 58% (Focks et al. 1993). During each cycle all 
surviving adult mosquitoes experienced an event, the nature of which was decided via a decision 
tree (see Eckhoff (2011) for complete tree). Outcomes were categorizable into no action, 
ovipositioning, or death. To oviposition, the mosquito must find a host and take a blood meal. 
While a mosquito could feed on a non-human host, Aedes aegypti fed predominantly on humans 
(anthropophilic fraction: 95%) (Scott et al. 1993). Further, Ae. aegypti were assumed to feed 
indoors (Scott et al. 2000) and during the day (Chadee and Martinez 2000), decisions that could 
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affect the effect of intervention programs (not used in this study). Upon biting, a mosquito 
experienced an elevated hazard of dying (10%) (Day et al. 1994). In the event of a successful 
bite on an infectious individual, a susceptible mosquito acquired a DENV infection with a 
probability determined by the time-varying infectiousness of humans (SFig 2) (ten Bosch et al. 
2018, submitted). Infected mosquitoes experienced an extrinsic incubation period (EIP) whose 
duration depended on a temperature-dependent Arrhenius function. Initial parameters for this 
Arrhenius function were fit to data from Chan and Johansson (2012) (Error! Reference source 
not found.C) but were further adjusted based on epidemiological data (see Model Fitting). After 
the EIP, an infected mosquito became infectious and could spread DENV through bites on 
susceptible humans at a predefined probability. Following a bite, the mosquito entered a resting 
period after which it started looking for a hatching site to lay eggs. The adult lifespan was 
exponentially distributed with an average of 14 days (Christophers 1960) but was additionally 
affected by interventions and hazards experienced during the feeding cycle. 
 

 
SFig 2: Human infectiousness to mosquitoes over time 

 
Human population 
Each human had a set of traits representing its demographics (age, sex, and the relative risk of 
being bitten), and serotype-specific health status (infection status, immunity, presence/absence of 
symptoms, and health-seeking behavior). At the onset of the simulation, the pre-existing 
serotype-specific immunity of each human was informed by a random draw from an exponential 
distribution with mean 1 − exp	(𝜆, ∗ 𝑎𝑔𝑒), where 𝜆, is the time-averaged annual force of 
infection each human experienced over the course of its lifetime. Throughout the simulation, 
humans aged and died based on age- and sex-dependent mortality rates (see Data). New, 
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immunologically naive individuals were also born into the population based on the current 
population size and the crude birth rate. Simulations were tailored to specific localities through 
empirical estimates of the mortality and crude birth rates (see Data), as well as the initial age 
distribution of the population.     
 
Human infection 
Each human was assumed to have an equal probability of encountering each mosquito in its 
population (i.e., homogeneous mixing). The risk of being bitten depended on age, with the biting 
risk increasing up to the age of twenty and remaining stable thereafter (Liebman et al. 2014). To 
account for heterogeneity within ages, each human received an exponentially distributed scaling 
factor (mean: 1) that further adjusted the individual’s biting risk. Upon infection, the probability 
that an infected human progressed to symptomatic disease depended on the number of previous 
infections the individual experienced (primary infection: 18%; secondary infection: 24%; post-
secondary infection: 9.2%) (Clapham 2017; ten Bosch et al. 2018, submitted). Symptomatic 
infections then had an 8% probability of seeking health care and consequently being reported 
(Stanaway et al. 2016). In these cases, there was a lognormally distributed delay between 
infection and reporting (log mean: 2, log width: 0.27) (Tomashek et al. 2012). After recovery, 
humans experienced an exponentially distributed period of cross-immunity to all serotypes. 
Thereafter, the individuals remained immune solely to those serotypes to which they had been 
exposed. 

The probability that a susceptible mosquito became infected upon biting an infected 
person changed over the course of a person’s infection, with primary infections being somewhat 
more infectious than post-primary infections (SFig. 2). These differences reflect a recent 
synthesis (ten Bosch et al. 2018, submitted) of within-host viremia models and viremia-
infectiousness relationships. 

Spatial structuring of human and mosquito populations is represented in EMOD-DTK by 
sub-dividing the population into separate nodes. Each spatial node in the model can have unique 
climate values, larval mosquito habitat amounts, and human population sizes. The mosquito 
population dynamics and transmission processes described above occur within a node, with 
nodes connected by human and mosquito movement. The spatial scales considered in this study 
are much larger than the typical dispersal distance of Ae. aegypti (Harrington et al. 2005), so the 
possibility of internode movement by mosquitoes was ignored. Parameter values were the same 
for each spatial node, except the estimated amount of larval mosquito habitat was scaled by the 
human population size in each node. 
 
Data 
Study Area and Climate data 
The San Juan-Carolina-Caguas Metropolitan Statistical Area (MSA) is a roughly 3,983 km2 

region in northeastern Puerto Rico that is composed of 40 municipalities. The population in 2007 
was estimated to be 2,382,377. Each municipality in the San Juan MSA was represented as a 
separate node within a multi-node simulation. The relative population size of each municipality 
reflected 2010 WorldPop estimates (available at www.worldpop.org) (Sorichetta et al. 2015), 
but, to reduce the computational cost of each simulation, each population was scaled to one 
quarter its actual size. Human movement between municipalities was modeling using a gravity 
model, with movement rates between municipalities proportional to the population size of each 
locality, and inversely proportional to the distance between municipalities. The gravity model 
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parameter values were obtained from a study that fit a gravity model to county-level commuter 
data in the United States (Viboud et al. 2006). A proportionality constant scaling the gravity-
model movement rates to between-municipality movement rates in Puerto Rico was estimated as 
part of the model fitting process. The movement rates were represented in the model as the 
fraction of individuals in municipality i who travelled in a given day to municipality j. 
Movement events were assumed to last for one day, with a 100% probability that the individual 
would return to their home municipality. 

