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Abstract

Recent technological advances in single cell sequencing (SCS) provide high resolution data
for studying intra-tumor heterogeneity and tumor evolution. Available computational methods
for tumor phylogeny inference via SCS typically aim to identify the most likely perfect phylogeny
tree satisfying infinite sites assumption (ISA). However limitations of SCS technologies such as
frequent allele dropout or highly variable sequence coverage, commonly result in mutational call
errors and prohibit a perfect phylogeny. In addition, ISA violations are commonly observed in
tumor phylogenies due to the loss of heterozygosity, deletions and convergent evolution. In order
to address such limitations, we, for the first time, introduce a new combinatorial formulation that
integrates single cell sequencing data with matching bulk sequencing data, with the objective
of minimizing a linear combination of (i) potential false negatives (due to e.g. allele dropout
or variance in sequence coverage) and (ii) potential false positives (due to e.g. read errors)
among mutation calls, as well as (iii) the number of mutations that violate ISA - to define the
optimal sub-perfect phylogeny. Our formulation ensures that several lineage constraints imposed
by the use of variant allele frequencies (VAFs, derived from bulk sequence data) are satisfied.
We express our formulation both in the form of an integer linear program (ILP) and - for the
first time in the context of tumor phylogeny reconstruction - a boolean constraint satisfaction
problem (CSP) and solve them by leveraging state-of-the-art ILP/CSP solvers. The resulting
method, which we name PhISCS, is the first to integrate SCS and bulk sequencing data under
the finite sites model. Using several simulated and real SCS data sets, we demonstrate that
PhISCS is not only more general but also more accurate than the alternative tumor phylogeny
inference tools. PhISCS is very fast especially when its CSP based variant is used returns the
optimal solution, except in rare instances for which it provides an optimality gap. PhISCS is
available at https://github.com/haghshenas/PhISCS.
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1 Introduction

The clonal theory of cancer evolution suggests that cancer is an evolutionary disease where multiple
distinct cellular populations (i.e. subclones) emerge through successive rounds of mutation and
selection. At the time of clinical diagnosis, most tumors are heterogeneous, consisting of multiple
subclones harboring different sets of somatic mutations. An increasing evidence suggests that
this phenomenon, better known as “intra-tumor heterogeneity” (ITH), has a profound impact on
treatment outcomes and that the existence of treatment resistant subclones is one of the main
causes of treatment failures [1]. Deciphering intra-tumor heterogeneity and tumor evolutionary
history thus represent some of the key challenges in designing efficiently combined therapies and
better understanding of dynamics of cancer initiation and progression.

Most of the existing approaches for studying ITH are based on analyzing data from next-
generation bulk sequencing experiments where only an average signal over a large number of cells is
obtained. In the past few years, numerous computational methods for analyzing such signals with
the aim of inferring tumor subclonal composition and evolutionary history have been developed
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. Even though these methods employ a variety of computational
approaches - each with a particular strength, all have theoretical limitations, mainly due to the
limited resolution offered by bulk sequencing data.

While it is still expensive and experimentally challenging to robustly perform single cell library
preparation, recent technological advancements in single-cell sequencing (SCS) potentially provide
higher resolution data for studying ITH. Single-cell datasets are, however, characterized by high
levels of sequencing noise that includes both false positive (e.g. due to the read errors) and false
negative (e.g. due to the allele dropout or variance in sequence coverage) mutation calls, as well as
missing values for mutations from sites affected by DNA amplification failure.1 This necessitates the
development of sophisticated computational methods that are sensitive to the noise characteristics
of SCS data, while incorporating the assumptions of the clonal theory of cancer evolution to tumor
evolution modeling.

Available methods for studying ITH via the use of SCS data are all based on probabilistic
approaches with the goal of inferring the most-likely perfect-phylogeny for a tumor. SCITE [15], for
example, is a Markov Chain Monte Carlo search method that aims to infer the maximum-likelihood
(ML) mutational history from a potentially incomplete and noisy matrix containing genotypes of
single cells. OncoNem [16] is a maximum likelihood based search approach to identify homogeneous
cellular subpopulations and infer both their genotypes and the tree describing their evolutionary
history. For achieving their respective goals SCITE and OncoNem both rely on the infinite sites
assumption (ISA), i.e. that each genomic position is affected by at most one mutation hit in
the entire tumor phylogeny. A more recent maximum likelihood based approach, SiFit [17], aims
to extend the above by employing a finite sites model of evolution that accounts for deletions,
loss of heterozygosity (LOH) and point mutations on genomic sites. However, none of the above
approaches provide means to integratively use SCS with bulk sequencing data, which, in principle
may provide additional guidance to tumor phylogeny construction process. Another recent tool,
ddClone [18] is the first to combine the strengths of bulk and SCS data in a joint statistical inference
model for the most likely tumor subclonal composition. However, ddClone does not aim to build
a tumor phylogeny and is not suitable to study cancer evolution. Finally, some of us developed
B-SCITE [19] with the aim of integrating SCITE with CITUP [9] so as to make joint use of SCS

1 One additional source of noise is doublets, two (or rarely more) cells with heterogeneous mutation profiles treated
as a single cell. There already exist computational tools for identifying and decoupling doublets, in particular Single
Cell Genotyper [14], which we employ in this study as a preprocessing step for the purpose of reducing their impact
in our analysis.
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and bulk sequencing data. B-SCITE is an MCMC based tool, and as per SCITE it does not account
for ISA violations.

Even though the above methods for SCS data analysis are probabilistic, many of the related
methods for bulk sequencing data analysis are combinatorial in nature [2, 4, 7, 8, 9, 11]. Combi-
natorial, in particular integer linear programming (ILP), formulations for phylogeny inference can
be traced back to Haplotype Inference Problem (HIP) [20]. Given a binary incomplete matrix M of
n rows (corresponding to species) and m columns (corresponding to sites), HIP asks to decompose
each row to two binary vectors (haplotypes) so that the haplotypes can fit in a Perfect Phylogeny,
i.e. a phylogeny satisfying ISA. This problem can be formulated and efficiently solved as an in-
stance of ILP. Later, a similar formulation was proposed in [21] to solve the Persistent Phylogeny
Problem [22, 23]. In this problem, the goal is to compute a persistent phylogeny that is defined as
a phylogeny in which each mutation is allowed to be “lost” at most once. Recently, an extension
of formulation from [21] was proposed in [24], where more general phylogeny models are used and
the goal is to infer entire cancer phylogenies by the use of bulk sequencing data.

ILP formulations for HIP and related problems are routinely solved through commercial tools
such as Gurobi or IBM CPLEX - which have been developed over many years and provide reliable
and fast solutions for relatively small sized optimization problems. These solvers aim to optimize
a typically linear objective while satisfying a number of numerical constraints. As such, ILP is
related to another fundamental problem, the boolean Constraint Satisfaction Problem (CSP) that
can be used as an alternative for modeling many ILP problems encountered in practice.

