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Abstract 

Tumor-propagating glioblastoma (GBM) stem-like cells (GSCs) of the proneural and mesenchymal molecular subtypes have 

been described. However, it is unknown if these two GSC populations are sufficient to generate the spectrum of cellular 

heterogeneity observed in GBM. The lineage relationships and niche interactions of GSCs have not been fully elucidated. We 

perform single-cell RNA-sequencing (scRNA-seq) and matched exome sequencing of human GBMs (12 patients; >37,000 cells) 

to identify recurrent hierarchies of GSCs and their progeny. We map sequenced cells to tumor-anatomical structures and identify 

microenvironment interactions using reference atlases and quantitative immunohistochemistry. We find that all GSCs can be 

described by a single axis of variation, ranging from proneural to mesenchymal. Increasing mesenchymal GSC (mGSC) content, 

but not proneural GSC (pGSC) content, correlates with significantly inferior survival. All clonal expressed mutations are found in 

the GSC populations, with a greater representation of mutations found in mGSCs. While pGSCs upregulate markers of cell-cycle 

progression, mGSCs are largely quiescent and overexpress cytokines mediating the chemotaxis of myeloid-derived suppressor 

cells. We find mGSCs enriched in hypoxic regions while pGSCs are enriched in the tumor’s invasive edge. We show that varying 

proportions of mGSCs, pGSCs, their progeny and stromal/immune cells are sufficient to explain the genetic and phenotypic 

heterogeneity observed in GBM. This study sheds light on a long-standing debate regarding the lineage relationships between 

GSCs and other glioma cell types. 
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Introduction 

Glioblastoma (GBM) is the most aggressive cancer of the adult brain. 

GBM genetics have been studied extensively and yet targeted 

therapeutics have produced limited results. GBM remains essentially 

incurable. 

GBMs have been classified into subtypes that have prognostic value 

based on gene expression (1). We and others have shown that GBMs 

contain heterogeneous mixtures of cells from distinct transcriptomic 

subtypes (2, 3). This intratumor heterogeneity is at least partially to 

blame for the failures of targeted therapies.  

GBM-propagating stem-like cells (GSC) have been identified that 

express genes matching the mesenchymal (e.g. CHI3L1(YKL-40), 

CD44) and proneural (e.g. OLIG2, DLL3) transcriptomic subtypes (e.g. 

4). However, the lineage relationship between proneural GSCs (pGSC) 

and mesenchymal GSCs (mGSCs) is unknown. Surprisingly little is 

known about the cellular progeny of GSCs in vivo and their interactions 

with their microenvironment. It is unclear if proneural and/or 

mesenchymal GSCs are sufficient to generate the heterogeneity 

observed in GBM. 

 

We performed single-cell RNA sequencing (scRNA-seq) and whole-

exome DNA sequencing (exome-seq) of specimens from untreated 

human GBMs. We integrated this with meta-analysis of sequencing data 

from The Cancer Genome Atlas (TCGA) 

(https://cancergenome.nih.gov/) and anatomical data from The 

Glioblastoma Atlas Project (GAP) 

(http://glioblastoma.alleninstitute.org/). Using immunohistochemistry 

(IHC) and automated image analysis of human GBM microarrays we 

validated phenotypes at the protein level. 

 

We show that all GBM cells can be described by a single axis of gene 

signature, which ranges from proneural to mesenchymal. At the 

extremes of this axis reside stem-like cells which express canonical 

markers of mGSCs and pGSCs. All clonal expressed mutations in our 

specimens are found in the GSC subpopulations, with mGSCs having a 

higher representation of mutations. Our analysis shows that mGSCs, 

pGSCs, their progeny and stromal/immune cells are sufficient to explain 

the heterogeneity observed in GBM. 
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Results 

Single-cell mRNA and bulk DNA profiling of human GBMs 

We applied scRNA-seq to biopsies from 8 primary untreated human 

GBMs (table S1). Our goal was to profile both for cellular coverage (to 

survey cellular phenotypes) and for transcript coverage (to compare 

genetics). Therefore, we performed scRNA-seq on 6/8 samples via the 

10X Genomics Chromium platform (10X) to obtain 3’ sequencing data 

for 37,196 cells. ScRNA-seq of the other 2/8 cases was done using the 

Fluidigm C1 platform (C1), which yielded full-transcript coverage for 

192 cells. We incorporated 4 more published cases from our C1 

pipeline, adding 384 cells (3). For 4 of the 10X cases and 4 of the C1 

cases, the biopsies were minced, split and both scRNA-seq and exome 

sequencing (exome-seq) were performed (table S1). In total, scRNA-seq 

of 37,772 cells from 12 cases were used in this study. 