Climate maps of air temperature, rainfall, and relative humidity were created for 2006-
2008 using the algorithm in Chabot-Couture, Nigmatulina, and Eckhoff (2014). Briefly, the 
algorithm uses temperature anomaly and dew point data from the Global Summary of the Day 
database (Global Summary of the Day 2012) and rainfall data from NOAA STAR’s Hydro-
Estimator (Scofield and Kuligowski 2003) to interpolate these climatic variables to nearby 
locations at a 2.5-arcminute resolution through a combination of Kriging and bilinear 
interpolation. The temperature anomalies were then converted to air temperatures based on 
climate norms from WorldClim (Hijmans et al. 2005), and the dew point data was converted to 
relative humidity based on region-specific lapse rates and chemophysical equations. To generate 
a single set of climatic variables for each municipality in the San Juan MSA, the climate maps 
were segmented into individual municipalities, and daily, population-weighted means of each 
climatic variable were taken. 
 
Epidemiological and entomological data 
The Puerto Rico Department of Health and the Centers for Disease Control and Prevention 
provided weekly DENV-case incidences for the San Juan MSA between January 1st, 2007 and 
December 31st, 2007, and these data were then aggregated to month (Fig. 1). A total of 1,969 
DENV cases were reported by the Passive Dengue Surveillance System (PDSS) over this time 
frame. Cases were generally laboratory confirmed, except when laboratory capacity was 
exceeded during high transmission periods. Confirmation was done using RT-PCR or MAC-
ELISA, depending on the timing of the blood sample relative to symptom onset. The serotype 
was identified for 61.6% of confirmed cases. The data on serotype occurrences reflected the 
relative (co-)dominance of the different serotypes over time (Fig. 2). All incidence data is 
available through the Dengue Forecasting Challenge’s website 
(http://dengueforecasting.noaa.gov/).  
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Fig. 1: Weekly reported incidence of dengue in the San Juan Metropolitan Statistical Area 
between Jan 1, 2007 and Dec 31, 2007 (dashed black line), along with the median reported 
incidence across replicate simulations (solid blue line) and 95% confidence intervals (blue area). 
Colored, dotted lines are example replicate simulations. 
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Fig. 2: A) The age distribution of reported cases across replicate simulations of the maximum likelihood 
parameter set. Purple bars represent the medoid age distribution. Open circles (○) indicate the (marginal) 
median proportion of cases associated with each age group along with 95% confidence intervals (lines). 
Filled circles (●) provide the actual proportion of cases associated with each age group between January 
and December 2007 island-wide (Tomashek et al. 2001). B) The population’s age distribution across 
replicate simulations of the maximum likelihood parameter set. Purple bars represent the medoid age 
distribution. Open circles (○) indicate the marginal median proportion of the population within each age 
group. 

 
Additional data on the age distribution of reported cases and the relative population sizes 

of female Ae. aegypti supplemented the PDSS data. The island-wide age distribution of 
laboratory-confirmed cases reported by PDSS in 2007 was derived from Tomashek et al. (2009), 
and the age bins were consolidated into ten-year blocks. We assumed that the age distribution in 
the San Juan MSA  matched the island-wide distribution. Further, Barrera et al. (2011) recorded 
the number of female Ae. aegypti that were captured in BG traps within two neighborhoods of 
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the San Juan and Carolina municipalities between November 2007 and December 2008. We 
assumed that Ae. aegypti population dynamics in each municipality reflected the abundance data 
from these two locations. 
 
Demographic data 
Each municipality was assumed to have identical sex- and age-dependent mortality rates and 
crude birth rates. The crude birth rate was the average rate for Puerto Rico between 1990 and 
2010 according to the 2017 Revision of World Population Prospects (United Nations, 
Department of Economic and Social Affairs, Population Division, 2017). The mortality rates 
were twice the average rate between 1990 and 2010; these rates were selected to achieve more 
realistic population growth within the simulations. Further, the initial age distribution in each 
simulation emulated that of Puerto Rico in 2007 and was assumed to be homogenous across 
municipalities.  

Due to the nature of how likelihoods were assigned to model parameters, there was no 
requirement that the total population of the San Juan MSA in the simulations exactly match the 
population of the San Juan MSA used in the reference data, but there was an assumption that the 
population sizes used in the reference closely corresponded with the reported incidence in the 
reference (see Likelihood of the model given the data). As a result, the reference population size 
was based on the 2007-2008 population estimates provided during the Dengue Forecasting 
Challenge, rather than the 2010 estimates from WorldPop. The reference population for each 
month was determined via a linear interpolation between the 2007 estimate (2,382,377) and the 
2008 estimate (2,369,802). In practice, the Forecasting Challenge estimates were similar to the 
WorldPop estimate (2,306,052). All comparisons between simulation outputs and reference data 
were standardized or scaled to compensate for differences in population size. 
 