Perhaps the best-known variant of CSP is the satisfiability problem (SAT) which asks to find a
boolean assignment to a set of input variables to satisfy (the conjunction of) a number of boolean
constraints.2 Among other variants, Max-SAT asks to find a boolean assignment to variables
such that not necessarily all but the maximum number of input constraints are satisfied, while
weighted version of Max-SAT, which can be abbreviated as wMax-SAT, asks for the assignment
that maximizes the sum of (user defined) weights of the constraints satisfied. The generality
of SAT and (w)Max-SAT has prompted the development of many tools to solve them with the
goal of obtaining solutions to practical instances of NP-complete problems. These tools compete
in the annual SAT conference on several benchmarking datasets generated by a wide variety of
applications (see http://sat2017.gitlab.io). Recently developed wMax-SAT solvers such as
Maxino [25] and MaxHS [26, 27, 28], are not only very fast but the later is also open source. As
a result, a number of studies demonstrated the utility of CSP solvers for the haplotype inference
problem and its variants - before the advent of high throughput sequencing [29, 30, 31]. To the
best of our knowledge, however, no study has explored the use of CSP in the context of intra-tumor
heterogeneity or tumor phylogeny modeling.

Our Contributions. In this paper, we introduce three novel combinatorial formulations for
inferring tumor phylogenies via an integrative use of single-cell and bulk sequencing data. (1)
Our simplest formulation asks to minimize a weighted sum of potential false negative (which are
common) and false positive (which are rare) mutation calls in genotypes of single cells, whose
correction will result in a perfect phylogeny. (2) The goal of our more general formulation is
to compute a sub-perfect phylogeny, which not only requires such mutation calls to be corrected
but also needs the elimination of (at most a user defined number of) mutations that violate ISA
(e.g. due to LOH - and are relatively rare). More specifically, this formulation asks to minimize
a weighted sum of mutations to be corrected, given an upper bound on the number of mutations
to be eliminated (due to ISA violations) in order to achieve a perfect phylogeny. (3) Our most

2SAT is very general; it is the very first NP-complete problem.
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sophisticated formulation has additional constraints imposed by the use of variant allele frequencies
(VAFs) of single nucleotide variants (from regions not affected by copy number aberrations) that can
be estimated from bulk sequencing data (as a proxy to the cellular prevalence of a given mutation).
These lineage constraints impose ancestor-descendant dependencies among mutation pairs (e.g. the
prevalence of an ancestral mutation cannot be lower than that of a descendant) or triplets (e.g.
the prevalence of an ancestral mutation cannot be lower than the sum of two descendant siblings)
and improve inference accuracy. We describe solutions to each of the three formulations to address
problems of varying complexity and data availability (i.e. some data sets have no ISA violations
and some do not come with matching bulk sequencing data).

We name our general formulation and the resulting program PhISCS (Phylogeny of tumors
using Integrated bulk and Single Cell Sequencing data), which comes in two flavors: (i) PhISCS-
I expresses our formulation in the form of an ILP and efficiently solves it by the use of Gurobi
Optimizer. (ii) PhISCS-B expresses our formulation in the form of a Boolean CSP and solves it by
the use of open source solvers for wMax-SAT such as MaxHS - many times more efficiently than
PhISCS-I.

Many of the available tools for studying intra-tumor heterogeneity formulate the problem as an
ILP or quadratic integer programming (QIP) and solve it via commercial tools such as Gurobi or
CPLEX. Our CSP formulation (specifically in wMax-SAT) is the first to express a tumor phylogeny
reconstruction problem combinatorially, but in a form other than ILP/QIP. Additionally, unlike
many alternatives, PhISCS has the ability to integrate single cell and bulk sequencing data, and can
simultaneously infer tumor phylogeny and clonal composition of the tumor sample. Furthermore,
recent studies suggest that ISA, that forms the basis for most of the above tools (with SiFiT being
the main exception), could be violated to some degree in tumor phylogenies [17, 32] making it
impossible to establish a perfect phylogeny. PhISCS addresses this issue by eliminating (a small
number of) mutations that violate ISA (with a cost reflected in the objective) and solves the tumor
phylogeny reconstruction problem for both simulated and real data, more efficiently and more
accurately (clearly for simulations but also real data) than the available alternatives.

Our final contribution is on assessing the (dis)similarity between two tumor phylogenies - typi-
cally between G, the ground truth tree, and T , the tree inferred by any method. Commonly used
measures of similarity between tumor phylogenies such as lineage consistency, and non-lineage
consistency (used by [9] and others), are defined based on the proportion of mutation pairs with
the same lineage relationship in the two trees fail to capture fundamental topological differences
between simulated ground truth and inferred trees, especially of different levels of granularity [33].
The more recent co-clustering consistency, defined as a function of the proportion of mutation
pairs that are differentially clustered in the two trees, suffers from the same problem [33]. In
order to overcome the limitations of the available measures, some of us very recently introduced
Multi-labeled tree edit distance (MLTED), the minimum number of label deletions, accompanied
with (an arbitrary number of) empty leaf deletions and vertex expansions, to transform each of
two trees to a maximal sized common tree. MLTED successfully captures the differences between
tumor phylogenies of any granularity. In this paper, we also introduce Heuristic-based Multi-labeled
tree edit distance (HMLTED) which, as demonstrated below, accurately captures the dissimilarity
between a ground truth tree and an inferred tree in all our simulations.

2 Methods

In this section, we formulate our integrative tumor phylogeny reconstruction as a combinatorial
optimization problem. We first discuss two special cases of the problem for the case when only
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single cell sequencing data is available. i.e. (i) a special case where the ISA cannot be violated
(Section 2.1) (ii) the case where ISA can be violated (Section 2.2). We then describe the general
integrative problem where both bulk and SCS data are available. We present solutions for this
problem using a novel Integer Linear Program (ILP) as well as a Constraint Satisfaction Program
(CSP).

2.1 Only single cell data and no ISA violation

The input is a ternary matrix I with n rows and m columns, where columns represent mutations
and rows represent genotypes of single cells observed in a single-cell sequencing experiment. The
entry I(i, j) = 0 indicates the absence, I(i, j) = 1 indicates the presence and I(i, j) = 2 indicates
the lack of knowledge about absence or presence (i.e. missing entry) of a mutation j in a cell i.

We ask to find the minimum weighted number of bit flips (typically from 0 to 1 and rarely from
1 to 0) and bit assignments (assigning a 0 or 1 to an entry with value 2), where bit assignments
are not a part of the objective, such that the resulting matrix provides a Perfect Phylogeny (PP).
We recall that a binary matrix is a PP if the three-gametes rule holds, i.e. for any given pair of
columns (mutations) there are no three rows (cells) with configuration (1, 0), (0, 1) and (1, 1). Bit
flipping in the input matrix I is essential to building a PP as some mutation inferences in I are false
positives and some mutations are not indicated in I (false negatives) as they do not have sufficient
read support in sequenced single cells.