We applied our pipeline for scRNA-seq quality control (5), 

quantification of expressed mutations (3, 6), and cell-type identification 

(7, 8). This identified 6,295 tumor-infiltrating stromal and immune cells 

based on expressed mutations, clustering and canonical marker genes 

(Fig. 1 A-B and Fig. S1A-D). We term the remaining 26,215 cells 

neoplastic, as they express clonal malignant mutations that have been 

validated by exome-seq (table S2). Only neoplastic cells were used for 

all subsequent analyses. 

The transcriptional phenotypes of GBM neoplastic cells can be 

explained by a single axis that varies from proneural to mesenchymal  

An unbiased principal component analysis (PCA) revealed two patient-

independent clusters of neoplastic cells (Fig. 1C, S1E-F; table S3). A 

differential-expression test between clusters identified canonical 

Fig. 1. Single-cell sequencing reveals a single axis of variation in GBM cellular phenotypes. (A) A t-SNE plot of 32,151 10X cells from 6 patients. 
Cells are colored by the presence (red) or absence (black) of clonal CNVs. (B) (Top-left) Expression of GBM-enriched genes in IDH1-wildtype human 
GBMs from TCGA (n=144) and non-malignant human brain from Gtex (n=200). (Top-right) Average expression (+- SEM) of GBM marker-genes in cells 
classified as neoplastic (black) and non-neoplastic (grey). (Bottom) Heatmap of the 50 most specific genes (Wilcoxon rank-sum test) in clusters of non-
neoplastic cells. (C) (Top) PCA of 25,899 10X neoplastic cells. Density curves of a Gaussian mixture model fit to PC1 sample scores are in gray. 
(Bottom) Distributions of cells from each patient along PC1. (D) Differentially expressed genes between PCA clusters (abs. log2 fold-change>1 and adj. 
p <0.001 in red). (E) Fractions of cycling cells, *** : Fisher p<0.001. (F-G) Expression of top-loading genes from PC1 (F) and PC2 (G) in single cells. 
Cells are sorted by PC1/2 sample score resp. 
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markers of the proneural (e.g. PDGFRA) and mesenchymal (e.g. CD44) 

subtypes as significant (table S4). Mesenchymal cells significantly 

over-express markers of response to hypoxia (e.g. HIF1A) and 

cytokines that promote myeloid-cell chemotaxis (e.g. CSF1, CCL2, 

CXCL2). However, mesenchymal cells do not express high levels of 

MKI67 or other markers of cell-cycle progression. Conversely, 

proneural cells express high levels of MKI67 as well as cyclin-

dependent kinase (Fig. 1D). We estimated the fraction of actively 

Fig. 2. MGSCs and pGSCs explain the genetic and phenotypic heterogeneity of GBM. (A) Expression of mGSC and pGSC markers in single cells 
from non-malignant brain. (B) Z-scores of averages over pGSC and mGSC signature genes, compared across glial cell types. (C) Hierarchical clustering 
of Pearson correlations between mGSC, pGSC and cell-cycle genes in IDH1-wildtype GBM RNA-seq samples from TCGA (n=144). (D) Heatmap and 
boxplots of the relative contributions of predictor cell-types (rows) to the overall variance explained by a linear model fit to each TCGA sample. (E) 
Percentages of CNVs/SNVs expressed in GSCs in 10X/C1 data respectively, computed out of all mutations expressed in any patient’s cell that were 
validated by patient-matched exome-seq. (F) Percentages of SNVs (computed as in E) found in mGSCs and pGSCs for increasing stringency of 
stemness-score threshold. (G) Kaplan-Meier analysis comparing survival of IDH-wildtype GBMs from TCGA to average expression of the mGSC and 
pGSC gene signatures in patient-matched RNA sequencing. 
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cycling cells using the Seurat package (9). By this metric, 15.6% of 

proneural cells are cycling compared to 2.9% of mesenchymal cells 

(Fig. 1E). Importantly, all our clinical specimens (assessed via either 

10X or C1) contain cells of both phenotypes: proliferating proneural 

cells and mesenchymal cells with a quiescent, cytokine-secretory 

phenotype. 