Simulation setup 
We simulated the San Juan MSA on a daily scale between Jan. 1, 2007 and Dec. 31, 2007. To 
ensure that that the population dynamics of the mosquitoes were realistic before the simulation 
began the simulations also had a 365 day burn-in period. Further, to establish an infectious pool 
of humans and mosquitoes at the beginning of the simulation, humans were randomly infected 
20 days before the end of the burn-in based on fitted probabilities. Humans in all municipalities 
had an equal probability of infection, although serotypes differed in their probabilities. Finally, 
since the mosquito trap data was predominantly associated with 2008, rather than 2007, the 
simulations were allowed to continue until Dec. 31, 2008; however, only mosquito population 
dynamics were assessed during this period. Finally, since the mosquito trap data was 
predominantly associated with 2008, rather than 2007, the simulations continued until Dec. 31, 
2008; however, only mosquito population dynamics were assessed during this period. The 
outputs from the simulations were combined over all nodes, although the number of new 
infections (reported or otherwise) and climatic variables were recorded for each node. 
 
Likelihood of the model given the data 
To assign log-likelihoods to sets of DTK-Dengue parameters, a set of simulations was run using 
those parameters, the outputs within a simulation were combined across all nodes, the combined 
outputs were averaged across runs, and the averages informed a collection of likelihood 
functions. Each of the reference data’s four components (disease incidence, serotype dominance, 
age-structured disease incidence, and mosquito trap data) had its own likelihood function, and 
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the parameter set’s total likelihood was the product of these four component functions evaluated 
at their corresponding values in the reference data. 

Each month’s incidence was assumed to follow a binomial distribution with the number 
of trials equal to the population of the San Juan MSA and the probability of success equal to the 
monthly reported incidence in the average simulation. However, due to stochasticity across 
simulation runs, we modeled the binomial probabilities as beta random variables such that the 
disease incidence’s likelihood function was based on a beta-binomial distribution. Before any 
simulation was run, there were no prior assumptions about the probabilities’ true values, so the 
underlying beta distributions were uninformative (i.e., αt = 1, βt = 1). A Bayesian update adjusted 
α and β based on the total number of humans that were alive on any day of month t in the 
average simulation, 𝑛", and the simulated incidence in month t, 𝐼", such that 𝛼" = 𝐼" + 1 and 
𝛽" = 𝑛" −	𝐼" + 1 (Hobbs and Hooten 2015). Combining data across months 1 through 12, the 
log-likelihood based on the incidence data was: 

𝐿𝐿nopnq=op= = ln
𝑛"!

𝐼"! 𝑛" − 𝐼" !
B 𝐼" + 𝛼", 𝑛" − 𝐼" + 𝛽"

B 𝛼", 𝛽"

F5

"vF

, 

where 𝑛" and 	𝐼" were the population and incidence, respectively, in month t of the reference 
data, and B(𝑥,𝑦) is the beta function. 
 Given the total monthly incidence and the probabilities that a case belonged to a 
particular serotype, we assumed that monthly serotype-specific incidence was a multinomial 
random variable. To incorporate between-run stochasticity, the probabilities that a case was 
associated with a particular serotype was assumed to be Dirichlet distributed, so the likelihood 
based on serotype-specific incidence was based on a Dirichlet-multinomial distribution. Similar 
to the disease incidence likelihood function, the Dirichlet distribution was initially 
uninformative, with all the hyperparameters for month t, αi,t, set to one. A Bayesian update 
adjusted each αi,t based on the incidence of serotype i during month t of the average 
simulation,	𝐼,,", such that 𝛼,," = 	 𝐼,," + 1 (Hobbs and Hooten 2015). Incorporating data across 
months 1 to 12, the log-likelihood based on the dominance data was: 

𝐿𝐿y=z{<|?= = ln
	𝐼"! 	Γ(𝛼~,")
Γ(𝛼~," + 𝐼")

Γ(𝐼,," + 	𝛼,,")
𝐼,,"! 	Γ(𝛼,,")

�

,vF

F5

"vF

, 

where 𝐼" is the total number of serotyped cases in month t of the reference, 𝐼,," is the number of 
serotyped cases in month t of the reference that belonged to serotype i, 𝛼~," is the sum of all 𝛼,," 
for month t, and Γ(𝑥) is the gamma function.  

The likelihood function associated with the age-structured incidence data was a second 
Dirichlet-multinomial distribution, where the multinomially distributed variable was the number 
of cases associated with an age group, and the Dirichlet distributed variables were the 
probabilities that a case occurred in each age group. Unlike above, though, the data was 
aggregated across all of 2007, rather than monthly. This system was chosen to emulate how the 
data appeared in Tomashek et al. (2009). The Bayesian updates and log-likelihood calculations 
were otherwise comparable to that of the serotype-specific incidence. If 𝐼+ was the reported 
incidence in age group a of the average simulation, 𝛼+ = 	 𝐼+ + 1 and 𝛼� is the sum of all 𝛼+. 
Similarly, if Ia, was the incidence in age group a of the reference data, IA was the total incidence 
reported in Tomashek et al. (2009) data, and A was the total number of age bins: 

𝐿𝐿��= = ln
	𝐼�! 	Γ(𝛼�)
Γ(𝛼� + 𝐼�)

Γ(𝐼+ + 	𝛼+)
𝐼+! 	Γ(𝛼+)

�

+vF
. 
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 Finally, the number of trapped mosquitoes was assumed to follow a Poisson distribution. 
Unlike the other three likelihood components, the likelihood component for the trap data was not 
based on a compound distribution. Instead, the average number of adult vectors in month t of the 
average simulation, 𝑚", was assumed to be directly proportional to the total number of trapped 
mosquitoes in the San Juan and Carolina municipalities. The exact ratio between simulated and 
actual mosquitoes, along with the probability that a mosquito was trapped, was incorporated into 
a parameter, ctrap, such that the expected number of trapped mosquitoes in month t was 
(𝑐"*+%𝑚"). Therefore, the log-likelihood based on the trap data was: 

𝐿𝐿<z�? = ln
(𝑐"*+%	𝑚")$�𝑒J'����$�

𝑚"!