To allow correction of noisy genotypes in I (i.e. bit flips and bit assignments), for each cell i and
mutation j, we introduce a binary variable Y (i, j) which denotes the (unknown) true status (i.e.
absence or presence) of the mutation j in the cell i. Assuming that α and β respectively denote
false positive and false negative error rates of single-cell data we use the following scoring scheme:

P (I(i, j) = 0 | Y (i, j) = 0) = (1− α) P (I(i, j) = 0 | Y (i, j) = 1) = β

P (I(i, j) = 1 | Y (i, j) = 0) = α P (I(i, j) = 1 | Y (i, j) = 1) = (1− β)

P (I(i, j) = 2 | Y (i, j) = 0) = 1 P (I(i, j) = 2 | Y (i, j) = 1) = 1. (1)

The above scoring scheme can be rewritten as:

P (I(i, j) = 0 | Y (i, j)) = (1− α)1−Y (i,j) · βY (i,j) = (1− α) ·
(

β

1− α

)Y (i,j)

,

P (I(i, j) = 1 | Y (i, j)) = α1−Y (i,j) · (1− β)Y (i,j) = α ·
(

1− β
α

)Y (i,j)

,

P (I(i, j) = 2 | Y (i, j)) = 1. (2)

The likelihood of an arbitrary conflict free matrix Y is defined as:

P (I | Y ) =
n∏

i=1

m∏
j=1

P (I(i, j) | Y (i, j)). (3)

Here our goal is to find a conflict free matrix Y such that the likelihood defined in 3 is maximized.
This is equivalent to maximizing logarithm of P (I | Y ) which is equal to:∑

(i,j):I(i,j)=0

[
log(1− α) + log

β

1− α
Y (i, j)

]
+

∑
(i,j):I(i,j)=1

[
log(α) + log

1− β
α

Y (i, j)

]
. (4)
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In order to enforce that matrix Y satisfies the three-gametes rule, for each pair of mutations
(p, q), we first introduce variables B(p, q, a, b), for each (a, b) ∈ {(0, 1), (1, 0), (1, 1)}. The variable
B(p, q, a, b) is set to 1 if and only if there exists row r such that Y (r, p) = a and Y (r, q) = b.
This property of matrix B is guaranteed by adding the following constraints for all 1 ≤ i ≤ n and
1 ≤ p, q ≤ m:

Y (i, p) + Y (i, q)−B(p, q, 1, 1) ≤ 1 (5)

− Y (i, p) + Y (i, q)−B(p, q, 0, 1) ≤ 0 (6)

Y (i, p)− Y (i, q)−B(p, q, 1, 0) ≤ 0. (7)

(8)

Now, adding constraints

B(p, q, 0, 1) +B(p, q, 1, 0) +B(p, q, 1, 1) ≤ 2 (9)

for all 1 ≤ p, q ≤ m suffices to ensure that three-gametes rule holds for matrix Y .
The problem defined above represents an instance of ILP and can be solved using any of the

standard ILP solvers.

2.2 Allowing for ISA violations in the model

As we have already discussed in Section 1, recent evidence suggests ISA might be violated for a
subset of mutations in the input data. To account for this, we introduce a more general version of
what we discussed in the previous section where we allow elimination (i.e. deletion) from the input
matrix of a given maximum number of mutations which do not satisfy ISA, while the remaining
mutations, after genotype corrections, are expected to satisfy PP. In order to achieve this, for each
mutation q we introduce binary variable K(q) which is set to 1 if and only if mutation q is among
eliminated mutations. To exclude eliminated mutations from three-gametes rule, we do not require
mutational pairs (p, q), where at least one of p and q is among eliminated mutations, to fulfill this
rule. Therefore we modify constraint 9 from the integer linear program we described in Section 2.1
by replacing it with:

B(p, q, 0, 1) +B(p, q, 1, 0) +B(p, q, 1, 1) ≤ 2 +K(p) +K(q). (10)

The objective defined in 4 is also modified so that the eliminated mutations don’t contribute to the
objective score. This leads to the following objective for the case allowing for ISA violations:∑
(i,j):I(i,j)=0

(1−K(j))·
[
log(1− α) + log

β

1− α
Y (i, j)

]
+

∑
(i,j):I(i,j)=1

(1−K(j))

[
log(α) + log

1− β
α

Y (i, j)

]
.

(11)
All other constraints used previously in the limited version of the problem are preserved. The latest
objective contains quadratic terms of the form K(j)Y (i, j) which can be transformed to the linear
variables using standard linearization techniques. One can observe that mutation elimination never
decreases data likelihood hence the global optimum in the above maximization problem is achieved
when all variables K are set to 1. However, in real applications we expect only a limited number
of ISA violating mutations and therefore set the upper bound kmax on the number of eliminated
mutations which is implemented by the addition of the following constraint

m∑
q=1

K(q) ≤ kmax,

where kmax is empirically determined constant.
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2.3 Additional ILP Constraints to Integrate VAFs Derived from Bulk Sequenc-
ing Data with SCS

We can integrate SCS data with bulk sequencing data - specifically VAF of each mutation we
consider - through additional linear constraints. These constraints will only apply to the set of
single nucleotide variants from the regions not affected by copy number aberrations. Suppose that
a particular SNV, denoted M , satisfies the above requirement; let v and r respectively denote the
number of reads supporting the variant and the reference allele at the genomic locus of M . The
VAF of M is typically defined as v

v+r . Since below we are interested in cellular prevalence rather

than the VAF below, we define vaf(M) = 2v
v+r . (Cellular prevalence represents the expected fraction

of cells in the sample that harbor M .)
Before defining constraints related to VAFs, we first define the root node via a new row, indexed

by 0, that represents genotype of a healthy cell. We also add a new column, indexed by 0, and
associated null mutation M0 which represents mutation specific to the normal cell or, in other
words, germline SNP present in all cells. We set I(t, 0) = 1 for t = 0, 1 . . . , n and I(0, p) = 0 for
p = 1, 2, . . . ,m. We also set vaf(M0) = 1 and do not allow elimination of M0. Matrices B and Y are
also expanded in an obvious way by allowing mutational indices to be equal to 0. The remainder
of the tree topology is imposed through additional constraints that specify ancestor-descendent
relationships in a consistent manner across all nodes:

1. We must satisfy the following constraints that are trivially converted into boolean expressions:
(i) K(0) = 0, (ii) Y (t, 0) = 1 for t = 0, 1, . . . , n, and (iii) Y (0, p) = 0 for p = 1, 2, . . . ,m.

2. If a mutation p is an ancestor of a mutation q and ISA holds for both p and q then the true
cellular prevalence of p is expected to be greater than or equal to true cellular prevalence of
q. Since vaf(p) and vaf(q) reflect cellular prevalences as discussed above, we expect that in
the implied evolutionary tree vaf(p)(1 + δ) ≥ vaf(q), where δ is some positive constant which
allows for the noise typically present in the observed VAFs. In order to incorporate VAFs in
our model, we introduce binary function a, such that a(p, q) = 1 only if p is an “ancestor” of
q. By definition we set a(p, p) = 0 for all p ∈ {0, 1, . . . ,m}. The constraints that we need to
introduce are thus as follows.

(a) For all pairs of mutations p, q we must satisfy:

max{a(p, q), a(q, p)} ≤ min{1−K(p), 1−K(q)}

here, for any mutation r, K(r) = 1 indicates that the column r in input matrix I has
been eliminated.