 

Cells at the left and right extremes of principal component 1 (PC1) 

express high levels pGSC or mGSC markers (4) respectively, as 

indicated by PC1 gene loadings (Fig. 1F, S1D-E). We therefore 

interpreted the top-loading genes from each direction as representing 

pGSC and mGSC gene signatures. We used those signatures to score all 

cells for stemness, controlling for technical variation as previously 

described (9, 10). Principal component 2 (PC2) correlates with cycling 

cells (Fig. 1G). Thus, while stemness correlates with cell cycle for both 

proneural and mesenchymal cells, more pGSCs than mGSCs express 

markers of cell-cycle progression, and at higher levels. 

GBM cells are stratified by differentiation gradients observed in 

gliogenesis 

In our differential expression test we observed that proneural cells 

specifically express markers of the oligodendrocyte lineage (e.g. 

OLIG2, SOX10), while mesenchymal cells instead express markers of 

astrocytes (e.g. GFAP, AQP4). We evaluated the mGSC and pGSC 

gene signatures in scRNA-seq of glia from fetal and adult human brain 

(11, 12). We found that pGSC-signature genes are enriched in 

oligodendrocyte progenitor cells. The mGSC signature, however, is 

comprised of genes expressed by neural stem cells as well as markers of 

astrocytes (Fig. 2A and 2B). 

 

In addition to mGSCs and pGSCs, we find neoplastic cells (possessing 

clonal malignant mutations) that do not express stemness or cell-cycle 

signatures above background. Instead they express either markers of 

differentiated astrocytes (e.g. ALDOC) or differentiated 

oligodendrocytes (e.g. MAG, MOG). While the GSCs express high 

levels of positive WNT-pathway regulators, these more differentiated 

cells express high levels of WNT-pathway agonists (Fig. S2A). Thus, 

GBMs contain mesenchymal and proneural populations that align with 

astrocyte and oligodendrocyte differentiation gradients respectively. 

PGSCs, mGSCs, their differentiated progeny and stromal/immune 

cells explain the phenotypic heterogeneity observed in GBM 

We found that our mGSC and pGSC gene signatures are co-expressed 

across TCGA datasets (Fig. 2C). While mGSC and pGSC signature 

genes are correlated among themselves, the mGSC and pGSC 

signatures are anti-correlated with each other. Moreover, the signature 

for cell-cycle progression obtained from PC2 more strongly correlates 

in TCGA data with the pGSC signature than the mGSC signature, 

consistent with our scRNA-seq data.  

Using our scRNA-seq data and published scRNA-seq from human brain 

tissue (11, 12) as a basis, we pooled reads across cells of the same type. 

This yielded data-driven profiles for mGSCs, pGSCs, astrocytes, 

oligodendrocytes, neurons, endothelial cells, myeloid cells and T-cells. 

We then used these cell-type signatures as predictors in a linear 

regression model. We fit our model to each TCGA GBM RNA-

sequencing dataset individually (Fig. 2D). We found that samples of 

both the mesenchymal and classical Verhaak subtypes are enriched for 

mGSCs and depleted of pGSCs. While classical samples are 

distinguished by higher infiltration of astrocytes, mesenchymal samples 

contain high levels of infiltrating immune cells. Proneural samples are 

characterized by the highest levels of pGSCs, oligodendrocytes and 

neurons. In summary, the full spectrum of heterogeneity observed in 

TCGA GBM data can be explained by varying proportions of GSCs, 

their differentiated progeny and infiltrating stromal/immune content. 

GSCs explain their specimen’s genetic heterogeneity but only mGSC 

content is prognostic 

We applied our pipeline for identifying single-nucleotide variants 

(SNVs) and megabase-scale copy-number variants (CNVs) to our 

exome-seq data (3, 6). We restricted ourselves to mutations that 

occurred at a minimum of 10% variant allele frequency and identified 

cells in our scRNA-seq which expressed these mutations. For all 

patients, we found that all expressed, validated mutations are present in 

the GSCs (Fig. 2E and S3). We found that mGSCs possess a greater 

representation of mutations than pGSCs in all specimens. This result 

holds even if we increase the stringency in GSC assignment by 

thresholding the stemness score (Fig. 2F). Cox-regression analysis 

identifies the mGSC signature as correlating with significantly inferior 

survival in TCGA data. However, pGSC content is not prognostic (Fig. 