N

"vF

, 

where 𝑚" is the number of trapped mosquitoes in the reference data and T is the total number of 
months for which trap data is available. Unlike the other three components, this likelihood 
function was evaluated for November 2007 through December 2008. After each log-likelihood 
component was calculated, they were summed to get a final log-likelihood for the parameters.  
 
Model fitting 
The model was fitted to the different data sources using a maximum-likelihood approach. We 
fitted 16 model parameters (the carrying capacity of Ae. aegypti larvae in a 1x1 degree block of 
constant habitat, the carrying capacity of larvae in a 1x1 degree block of rain-filled habitat 
(𝑘"#$%), the scaling constant on the evaporation rate (𝑘"#$%P#'+Q), the mosquito-to-human 
transmission probability, the pre-exponential factor in the extrinsic incubation period’s Arrhenius 
equation (i.e., 𝑎Fin 𝑎FJF𝑒

J���O), the historical force of infection for each serotype (λi), the average 
duration of cross-immunity between strains, the expected number of infections of each serotype 
at the beginning of the simulation, the scaling parameter to convert the population size of 
simulated mosquitoes to the number caught in BG trap (ctrap),  and a scaling parameter on the 
migration rate) (Table 1).  
 
Table 1: The boundaries for each fitted parameter, along with its maximum likelihood (ML) 
value. 

Parameter Boundaries ML Value 
Larval Carrying Capacity in Constant 

Habitat per Unit Area 
[1x103, 1.5x109] 9.34x108 

Larval Carrying Capacity in Rain-Filled 
Habitat per Unit Area (𝑘"#$%) 

[1x103, 5x109] 3.72x109 

Scaling Constant on Evaporation Rate 
(𝑘"#$%P#'+Q) 

[0.001, 0.7] 0.25 

Mosquito-to-Human Transmission Rate [0.1, 1] 0.58 
  Pre-Exponential Factor for the Extrinsic 

Incubation Period (𝑎F) 
[4x1012, 13.38x1012] 8.04 

Historical Force of Infection (DENV-1) 
(λ1) 

[0.001, 0.05] 0.0246 

Historical Force of Infection (DENV-2) 
(λ2) 

[0.001, 0.05] 0.0355 
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Historical Force of Infection (DENV-3) 
(λ3) 

[0.001, 0.05] 0.0148 

Historical Force of Infection (DENV-4) 
(λ4) 

[0.001, 0.05] 0.0242 

Mean Duration of Cross-Immunity [180, 730] 703.46 
Probability of DENV-1 Infection at 

Initialization 
[4x10-6, 1.36x10-3] 5.04x10-4 

Probability of DENV-2 Infection at 
Initialization 

[4x10-6, 1.36x10-3] 9.75x10-4 

Probability of DENV-3 Infection at 
Initialization 

[4x10-6, 1.36x10-3] 8.89x10-4 

Probability of DENV-4 Infection at 
Initialization 

[4x10-6, 1.36x10-3] 7.00x10-4 

Probability that an Adult Vector will be 
Caught in a BG Trap (on a log scale) 

[-20, -6.9] -10.22 

Scaling Parameter on the Migration Rate [0.001, 2] 1.07 
 
 The fitting algorithm was a modified steepest ascent algorithm called OptimTool, which 
is provided with the standard DTK-EMOD software. Within OptimTool, parameter values are 
constrained to be within preset bounds (Table 1). At each iteration of the algorithm, the gradient 
of the likelihood function was numerically estimated at a candidate solution. To do so, 100 sets 
of parameters were sampled around the candidate solution based on an uncorrelated multivariate 
normal distribution; any parameter value that exceeded its bounds were replaced with the 
boundary value. The log-likelihood of each parameter set was estimated based on five replicate 
simulations. Then, the log-likelihood of each parameter set was regressed onto the sample 
values. If the coefficient of determination for this regression was greater than 0.5, the regression 
coefficients were used as an approximation to the gradient, and the algorithm updated the 
candidate solution by moving in this direction in parameter space. Otherwise, the candidate 
solution was set to whichever parameter set had the greatest likelihood. This process was 
repeated for at least five iterations. If, after five iterations, the candidate solution did not remain 
at the same location for at least two consecutive iterations, the algorithm was restarted using a 
smaller mean for the multivariate normal distribution until this criterion was met, at which point 
the candidate was determined to be the maximum likelihood solution.  The initial candidate 
solution was generally the midpoint of each parameter’s bounds; the sole exception was the pre-
exponential factor in the extrinsic incubation period’s Arrhenius equation, which started at 10. 
 