(b) Each non-eliminated mutation q different from null mutation must have at least one
ancestor. This is ensured by adding the following constraint:

m∑
p=0

a(p, q) ≥ 1−K(q).

On the other hand, null mutation has no ancestors so we set a(p, 0) = 0 for all p ∈
{0, 1, . . . ,m}.

(c) Consider two non-eliminated mutations p and q. If a(p, q) = 1 then in genotype corrected
output matrix Y the column p should dominate the column q - i.e. for each cell/row r if
the entry for p is 0 then the entry for q should also be 0. In other words, there should not
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exist row r such that Y (r, p) = 0 and Y (r, q) = 1, which is equivalent to B(p, q, 0, 1) = 0.
To ensure this, for all pairs of mutation (p, q), we add the following constraint:

a(p, q) +B(p, q, 0, 1) ≤ 1 +K(p) +K(q).

(d) If, for two non-eliminated mutations p and q, matrix Y contains cell in which p is
present and q is absent (i.e. there exists i such that Y (i, p) = 1 and Y (i, q) = 0, which is
equivalent to B(p, q, 1, 0) = 1), as well as cell where both p and q are present (i.e. there
exists j such that Y (j, p) = 1 and Y (j, q) = 1, which is equivalent to B(p, q, 1, 1) = 1),
then p must be ancestor of q (i.e. a(p, q) = 1). In order to ensure this, for all pairs of
mutations (p, q) we add the following constraints:

B(p, q, 1, 0) +B(p, q, 1, 1)− a(p, q) ≤ 1 +K(p) +K(q).

(e) For some small user defined error tolerance value δ > 0 that accounts for variation in
sequence coverage, if vaf(q) > vaf(p)(1 + δ) then a(p, q) = 0; in other words for every
pair of mutations p and q we must satisfy:

a(p, q) · vaf(p) · (1 + δ) ≥ a(p, q) · vaf(q)

(f) For all triplet of mutations p, q, r, we must ensure that if a(p, q) = 1 and a(q, r) = 1 then
a(p, r) = 1:

∀p, q, r : a(p, r) ≥ a(p, q) + a(q, r)− 1

3. For all triplet of mutations p, q and r (such that p is an ancestor of q and r but q and r do not
have an ancestor descendant relationship, i.e. a(p, q) = a(p, r) = 1 and a(q, r) = a(r, q) = 0)
we must satisfy:

vaf(p) · (1 + δ) ≥ vaf(q) · [a(p, q)− a(r, q)− a(q, r)] + vaf(r) · [a(p, r)− a(r, q)− a(q, r)]

2.4 PhISCS-B for Tumor Phylogeny Inference via SCS

In this section we show how to reduce the ILP provided in Section 2.1 to a wMax-SAT problem.
For each input entry I(i, j), 1 ≤ i ≤ n, 1 ≤ j ≤ m, our goal is to compute the value X(i, j),
which indicates whether I(i, j) is flipped or not (we will also initially set all entries I(i, j) = 2
to 0, but will have no penalty for flipping their values to 1 later) resulting in the output matrix
Y , where Y (i, j) = X(i, j) ⊕ I(i, j), which admits a PP. In order to achieve this we use a set of
additional variables B(p, q, a, b) (see Section 2.1) that need to satisfy the following hard constraints
(the constraints that need to be satisfied):

¬(Y (i, p) ∧ Y (i, q) ∧ ¬B(p, q, 1, 1))

¬(¬Y (i, p) ∧ Y (i, q) ∧ ¬B(p, q, 0, 1))

¬(Y (i, p) ∧ ¬Y (i, q) ∧ ¬B(p, q, 1, 0))

¬(B(p, q, 0, 1) ∧B(p, q, 1, 0) ∧B(p, q, 1, 1)) (12)

We can now define our objective as satisfying all the hard constraints with alterations on the
input matrix I with maximum probability, where each alteration (indicating a false positive or false
negative) is independent. This objective corresponds to the minimizing the (weighted) number of
flipped entries in the solution matrix Y in comparison to I, or, for the purpose of formulating
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the problem as an instance of wMax-SAT, maximizing the weighted sum of the following ”soft”
constraints (for all i, j, s.t. I(i, j) 6= 2 originally):

for I(i, j) = 0 : X(i, j), weight : β, and ¬X(i, j), weight : 1− α (13)

for I(i, j) = 1 : X(i, j), weight : 1− β, and ¬X(i, j), weight : α (14)

In order to account for ISA violations, for each column j ∈ {1, 2, . . . ,m} we introduce boolean
variable K(j) that is set to 1 if and only if column j is eliminated (i.e. mutation corresponding to
column j is not considered as a part of the output).

Similarly as in 2.2, we allow at most kmax columns to be eliminated, where kmax is a user-defined
constant. In order to ensure that no more than kmax of variables K(1),K(2), . . . ,K(m) are set to
1, for each possible (kmax + 1)-tuple (i1, i2, . . . , ikmax+1) of integers such that 1 ≤ i1 < i2 < · · · <
ikmax+1 ≤ n we add the the following hard clause

¬
( kmax+1∧

t=1

K(t)
)

(15)

to our model. Now, for any eliminated column p we do not have to check whether it is in conflict
with any other column q or vice versa. Therefore, for each pair (p, q) of columns we replace the
constraint 12 above with the following.

¬(¬K(p) ∧ ¬K(q) ∧B(p, q, 0, 1) ∧B(p, q, 1, 0) ∧B(p, q, 1, 1)). (16)

2.5 Additional Boolean Constraints to Integrate Bulk Sequencing with Single
Cell Seq Data

In order to integrate information derived from bulk sequencing data, represented in the form of
VAFs of the given set of mutations (see Section 2.3 for details), we explicitly impose a tree structure
on the output matrix Y through the use of a number of boolean constraints.

The boolean constraints below start by defining the root node via a new row, indexed by 0, that
represents genotype of a healthy cell. We also add a new column, indexed by 0, and associated null
mutation M0 which represents mutation specific to the normal cell or, in other words, germline SNP
present in all cells. We set I(t, 0) = 1 for t = 0, 1 . . . , n and I(0, p) = 0 for p = 1, 2, . . . ,m. We also
set vaf(M0) = 1 and do not allow elimination of M0. The remainder of the tree topology is imposed
through additional constraints that specify ancestor-descendent relationships in a consistent manner
across all nodes:

1. We must satisfy the following constraints that are trivially converted into boolean expressions:
(i) K(0) = 0, (ii) Y (t, 0) = 1 for t = 0, 1, . . . , n, and (iii) Y (0, p) = 0 for p = 1, 2, . . . ,m.

2. If a mutation p is an ancestor of mutation q in the implied evolutionary tree, then vaf(p) ≥
vaf(q) must be satisfied, within some error tolerence that can usually be assumed to be small
for the existing datasets containing both, single cell and bulk sequencing data. Namely, in
such datasets, bulk sequencing data is typically of deep coverage resulting in higly accurate
and reliable estimates of mutational VAFs. In order to exploit values of VAFs using the above
dependency between phylogenetic relation of mutational pairs and their VAFs, we introduce
boolean function a, such that a(p, q) = 1 if and only if p is an “ancestor” of q. The hard
constraints that need to be imposed on a are as follows.
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(a) For all pairs of mutations p and q, where both p and q are different from null mutation,
we must satisfy:

(a(p, q) ∨ a(q, p)) =⇒ (¬K(p) ∧ ¬K(q)).