2G).   

GSC niche localization and microenvironment interactions elucidated 

using reference atlases and quantitative IHC 

We compared our mGSC, pGSC and cell-cycle signatures to RNA 

sequencing from the GAP (Fig. 3A-B). The GAP has annotated, micro-

dissected and RNA sequenced GBM anatomical structures from human 

specimens. We found that mGSCs are enriched in hypoxic regions. 

PGSCs are enriched in the tumor’s leading edge and in regions of 

diffuse infiltration of tumor-adjacent white matter.  

 

To infer GSC interactions with the microenvironment, we compared our 

scRNA-seq to a database of known receptor-agonist interactions. We 

annotated cognate pairs that were co-expressed by neoplastic and non-

neoplastic cells from the same sample (table S5). We found that mGSCs 

compared to pGSCs express a greater diversity of surface receptors 

responsive to ligands expressed by stromal and immune cells (Fig. 3C). 

 

To visualize and quantify the associations between GSCs, cell cycle and 

hypoxia, we performed IHC for CD44 (mGSCs), DLL3 (pGSCs), CA9 

(hypoxia) and Ki67 (cell cycle) on GBM microarrays (Fig. 4A; table 

S6), as well as positive and negative control tissues (Fig. S4). We did 

not find any cycling CD44+ cells in our samples, while approximately 

5% of DLL3+ cells expressed Ki67. On the other hand, CD44+ cells 

colocalized with CA9 at 2-fold greater frequency than DLL3+ cells 

(Fig. 4B). This dovetails with our findings in scRNA-seq, TCGA and 

GAP data, which show that pGSCs are more proliferative while mGSCs 

are enriched in hypoxic regions. 
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Discussion 

It is known that an individual tumor may contain multiple GSC clones 

(e.g. 13). We applied exome-seq and scRNA-seq to human tissues and 

found that all GBMs contain hierarchies of mesenchymal and proneural 

GSCs and their more differentiated progeny. However, the functional 

differences between GSC populations have not been fully determined. 

Murine GBMs can be separated into two cell populations that have 

different capacities for tumorigenicity and self-renewal (14). The 

Id1high/Olig2- and Id1low/Olig2+ populations found in the model of 

Barrett et al. match the expression signatures of mGSCs and pGSCs 

respectively. Moreover, the finding of Barrett et al. that Id1high cells 

initiate tumors containing both Id1high and Olig2+ cells, while tumors 

from Id1low/Olig2- cells do not generate Id1high progeny, is consistent 

with our finding of a greater representation of clonal mutations in the 

mGSC population compared to pGSCs. Knowledge of GBM cell types, 

Fig. 3. Niche interactions for mGSCs and pGSCs via sequencing. (A-B) MGSC, pGSC and cell-cycle signatures in GAP RNA-sequencing of GBM-
anatomical structures. (C) Ligand expression in non-neoplastic cells (Left) and cognate receptor expression in neoplastic cells (Right). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 26, 2018. ; https://doi.org/10.1101/377606doi: bioRxiv preprint 

https://doi.org/10.1101/377606


Müller al., 25 07 2018– preprint copy - BioRxiv 

6 

their lineage relationships and functional differences is needed to 

develop combination therapies that address intratumor heterogeneity. 