 
Model performance 
Since DTK-Dengue is a stochastic model, each simulation run may provide different outputs, 
even under the same parameter values. To explore the range of possible outcomes under the 
maximum likelihood solution, we ran 100 simulations under this solution. Since the likelihood 
function was evaluated based on the average of five simulations, we then randomly generated 
100 groups of five to create 100 average simulation results. Based on these average simulations, 
95% confidence intervals were placed around outputs of interest based on the values falling 
between the 2.5th and 97.5th quantiles. 
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RESULTS 
Model convergence and maximum likelihood parameter values 
The fitting algorithm ran for five iterations, during which the candidate solution shifted positions 
at every iteration. The multivariate normal distribution’s mean was then reduced by one third, 
and the algorithm was restarted at the parameter set with the greatest likelihood in the first five 
iterations. After the fourth iteration, the candidate solution remained at the same parameter 
values, and this parameter set was declared the maximum likelihood (ML) solution. 
 Table 1 reports the ML value for each fitted parameter. The values of those parameters 
which have direct interpretations are generally plausible. For example, the habitat decay rate 
parameter was estimated to be 0.255. This means that at the region’s average temperature (24.29 
℃) and relative humidity (82.18%) in 2007, the larval carrying capacity within rain-filled 
habitats would decrease to half its size in around 4.2 days if no additional precipitation were to 
occur. Further, the larval carrying capacity per unit volume is an order of magnitude larger for 
rain-filled habitats than for constant habitats, consistent with the close association between Ae. 
aegypti and rain-filled containers. Finally, the mean duration of cross-immunity is similar to the 
680-day estimate provided in Reich et al. (2013). However, even for parameters whose values 
are not well established, such as the mosquito-to-human transmission rate, estimated values are 
located away from the boundaries of their allowable ranges, indicating a tendency against 
extreme values. Alternative starting conditions and strategies for initializing simulations led to 
different local maxima, but these parameter sets led to simulations where certain output streams 
were biologically unrealistic, such as the extrinsic incubation period (EIP) (SFig. 3) or the 
population immunity (SFig. 4). 
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SFig. 3. Results from an alternative calibration. Here DENV was introduced to the simulation 
140 days before the simulation proper, and the starting conditions were different from that of the 
main article. A) The average extrinsic incubation period (EIP) at each week of the simulation, if 
the temperatures during that week had remained constant. The red line indicates the median 
across all municipalities, and the shaded region spans the minimum and maximum EIP. Dotted 
black lines provide the proportion of adult mosquitoes that are expected to live for at least the 
corresponding number of days. B)  Weekly reported incidences of dengue in the San Juan 
Metropolitan Statistical Area between Jan 1, 2007 and Dec 31, 2007 (dashed black line) along 
with the median reported incidence across replicate simulations (solid blue line) and 95% 
confidence intervals (blue area). Colored, dotted lines are example replicate simulations. 
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SFig. 4. Results from an alternative calibration. Here DENV was introduced to the simulation 
140 days before the simulation proper. The starting condition was the same as that of the main 
article. A) The median proportion of the population across replicate simulations that were 
immunologically naïve (cyan) or had experienced one (magenta), two (light green), or more than 
two (teal) previous DENV infections (solid lines), along with 95% confidence intervals (colored 
regions). B) Violin plots of the proportion of reported cases in a simulation attributed to each 
serotype. Circles indicate the proportion of cases that were attributed to each serotype in the San 
Juan Metropolitan Statistical Area between Jan 1, 2007 and December 31, 2007, out of those 
cases for which a serotype was known. 
 
Mosquito population dynamics 
Between January 2007 and December 2008, air temperature and rainfall patterns led to 
fluctuations in the size of the adult mosquito population (Fig. 3A-C) and the average bites per 
human (Fig. 3D). The median number of daily bites per human across replicate simulations 
ranged from 1.053 to 2.692. Rainfall was the primary driver of local peaks in mosquito 
populations, with most large influxes of rain corresponding to a spike in adult mosquitoes a few 
weeks later. In combination with the local peaks in mosquito density associated with rainfall, the 
vector population also showed broader seasonal trends that were well correlated with air 
temperature (r = 0.638). Based on these vector dynamics and the maximum-likelihood estimate 
of 𝑐"*+% (3.65 x 10-05), the expected numbers of female Ae. aegypti caught in BG traps between 
Nov. 2007 and Dec. 2008 showed similar trends across months as were reported by Barrera, 
Amador, and MacKay (2011) (Fig. 4). Except for Feb. 2008, the expected number of mosquitoes 
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increased and declined at the same times in the simulations as in the reference data. The 
magnitude of each increase or decline, however, was more mixed, with the expected number of 
mosquitoes in some months nearly identical to the reference (e.g., July-Sept. 2008 and Nov. 
2008) and less well matched in others (e.g., Nov.-Dec. 2007). 
 

 
Fig. 3: A) The weekly mean temperature and B) rainfall in the San Juan-Carolina-Caguas Metropolitan 
Statistical Area (MSA) of Puerto Rico between Jan 1, 2007 and Dec 31, 2007. C) The weekly mean adult 
vector population of the San Juan MSA based on the model. D) The weekly mean bites per human based 
on the model. 
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Fig. 4: The expected number of female Ae. aegypti caught in BG traps between November 2007 
and December 2008 based on the model parameters and the average number of adult vectors in 
the simulations (in blue), along with the actual number trapped in Barrera, Amador, and MacKay 
(2011) (black, dashed line). The number of trapped vectors is assumed to follow a Poisson 
distribution with an expected value equal to the product of the average number of vectors in a 
month, the number of traps, and a fitted scaling parameter. Bars represent one standard deviation. 
 