(b) For all non-eliminated mutations q different from null mutation we must make sure that
it has an ancestor mutation (which could be null mutation). This is achieved by imposing
the following constraint:  ∨

∀p6=q

a(p, q)

 ∨K(q).

(c) Consider two non-eliminated mutations p and q. If a(p, q) = 1 then in genotype corrected
output matrix Y the column p should dominate the column q - i.e. for each cell/row r if
the entry for p is 0 then the entry for q should also be 0. In other words, there should not
exist row r such that Y (r, p) = 0 and Y (r, q) = 1, which is equivalent to B(p, q, 0, 1) = 0.
To ensure this, for all pairs of mutation (p, q), we add the following constraint:

¬a(p, q) ∨ ¬B(p, q, 0, 1) ∨K(p) ∨K(q).

(d) If, for two non-eliminated mutations p and q, matrix Y contains cell in which p is
present and q is absent (i.e. there exists i such that Y (i, p) = 1 and Y (i, q) = 0, which is
equivalent to B(p, q, 1, 0) = 1), as well as cell where both p and q are present (i.e. there
exists j such that Y (j, p) = 1 and Y (j, q) = 1, which is equivalent to B(p, q, 1, 1) = 1),
then p must be ancestor of q (i.e. a(p, q) = 1). In order to ensure this, for all pairs of
mutations (p, q) we add the following constraints:

¬B(p, q, 1, 0) ∨ ¬B(p, q, 1, 1) ∨ a(p, q) ∨K(p) ∨K(q).

(e) For some small user defined error tolerance value δ > 0 that accounts for variation in bulk
sequencing coverage, if vaf(q) > vaf(p) · (1 + δ) then a(p, q) = 0; in other words for each
pair of mutations p and q for which a(p, q) = 1, we must satisfy vaf(p) · (1 + δ) ≥ vaf(q).
In order to express this as a boolean constraint we introduce a new boolean function
Pvaf(p, q) defined for all pairs of mutations p and q (as a part of the input specification)
as follows:

Pvaf(p, q) = 1, if vaf(p) · (1 + δ) ≥ vaf(q)

= 0, otherwise.

Then the constraint that must be satisfied for each pair of mutations p and q is:

a(p, q) =⇒ Pvaf(p, q).

(f) For all pairs of mutations p and q (including null mutation) we must ensure that, if
p dominates q and K(p) = K(q) = 0, then a(p, q) = 1. Thus we add the following
constraint:

n∧
t=0

[Y (t, q) =⇒ Y (t, p)] =⇒ (a(p, q) ∨K(p) ∨K(q))

In order to implement this efficiently in Conjunctive Normal Form (CNF) required by all
available wMax-SAT solvers, we need to introduce additional boolean variables at(p, q)
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for all values of t = 0, . . . , n. For each row t (including 0) and each pair of columns p
and q (including x) we must thus satisfy the constraint:

[Y (t, q) ∨ at(p, q)] ∧ [¬Y (t, p) ∨ at(p, q)]

and the final constraint that must be satisfied for each pair p, q is:

¬a0(p, q) ∨ ¬a1(p, q) ∨ ¬a2(p, q) . . . ∨ ¬an(p, q) ∨ a(p, q) ∨K(p) ∨K(q).

3. For all triplet of mutations p, q and r such that p is an ancestor of q and r, but q and r do
not have an ancestor descendant relationship (i.e. they belong to different lineages in the
tree), we must satisfy vaf(p) · (1 + δ) ≥ vaf(q) + vaf(r). In order to express this as a boolean
constraint we introduce yet another boolean function Tvaf(p, q, r) defined for all triplet of
mutations p, q, r (as a part of the input specification) as follows:

Tvaf(p, q, r) = 1, if vaf(p) · (1 + δ) ≥ vaf(q) + vaf(r)

= 0, otherwise.

Then the constraint that must be satisfied for all mutations p, q, r is:

[a(p, q) ∧ a(p, r) ∧ ¬a(q, r) ∧ ¬a(r, q)] =⇒ Tvaf(p, q, r).

3 Results on Simulated Data

We generated simulated data sets and benchmarked our models against alternative tools using
three distinct measures of accuracy as described below. We also implemented PhISCS-B using
several weighted Max-SAT non-commercial solvers and compared their running time performance
with the best performing solver for PhISCS-I showing a significant advantage of using the former.
These results suggest that CSP approach can be competitive time-efficient alternative strategy for
solving some of the existing problems in tumor phylogenetics which are expressed in the form of
integer-linear programs and typically solved by some of the available commercial ILP solvers.

A detailed description of generating simulated data and running the tools is provided in the
Appendix.

3.1 Comparative Running Time Analysis of PhISCS-B and PhISCS-I

There are a number of available constraint satisfaction software that could be used for our purposes.
In order to identify the best performing CSP solvers, we evaluated the top-performing tools from
the 2017 Max-SAT competition3 (a well-known competition that has been running for many years)
on simulated data for the limited version of the problem (with no ISA violations). The competition
has both unweighted and weighted tracks. The three top-performing Max-SAT solvers in the
weighted competition were MaxHS, QMaxSAT and Maxino. In addition, two other available tools,
CPLEX/ILOG by IBM Research and Z3 by Microsoft Research have been benchmarked by the
competition organizers. Among these tools, CPLEX/ILOG consistently performed the worst in
Max-SAT; this was our experience as well. As CPLEX/ILOG is also commercial and due to
its poor performance, here we do not present results obtained by using this tool. Comparisons
of running times of PhISCS-B implementations using each of Z3, MaxHS and Maxino Max-SAT
solvers are shown in Table 1. This table also contains results of the top-performing ILP (Gurobi)
solver that was used to run PhISCS-I.

3http://mse17.cs.helsinki.fi/index.html
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FN=0.05 FN=0.10 FN=0.15 FN=0.25

SC Solver
# inst.

solved

Avg.

time (s)

# inst.

solved

Avg.

time (s)

# inst.

solved

Avg.

time (s)

# inst.

solved

Avg.

time (s)

4

ILP (Gurobi) 10 413 10 1551 5 1869 2 5713

Z3 10 29 10 59 8 101 5 347

MaxHS 10 39 8 74 9 472 4 5640

Maxino 10 4.6 10 19 8 1417 6 26795

7

ILP (Gurobi) 10 98 10 163 10 110 10 173

Z3 10 19 10 28 10 21 10 36

MaxHS 10 20 10 29 10 29 10 57

Maxino 10 2.8 10 3.8 10 3.4 10 6.5

10

ILP (Gurobi) 10 56 10 95 10 57 10 71

Z3 10 19 10 28 10 24 10 39

MaxHS 10 19 10 27 10 25 10 49

Maxino 10 2.7 10 3.3 10 2.2 10 3.9

Table 1: Comparison of running times (in seconds) of PhISCS implementations by the use of
top-performing CSP solvers from the Max-SAT competition. Results of the top-performing ILP
(Gurobi) solver that was used to run PhISCS-I are also included. Runs were performed using
the formulation which considers SCS data as the input under infinite sites model. All results are
obtained on a single core with a time limit of 24 hours. The number of instances solved within this
limit is also reported. Average running times over terminated instances are shown, rounded to the
nearest integer, except for the cases where the average is lower than 10 seconds. SC: number of
subclones, FN: false negative rate.

Our results in Table 1 show that, in terms of running time, PhISCS-B significantly outperforms
PhISCS-I in all cases. Among the used Max-SAT solvers, Maxino was the top-performing one
typically terminating in a few seconds. The only exceptions are cases with 4 subclones and higher
false negative error rates. However, even in these computationally most difficult cases, it terminates
(within a given time limit) on more instances than most of the other tools which in part explains
its higher average running time compared to the other tools (as the running time average was taken
only over the terminated instances). While the average running time of Z3 and MaxHS is higher
in comparison to Maxino, these tools also show significantly better performance than the Gurobi
implementation of PhISCS-I.

3.2 Measures of the inference accuracy

In order to assess the (dis)similarity between G, the simulated ground truth tree, and T , the tree
inferred by any one of the methods, we use three measures with distinct properties.

1. Number of eliminated (ISA violating) mutations: both true positives (TP) and false
positives (FP) in the inferred tree in comparison to the ground truth are considered.

2. Multi-labeled tree edit distance (MLTED): defined as the minimum number of label
deletions, empty leaf deletions and vertex expansions applied in any order to transform each
of two trees to a maximal common tree. For the practical reasons, here we have used MLTED
similarity measure which trivially follows from MLTED. For more details about MLTED and
this similarity measure we refer to [33].

3. Heuristic based Multi-labeled tree edit distance (HMLTED): The General Tree Edit
Distance TED(τ, ξ) between two rooted, unordered, and node-labeled (with a single label)
trees τ and ξ is defined as the minimum number of edit operations (insertion, deletion and
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substitution of nodes and thus their labels) to transform one tree to the other [34, 35]. Here
we generalize this notion to multi-labeled trees, where each node may have more than one
label but each label is unique to a particular node. On a pair of such trees T and G, we
introduce Heuristic Multi-Label Tree Edit Distance as HMLTED(T,G) = TED(T ′, G′) where
T ′ = F (T ), G′ = F (G) and F = arg minf TED(f(T ), f(G)) among all functions f which are
injective transformations from multi-labeled trees to singly-labeled trees in a way that each
multi-labeled node with k labels is replaced by a path of uniquely labeled nodes of length k
(necessarily such transformations will satisfy TED(f(T ), f(G)) ≥ HMLTED(T,G)).

Note that we focus on trees T and G that have the same set of labels. Without loss of
generality, we can assume that no pair of labels x, y are simultaneously present in a single
node in T and in G, since x and y can be iteratively replaced with a single new label v in
both trees. We can also assume that both T and G have the same root node with identical
labeling unique to the root.

Since the true tree G is typically more compact than inferred tree T , we define the transfor-
mation f first on G and then on T : f transforms the multi-labeled tree G to a singly-labeled
tree G′ based on T in the following way. Consider a breadth first traversal of G. Suppose
that node n visited at a given iteration i has labels L = {l1, l2, . . . , lx} in G. Now consider
all nodes in T , namely {m1,m2, . . . ,mx}, whose labels collectively form L′ = {l1, l2, . . . , ly},
the smallest superset of L. Then f will split n into a path of exactly x singly (and uniquely)
labeled nodes n1, n2, . . . , nx, with corresponding labels l1, l2, . . . , lx in the order these labels
appear in the breadth first traversal of T .

Given the transformation f from G to G′ based on T , the transformation f from T to T ′

based on G′ is defined in a similar manner. Interestingly, we prove that this transformation
f = F , i.e. HMLTED(T,G) = TED(f(T ), f(G)) (Theorem 1 in Appendix B).

Note that mutations violating ISA are excluded from these measures.

3.3 Accuracy Analysis for PhISCS and Available Methods

We compared both the ILP and CSP implementations of PhISCS against two of the methods
operating on single-cell data, namely SCITE and SiFit. We were not able to compare against
OncoNEM since it terminated with an error for most of the input matrices nor against ddClone
which does not infer phylogeny.

As expected, PhISCS-B and PhISCS-I produce highly similar results with the same value of the
objective in all cases and slight differences in the resulting genotypes corrected matrix (denoted as
Y in Section 2.1). These slight differences are very likely consequence of the existence of multiple
optimal solutions in some of the cases. All results presented in this section are obtained by taking
the average over 10 simulations we generated for each combination of parameters (see Appendix A
for details of simulations).

In Figure 1 we present results for the case where ISA violations are allowed, but no bulk data
is used. We focus only on the mutations violating ISA and provide the number of True Positive
(TP) and False Positive (FP) calls for such mutations. As our results show, PhISCS outperforms
SiFit, the only available alternative method operating under the finite sites assumption, especially
in TP measure.

Results of PhISCS for the case where both SCS and bulk data are used under finite sites model
are presented in Figure 2. (Note that neither SCITE, nor SiFit exploits VAFs obtained from the
bulk data.) As Figure 2 illustrates, the combined use of single-cell and bulk data results in improved
accuracy for both, TP and FN calls.
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We present the results of PhISCS-I, PhISCS-B and SCITE based on MLTED in Figure 3. In
order to facilitate the interpretation of results, we use MLTED similarity measure instead of directly
presenting MLTED values. In Figure 3a, we show the results of PhISCS-I and PhISCS-B when
only single-cell data is used as the input under infinite sites model. We observe that all three
methods: PhISCS-I, PhISCS-B and SCITE have comparable accuracy in this case. Next, we show
results of PhISCS when ISA violations are allowed, but no bulk data is used. We can observe
that the results of PhISCS-I improve in comparison to the previous case, and overall it has slightly
better average performance compared to SCITE. When both bulk and SCS data are provided as
the input to PhISCS, we observe further improvements in the accuracy and in this case PhISCS
clearly dominates SCITE in terms of the similarity values. Due to the nearly identical performance
of PhISCS-B and PhISCS-I we include only results of PhISCS-I in Figure 3b and Figure 3c. We
do not include results of SiFit in any of these plots due to its very poor performance in each of the
cases.

Finally, we discuss results of all tools on our newly introduced HMLTED measure. In Figure
4a we present results of PhISCS-B, PhISCS-I and SCITE for the case where SCS data is used as
the only input and infinite sites assumption is made for all mutations (i.e. no mutation elimination
is allowed). Results for the runs where ISA violations are allowed are shown in Figure 4b, where
only SCS data was used as the input, and in Figure 4c where PhISCS-B was provided with both
single-cell and bulk data. As our results illustrate, both implementations of PhISCS and SCITE
have comparable accuracy for the case where single-cell data is used as the only input (we suspect
that most of the differences are due to non-convergence of MCMC chain in SCITE or multiple
equally likely solutions for PhISCS-B and PhISCS-I), however PhISCS significantly benefits from
the use of bulk data showing same or improved performance over SCITE in all of the cases under
finite sites model. Due to its very poor performance in each of the three cases, we did not include
results of SiFit in any of these plots. Also, due to the high similarity of results of PhISCS-B and
PhISCS-I, in Figure 4b and Figure 4c we only show results of PhISCS-I.