 The average duration of the extrinsic incubation period (EIP) varied with temperature 
across municipalities and time (Fig. 5). The longest EIPs consistently occurred in Orocovis, but 
the shortest EIPs alternated between the Fajardo and Loiza municipalities, except in the fourth 
week when the lowest EIP occurred in Cataño. Given the assumptions of the model, at any given 
time no less than 20% but no more than 60% of adult mosquitoes were expected to survive at 
least as long as the EIP.  
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2018. ; https://doi.org/10.1101/376533doi: bioRxiv preprint 

https://doi.org/10.1101/376533
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

 
Fig. 5. The average extrinsic incubation period (EIP) at each week of the simulation, if the 
temperatures during that week had remained constant. The red line indicates the median across 
all municipalities, and the shaded region spans the minimum and maximum EIP. Dotted black 
lines provide the proportion of adult mosquitoes that are expected to live for at least the 
corresponding number of days. 
 
Total incidence and infection dynamics 
Reported incidence in the simulations generally corresponded well to reports from the PDSS in 
2007. The 95% confidence intervals on the reported incidence included the corresponding PDSS 
incidence in 45 out of 52 weeks. Further, there were comparable temporal trends in incidence 
between the simulations and the reference data. The reported incidence of dengue in the San Juan 
MSA remained at a stable, low level for the first 17 weeks of 2007 before beginning an upward 
trend that peaked at week 40 before declining for the rest of the year (Fig. 1). Similarly, the 
simulations’ median reported incidences were predominantly stable and low at the beginning of 
the year, rose at around week 17, and had a declining trend between week 40 and the end of the 
year. However, unlike the PDSS data, the median incidence levelled off at around week 34 and 
began to decline earlier, at around week 37 (Fig. 1). 

Predictions on the cumulative cases that occurred in 2007 differed between simulations 
(Fig. 6A). After accounting for differences between the simulated population sizes and the 
population size of the actual San Juan MSA, most simulations predicted between 500 and 3,000 
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cases with a median of 1,779 cases, although one simulation predicted as many as 3,565 cases. 
The median prediction was similar to the actual cumulative number of cases, 1,969 cases, 
leading to a relative error of 9.66%. The predicted number of infections also varied between 
simulations but was generally between 40,000 and 190,000 infections (median: 126,515 
infections), although three predictions were over 200,000 infections (max.: 246,938 infections) 
(Fig. 6B). Despite the variability between predictions for the cumulative cases and infections, 
though, the predicted reporting rate was consistently around 1% (min.: 1.36%, max: 1.50%) (Fig. 
6C).  
 

 
Fig. 6. Predictions for the number of reported cases, number of infections, and reporting rate in 
the San Juan-Carolina-Caguas Metropolitan Statistical Area (MSA) in 2007. Each prediction is 
the corresponding output from one replicate simulation times a correction factor to account for 
the difference in population sizes between the simulations and the actual San Juan MSA.  A) 
Reported cases, B) Number of infections, C) Reporting rate.  
 

The disease dynamics of individual municipalities were variable but generally fell into 
three categories (Fig. 7). In municipalities such as Florida and Orocovis, there was very little 
sustained transmission (Fig. 7A,B). The median number of new cases in a week was never 
greater than zero, and there were no new infections a few weeks into the year. For example, 
Orocovis had no new infections after the ninth week. In contrast, the median number of new 
infections at each week in municipalities such as Caguas and Loiza faded to zero early in the 
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year but in some simulations had continual transmission for nearly all of 2007 (Fig. 7C,D). 
Finally, the median number of new cases in municipalities such as Bayamon, San Juan, and 
Carolina follow a prototypical epidemic trajectory characterized by a distinct peak (Fig. 7E,F).  