4 Results on Real Sequencing Data

To demonstrate the utility of our models, we applied PhISCS to two real SCS datasets from recent
studies. One of these data sets also provides additional bulk sequencing data with VAF values.

JAK2-negative myeloproliferative neoplasm. We first run PhISCS on JAK2-negative myelo-
proliferative neoplasm (essential thrombocythemia) dataset which contains only SCS data [36]. The
original study identified 712 SNVs in 58 cells, with an estimated allelic dropout rate of 43.03% and
a false discovery rate of 6.04×10−5. A subset of 18 out of 712 SNVs was identified to be important
to tumor progression and retained for further analysis. We used PhISCS to infer tumor phylogeny
of the reduced-size dataset which contains 45% of missing values. PhISCS identifies three mutations
that break ISA and its output tree topology is provided in Figure 5. Note that this phylogeny does
not fully agree with that obtained by earlier studies. Partially this could be due to the lack of VAF
values that PhISCS makes extensive use of for the purpose of refining the phylogeny. Furthermore,
this data set is very noisy with many missing entries.

Childhood acute lymphoblastic leukemia. A more interesting dataset that we tested PhISCS
on is obtained from a lymphoblastic leukemia study where both single-cell and bulk sequencing data
were made available [37]. We focused on the second patient from this study which has multiple
subclones with a non-linear tree topology. For this patient, 16 mutations in 115 single cells were
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identified. The estimated FN rate is 0.181749. Since SCS data presented in the study are affected by
the presence of doublets, we first pre-processed SCS data matrix by the use of Single Cell Genotyper
[14]. The tree inferred by PhISCS, interestingly by the use of SCS data only and with no tolerance
for ISA violation (results are shown in Figure 6) seem highly accurate and in good agreement with
the tree topology published in the study. The most notable difference is mutation LINC00052
was placed as a single mutation at branch descending from a clonal population. However, this
placement is strongly supported by mutual mutation presence in single-cells where this mutation
is rarely present together with some other mutations from the dataset, except for clonal mutations
PLEC, RIMS and SIGLEC as is expected according to the inferred topology. It is interesting to
observe that the VAFs of specific mutations (even though they have not been used by PhISCS)
seem to contradict with the tree topology (e.g. the mutation on CMTM8). This is likely due to
the poor VAF estimation - likely due to an undetected CNV involving the gene.

Note that even when we use VAFs and allow ISA violations, we obtain a similar topology as
depicted in Figure 7. For this topology, the VAF values do not present a contradiction - which
is a highly desirable feature when the VAF values are measured reasonably accurately. Also,
note that this particular solution has eliminated three mutations including those in CMTM8 and
RRP8. CMTM8 has the mutation with a high VAF value that contradicted with its lower subclonal
placement in Figure 6. PhISCS has correctly eliminated it to avoid this contradiction. RRP8, on the
other hand, has a mutation whose VAF is much lower than the sum of those in its two child nodes.
PhISCS is again correct in eliminating it and thus avoiding any contradiction. All of this points
out that PhISCS can potentially help detect previously underexplored copy number aberrations or
identify inconsistencies in CNV calls.
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Figure 1: Simulation results for the case where ISA violations are allowed, but only SCS data
used as the input. The number of correctly identified ISA violating mutations (True Positive,
abbreviated as TP), as well as the number of mutations incorrectly reported to violate ISA (False
Negative, abbreviated as FP) in comparison to the ground truth are presented. SC: number of
subclones, ISA: number of ISA violating mutations.
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Figure 2: Simulation results ISA violations are allowed and both, single-cell and bulk data used as
the input. The number of correctly identified ISA violating mutations (True Positive, abbreviated
as TP), as well as the number of mutations incorrectly reported to violate ISA (False Negative,
abbreviated as FP) in comparison to the ground truth are presented. SC: number of subclones,
ISA: number of ISA violating mutations.
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Figure 3: Comparison of different methods based on MLTED similarity measure is shown where
values are normalized between 0 to 1. (a) MLTED similarity measure results when no ISA violations
are allowed and no bulk data used. (b) MLTED similarity measure results when ISA violations are
allowed in PhISCS, but bulk data is not part of the input. (c) MLTED similarity measure results
when PhISCS employs both ISA violations and VAFs. Due to the nearly identical performance of
PhISCS-B and PhISCS-I in each of (b) and (c) we show only results of PhISCS-I. Due to the very
poor performance of SiFit, we do not include any of the results reported by this tool. These plots
illustrate that PhISCS-B and PhISCS-I have comparable performance to SCITE in the cases where
SCS data is the only input used, however addition of bulk data to the input results in improved
performance of PhISCS which clearly outperforms SCITE.
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Figure 4: Comparison of different methods based on HMLTED dissimilarity measure. (a) HMLTED
values when no ISA violations are allowed. (b) HMLTED values when ISA violations are allowed
in PhISCS, but SCS data is used as the only input. (c) HMLTED values when ISA violations
are allowed in PhISCS and both single-cell and bulk data are used as the input. CSP and ILP
implementations of PhISCS show highly similar performance under finite sites model and therefore
in each of (b) and (c) we opted to present only results of PhISCS-I. As our results illustrate,
PhISCS-B and PhISCS-I have comparable performance to SCITE in the cases where SCS data is
the only input used, however addition of bulk data to the input results in improved performance
of PhISCS which outperforms results of SCITE.
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Figure 5: Tree inferred by PhISCS for JAK2-negative myeloproliferative neoplasm. As expected,
PhISCS produces a near-linear topology for the tumor phylogeny.
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Figure 6: Inferred tumor phylogeny for Patient 2 from [37] through the use of single-cell data only.
VAFs derived from bulk data for each mutation (even though they are not used by PhISCS) is
provided next to each gene label.

Figure 7: Inferred tumor phylogeny for Patient 2 from [37] through the joint use of bulk and SCS
data and allowing ISA violations. The topology of the tree and the mutational placements are
highly similar to that in Figure 6 with the exception of three mutations eliminated, possibly due
to the inconsistent cellular prevalence and VAF values. Coloring of subclones (nodes) is guided
by Figure 6. Subclones corresponding to blue and green nodes are each split into two subclones
compared to Figure 6. This is due to the use of VAFs that provide more refined tumor subclonal
composition and separation of subclonal populations, otherwise not distinguishable by the use of
SCS data only.