 
Fig. 7. The median number of new infections across replicate simulations (solid line), along with 
95% confidence intervals (blue area), for six municipalities in the San Juan-Carolina-Caguas 
Metropolitan Statistical Area. Plot labels provide which municipality is represented. These six 
exemplify the three general DENV dynamics observed in the simulations: A,B) early fadeouts in 
nearly all simulations, C,D) early fadeout in at least half of all simulations but with year-long 
transmission in some simulations, E,F) year-long transmission in over half of all simulations and 
with a prototypical epidemic trajectory. 
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Age distribution of cases and immunity 
Tomashek et al. (2009) reported that the age group with the most cases was 10-19-year-olds and 
that the share of cases declined with each subsequent age group (Fig. 2A). The 0-9-year-olds 
composed 10.48% of all cases, which was intermediate between 30-39-year-olds and 40-49-year-
olds. For the most part, this pattern was present in both the (marginal) median and medoid 
predictions on the age distribution of cases, except that 10-19-year-olds and 20-29-year-olds 
were switched in the median and 0-9-year-olds and 40-49-year-olds were switched in the medoid 
(Fig. 2A). This pattern deviated from the age distribution of the population overall, which had a 
more even distribution across age groups and a larger representation of individuals over 70 years 
old (Fig. 2B). However, the exact proportion of cases associated with each age group showed 
less concurrence. The proportion of cases associated with 0-9-years-olds and 60-69-year-olds in 
the PDSS data were nearly identical to these age groups’ median in the simulations, and the 
proportion associated with individuals over 70 years old was just outside the 95% confidence 
intervals of the simulations. However, there were many fewer cases associated with 10-19-year-
olds in the simulations and more cases associated with the remaining age groups. 
 Age and immunity were closely coupled in the simulations, with older age groups tending 
to be immune to more DENV serotypes than younger ones (Fig. 8). For example, at the 
beginning of the simulation 69.17% of all 0-9-year-olds had no immunity to any serotype. With 
each increasing age group, a larger proportion of the population was immune to one or more 
serotypes, and after the 30-39-year-olds over half of each population was immune to three or 
more serotypes than any fewer number. In the eldest age group, around 78% of the population 
was immune to three or more serotypes, and less than 1% was immunologically naïve. This 
pattern persisted to the end of the simulation, although there was more uncertainty about the 
exact proportions in each immune status (SFig. 5)  
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Fig. 8. The median proportions of each age group that were immune to zero, one, two, or more 
than two DENV serotypes on the first day of the simulation, excluding the burn-in period. There 
was generally too little variability to visualize 95% confidence intervals. 
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SFig 5. The median proportions of each age group that were immune to zero, one, two, or more 
than two DENV serotypes on the final day of the simulation. Bars indicate 95% confidence 
intervals. 
 

The relative prominence of immune groups was stable over time (Fig. 9). The greatest 
proportion of the population was immune to three or more DENV serotypes, and the naïve 
individuals composed the smallest proportion of the population (Fig. 9A). Within these broader 
immune statuses, the populations had the greatest immunity to DENV-2 and the least immunity 
to DENV-3 (Fig. 9B). The level immunity to DENV-1 and DENV-4 were nearly identical. 
Although the relative prominence of immune statuses was stable, their exact proportions changed 
as the outbreak progressed. The proportion of the population immune to three or more serotypes 
grew the most dramatically because recovered individuals experienced a period of heterologous 
cross-immunity, regardless of their previous immune status. Since the simulation was too short 
to observe the cessation of cross-immunity, the median proportion of the population immune to 
one or two serotypes declined slightly over the course of the simulation. The naïve population 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2018. ; https://doi.org/10.1101/376533doi: bioRxiv preprint 

https://doi.org/10.1101/376533
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26 

remained stable, implying that the infection rate in naïve individuals was comparable to the 
population’s birth rate.  

 

Fig. 9: A) The median proportion of the population across replicate simulations that were 
immune to zero (cyan), one (magenta), two (light green), or more than two (teal) DENV 
serotypes (solid lines), along with 95% confidence intervals (colored regions). B) The median 
proportion of the population immune to each DENV serotype across replicates of the maximum 
likelihood particle (solid lines), along with 95% confidence intervals (colored regions). DENV-1: 
Green, DENV-2: Yellow, DENV-3: Orange, DENV-4: Purple.  previous infections (solid line) . 

 
Serotype dynamics 
The correspondence between serotype dominance in the simulations and the PDSS data was 
mixed (Fig. 10). In accordance with the PDSS data, DENV-3 was generally more prominent than 
any other serotype, and the proportion of cases associated with DENV-1 and -4 that PDSS 
reported fell within the range present in the simulations. However, DENV-2 circulated at a lower 
proportion in the simulations than was reported in the PDSS. This discrepancy may have arisen 
because the simulations tended to feature dominant circulation by one serotype as opposed to the 
somewhat more even mixture of serotypes observed in the PDSS data.  
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Fig. 10: Violin plots of the proportion of reported cases in a simulation attributed to each 
serotype. Circles indicate the proportion of cases that were attributed to each serotype in the San 
Juan Metropolitan Statistical Area between Jan 1, 2007 and December 31, 2007, out of those 
cases for which a serotype was known. 
 
DISCUSSION 
We have presented a new climate-driven, agent-based model for DENV transmission that 
incorporates detailed models of both the vector Ae. aegypti—including egg, larval, immature, 
and adult life stages—and the human host—including infectiousness, immunity, disease status, 
and demography. We also performed an example implementation of this model based on the San 
Juan-Carolina-Caguas Metropolitan Statistical Area (MSA) of Puerto Rico between January and 
December 2007. The model captured broad trends in multiple types of reference data, including 
the incidence time series, age distribution of cases, serotype distribution of cases, and vector 
dynamics. Not all of these data sets are required for model calibration, but our experience here 
suggests that they each add value to the model calibration process in their own way. Other 
aspects of the model’s specification draw on empirical estimates from the literature, and still 
others benefit substantially from adaptation of the structure of related models for other diseases 
(Bershtyn et al., 2018). 