23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2018. ; https://doi.org/10.1101/376996doi: bioRxiv preprint 

https://doi.org/10.1101/376996
http://creativecommons.org/licenses/by/4.0/


A Simulation Models used for Benchmarking Tumor Phylogeny
Inference Methods

We can depict the history of tumor progression and subclonal composition by the following (the
notation is borrowed from [19]):

• Rooted phylogenetic tree T with the set of nodes S(T ) of size s, where the root node rep-
resents the population of healthy cells and each of the remaining nodes represents a distinct
population of tumor cells (i.e. a subclone) emerging through selective sweeps during the
course of tumor evolution. This tree can be represented by the ancestry matrix AT defined
as follows:

AT [i, j] = 1, if node i is an ancestor of node j or i = j

= 0, otherwise.

• Set M = {M1,M2, . . . ,Mm} representing mutations that occur during the course of tumor
evolution.

• Function NT : M → S(T ) where NT (x) denotes the node (i.e. subclone) in tree T where
mutation x occurs for the first time.

• Set F = {f1, f2, . . . , fs} where, for each i ∈ {1, 2, . . . , s}, fi is a non-negative real number
that represents the frequency of the cellular population corresponding to node i of tree T .
Obviously, frequencies fi must satisfy

∑s
i=1 fi = 1.

In our simulations, we restrict ourselves to heterozygous single-nucleotide variants (SNVs) from
a diploid regions of the genome.

Under the ISA, for a mutation Mi we define its cellular prevalence h(Mi) as a sum of frequencies
of cellular populations harboring Mi. According to our notation, h(Mi) can be expressed as

h(Mi) =

s∑
j=1

AT [NT (Mi), j] · fj .

Finally, for node t ∈ T we define its genotype, denoted as Gt, as a row binary vector of length m
such that Gt[i] = 1 only if Mi is present in the subclone corresponding to node t, which is equivalent
to mutation Mi emerging at the node on the path between the root and node t (inclusively). More
formally, Gt[i] = AT [NT (Mi), t].

Based on the above notation, and using model of clonal tumor evolution and bulk-data simula-
tion presented in [9] and [19], we generate tree T of size s by randomly choosing one of the possible
rooted tree topologies of size s (that were made available in [9]). We then choose values of fi by
formula

fi = 0.05 + (1− 0.05 · s) · xi∑s
i=1 xi

where xi for i ∈ {1, 2, . . . , s} are randomly chosen real numbers from the interval (0, 1). The above
constant 0.05 ensures the minimal subclonal frequency of 5%. Finally, we randomly spread 40
mutations across the nodes of T , excluding root, and such that each node gets assigned at least
one mutation in order to avoid nodes with identical genotypes. We repeat the above simulations
10 times for each s ∈ {4, 7, 10}.

For mutation Mi we simulate bulk-sequencing read counts from binomial distribution with pa-
rameters 5000 (number of trials) and h(Mi)

2 (success probability), where 5000 represents sequencing
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coverage. Value of h(Mi) is divided by 2 in the success probability parameter of binomial distribu-
tion due to the assumption that Mi is heterozygous SNV from diploid region of the genome.

For a given tree of tumor evolution and subclonal frequencies simulated above, SCS data is
simulated by first drawing 100 single cells from s − 1 cancerous populations proportional to their
subclonal frequencies and using subclone mutational profiles encoded by row vectors Gt, where
t ∈ S(T ). After that, we first simulate missing(non-observed) entries of SCS data matrix with rate
of 0.10. Next, we simulate false positive entries using the false positive rate of 0.0001. Finally, we
introduce false negative sequencing noise by using false negative rates of 0.15 and 0.25 each. This
is repeated for all 30 simulations generated above resulting in 60 different simulations.

In order to simulate violations of ISA, for each of the 60 simulations described above, we first
generate simulations where exactly one of the mutations violates ISA. In order to do this, we
randomly choose mutation Mi and assign it to node p different from root and NT (Mi). Depending
on the relation between p and NT (Mi) this violation might represent recurrence or loss of previously
obtained mutation. In either case we update genotype of each node and value h(Mi) (in an obvious
way) and repeat the above procedure of generating bulk and SCS data.

For each of 60 simulations from the previous step, each having exactly one mutation Mi violating
ISA, we choose another mutation Mj 6= Mi from set M and apply the same procedure as above
simulating two mutations violating ISA.

180 simulations generated in the previous steps are later used as the input for benchmarking.

B Proof of theorem related to HMLTED measure

Theorem 1. There is a simple transformation f of any input tree T to another T ′ and any other
input tree I to another I ′ for which TED(T ′, G′) = HMLTED(T,G).

Proof. We prove this theorem by induction. For the base case, we assume that T has two vertices,
one being the root and another one vertex with label {l1} and similarly G has two vertices, one
being the root and another one vertex with label {l1}. After applying f to G based on T , we get
G′ = G i.e. G′ = f(G) = G. Similarly, after applying f to T based on G′, we get that T ′ = T .
So, from the definition of HMLTED, we can write that TED(T ′, G′) = HMLTED(T,G). Thus, the
given statement is true.

For the hypothesis step, assume that the given statement is true for T , G, T ′ and G′. Now we
delete an arbitrary label l and corresponding empty vertex from all trees which results in T1, G1,
T ′1 and G′1, and we assume that TED(T ′1, G

′
1) 6= HMLTED(T1, G1). As we apply f to G1 based

on T1 i.e. G′1 = f(G1) and also apply f to T1 based on G′1, there exists a bijection between the
vertices of T ′1 and G′1. So, a single l labelled vertex will be deleted from both T ′1 and G′1. In the
transformation of T1 and G1 in HMLTED(T1, G1), no l labelled vertex will exist as l is already
absent in T1 and G1 and it will not change the topology either. Thus there will be no change in
distance measure which contradicts our assumption. So, the given statement is true.

C Details of Running SCITE, SiFit and PhISCS

SCITE and SiFit were both run using default parameter settings, with the exception of chain length
in SCITE. In particular, for SCITE we set the number of repetitions to 1 and the chain length
of MCMC repetitions to 900000 (10 times higher than default value to allow better convergence).
SiFit’s parameters were set to 1 restart and 10000 iterations. Since SiFit outputs cell lineage trees,
we had to perform output postprocessing in order to obtain clonal trees of tumor evolution used in
our model.
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In order to emulate real settings, where only approximate estimates of false negative (FN) and
fale positive (FP) error rates are available, in each case we first added noise to true FN and FP error
rates and provide resulting noisy values of these parameters as input to each of PhISCS, SCITE and
SiFit. The noise was added as follows: if FN error rate used to generate simulations equals β noisy
value used as parameter was β × N (1, 0.1), where N (1, 0.1) is a random number derived from a
normal distribution with mean 1, standard deviation 0.1 and from the interval (0.5, 2) (draws from
Normal distribution are repeated in the cases where number falls outside of this range). Analogous
was done for adding noise to FP error rates.

In the running simulation for Figure 2 when ISA violations are allowed and both, single-cell
and bulk data used as the input, we used δ = 0.05.

D Source codes of Max-SAT solvers used for the implementation
of CSP formulation of PhISCS

Source codes of Max-SAT solvers used for the implementation of CSP formulation of PhISCS (i.e.
PhISCS-B) are available at:

• Z3: https://github.com/Z3Prover/z3

• MaxHS and Maxino: http://mse17.cs.helsinki.fi/descriptions.html
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