One aspect of the model in which the availability of empirical data for calibration was 
particularly useful was vector population dynamics. Barrera et al. (2011) reported clear inter-
annual patterns in the population of Ae. aegypti that were closely correlated with air temperature 
and precipitation. Similarly, the population of adult vectors in our simulations were tightly 
connected to air temperature and rainfall inputs. On a broad scale, the number of vectors 
followed the seasonal dynamics of air temperature, whereas influxes of rainwater led to localized 
peaks in the vector population. For instance, there was an anomalously high level of precipitation 
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at week 38 of 2008. This in turn led to the simulations’ largest vector population at week 39 of 
2008.  
 Similarly, the model also created realistic, broad patterns in the transmission dynamics 
that were not directly apparent in the reference data. Municipalities with larger populations 
would be expected to have greater DENV transmission because their size would make them less 
susceptible to stochastic fadeouts, provided that a sufficient proportion of the population were 
susceptible. Similarly, municipalities with greater temperatures are expected to have greater 
transmission, in part because the EIP will be lower in these regions and therefore more 
mosquitoes will survive long enough to become infectious. These expected patterns are seen in 
the simulation results. San Juan, Carolina, and Bayamon municipalities are three of the most 
populous municipalities in the San Juan MSA, and all three experience relatively high 
temperatures. As a result, in over half of all simulations, these municipalities had sustained 
transmission for the entire year. When predicting disease dynamics for a municipality, the model 
weighs these two factors. For example, Loiza municipality had some of the highest EIPs in the 
simulations, yet, likely because of its smaller population, disease transmission in this 
municipality was more modest. A similar result occurred in Caguas, which has a large population 
but a cooler climate only permitted modest transmission. Still other factors not incorporated into 
the model could also play an important role in determining spatial patterns of dengue incidence 
and immunity to DENV. For example, socioeconomic conditions have been observed to correlate 
with transmission via their associations with factors such as the availability of breeding habitats 
for mosquitoes and mosquito-human contact as affected by housing characteristics (Reiter et al.  
2003; Farinelli et al. 2018).    
 A final broad process that the model replicated well was the relationship between 
immunity and serotype dominance. The prominence of a serotype in a population is expected to 
be greater when the population has little immunity to it than when it has more. In every 
simulation, there was less immunity to DENV-3 than any other serotype, and this was associated 
with greater circulation of DENV-3 relative to other serotypes. Similarly, the population had a 
comparable level of immunity to DENV-1 and DENV-4 across simulations, which was 
associated with those serotypes circulating at similar levels. Finally, the population had the 
greatest level of immunity to DENV-2, and this serotype usually circulated at a lower proportion 
than the others. 
 Whereas the model performed well in extracting broad patterns, the model’s ability to 
provide exact predictions for epidemiological parameters was more mixed. For most weeks, the 
incidence reported by PDSS fell within the 95% confidence intervals established by the model, 
and the predicted proportion of cases associated with 0-9-year-olds, 60-69-year-olds, and 
individuals over 70 years old were comparable between the simulations and PDSS. However, 
other parameters, like the proportion of cases associated with 10-19-year-olds or with DENV-2, 
were not as well matched between the reference and simulated data. Constraints that are 
necessary to allow DTK-Dengue to easily transition between locations and times may contribute 
to some of these difficulties. For example, DTK-Dengue assumes that the historical force of 
infection is constant across all years. Because of this assumption, the user does not need to 
provide details about a location’s immunological history and therefore can transition between 
locations with greater ease. However, this assumption strongly constrains the relationship 
between age and seropositivity, which makes the age distribution of cases more difficult to 
replicate. For example, the San Juan MSA had a major dengue outbreak in 1994 whose 
cumulative incidence was 43% greater than any other outbreak between that year and 2007. This 
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outbreak would have likely had a major influence on the immune status of individuals over the 
age of 13 in 2007 but would have been absent in those younger than 13. Yet, since DTK-Dengue 
assumes that the historical force of infection is constant, our model would have had to strike a 
balance between these two groups. Under this consideration, it is somewhat logical that the 
model under predicts the incidence of dengue in 10-19-year-olds but over predicts its incidence 
in 20-59-year-olds. In future implementations, the model may be better able to replicate the age 
distribution of cases if it used a temporally-variable force of infection, similar to Quan et al. 
(2018).   
 In addition to the constraints that allow DTK-Dengue to switch between settings easily, 
the breadth of topics about which it provides information can also limit the precision of its 
predictions. With such a large variety of outputs, the model must strike a compromise between 
realism amongst each one. In some cases, the model has been able to provide better constrained 
predictions for some output streams if other output streams were less realistic. For example, 
when the extrinsic incubation period was allowed to be longer, the model more accurately 
predicted the peak week in incidence. Similarly, when immunity was allowed to reach extreme 
levels, the dominance of each serotype became better constrained. 
 Finally, some loss of precision likely arises from imperfect knowledge about the system. 
This could have particularly impacted the serotype-specific incidences in the simulations. 
Although the model identified that DENV-3 was the most prominent serotype, its dominance 
was generally overestimated and frequently nearly all cases were associated with it. The 
discrepancy between model results and the PDSS data could originate in differences in serotype 
infectiousness or in the probability that infections become symptomatic. The degree of these 
differences, if they exist, is not well established, so they are currently difficult to incorporate into 
the model. 
 Although the breadth of topics discussed here is highly diverse, EMOD-DTK, and by 
extension DTK-Dengue, can incorporate a great deal more features as well. One particularly 
promising feature are campaign events. These model features allow a researcher to explore how 
proposed DENV and vector control strategies would impact an affected area. For example, there 
are campaigns to explore the effectiveness of indoor residual spraying and increased barriers to 
entering dwellings. These tools can assist policymakers in deciding where to invest into control 
campaigns to maximize benefit and the expected effect size of each decision. With these 
applications in mind, DTK-Dengue is a promising new tool in the study of arboviral diseases. 
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