 

Materials and Methods 

Tumor tissue acquisition and processing 

We acquired fresh tumor tissue and peripheral blood from patients 
undergoing surgical resection for GBM. De-identified samples were 
provided by the Neurosurgery Tissue Bank at the University of 
California San Francisco (UCSF). Sample use was approved by the 
Institutional Review Board at UCSF. The experiments performed here 
conform to the principles set out in the WMA Declaration of Helsinki 
and the Department of Health and Human Services Belmont Report. All 
patients provided informed written consent. Tissues were minced in 
collection media (Leibovitz’s L-15 medium, 4 mg/mL glucose, 100 
u/mL Penicillin, 100 ug/mL Streptomycin) with a scalpel. Samples 
dissociation was carried out in a mixture of papain (Worthington 
Biochem. Corp) and 2000 units/mL of DNase I freshly diluted in EBSS 
and incubated at 37 °C for 30 min. After centrifugation (5 min at 300 
g), the suspension was resuspended in PBS. Subsequently, suspensions 
were triturated by pipetting up and down ten times and then passed 
through a 70-μm strainer cap (BD Falcon). Last, centrifugation was 
performed for 5 min at 300 g. After resuspension in PBS, pellets were 
passed through a 40-μm strainer cap (BD Falcon), followed by 
centrifugation for 5 min at 300 g. The dissociated, single cells were then 

resuspended in GNS (Neurocult NS-A (Stem Cell Tech.), 2 mM L-
Glutamine, 100 U/mL Penicillin, 100 ug/mL Streptomycin, N2/B27 
supplement (Invitrogen), sodium pyruvate). 

Fluidigm C1-based scRNA-seq 

Fluidigm C1 Single-Cell Integrated Fluidic Circuit (IFC) and SMARTer 
Ultra Low RNA Kit were used for single-cell capture and 
complementary DNA (cDNA) generation. cDNA quantification was 
performed using Agilent High Sensitivity DNA Kits and diluted to 
0.15–0.30 ng/μL. The Nextera XT DNA Library Prep Kit (Illumina) 
was used for dual indexing and amplification with the Fluidigm C1 
protocol. Ninety-six scRNA-seq libraries were generated from each 
tumor/Cd11b + sample and subsequently pooled for 96-plex sequencing. 
cDNA was purification and size selection were carried out twice using 
0.9X volume of Agencourt AMPure XP beads (Beckman Coulter). The 
resulting cDNA libraries were quantified using High Sensitivity DNA 
Kits (Agilent). 

10X genomics-based scRNA-seq 

Tissue was dissociated by incubation in papain with 10% DNAse for 30 
min. A single-cell suspension was obtained by manual trituration using 
a glass pipette. The cells were filtered via an ovomucoid gradient to 
remove debris, pelleted, and resuspended in Neural Basal Media with 
serum at a concentration of 1700 cells/uL. In total, 10.2 uL of cells were 
loaded into each well of a 10X Chromium Single Cell capture chip and 

Fig. 4. Niche interactions for mGSC and pGSC via IHC. (A) Percentages of CD44/DLL3 cells also positive for CA9/Ki67; ** : Wilcoxon p<0.001. (B) 
Representative stains and image segmentation.   
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a total of two lanes were captured. Single-cell capture, reverse 
transcription, cell lysis, and library preparation were performed per 
manufacturer’s protocol. Sequencing for both platforms was performed 
on a HiSeq 2500 (Illumina, 100-bp paired-end protocol). 

Public data acquisition 

Normalized counts from TCGA RNA-seq data were obtained from the 
Genomics Data Commons portal (https://gdc.cancer.gov/). Patients 
diagnosed as GBM and wild-type IDH1 expression (n = 144) were 
normalized to log2(CPM + 1) and used for analysis. TCGA GBM 
microarray and associated survival data were obtained from the Gliovis 
portal (15). Z-score normalized counts from regional RNA-seq of 122 
samples from ten patients were obtained via the web interface of the Ivy 
GAP (http://glioblastoma.alleninstitute.org/) database.  

Exome-sequencing and genomic mutation identification 

The NimbleGen SeqCap EZ Human Exome Kit v3.0 (Roche) was used 
for exome capture on a tumor sample and a blood control sample from 
each patient. Samples were sequenced with an Illumina-HiSeq 2500 
machine (100-bp paired-end reads). Reads were mapped to the human 
grch37 genome with BWA (16) and only uniquely matched paired reads 
were used for analysis. PicardTools 
(http://broadinstitute.github.io/picard/) and the GATK toolkit (17) 
carried out quality score re-calibration, duplicate-removal, and re-
alignment around indels. Large-scale (>100 Exons) somatic copy 
number variants (CNVs) were inferred with ADTex (18). To increase 
CNV size, proximal (< 1 Mbp) CNVs were merged. Somatic SNVs 
were inferred with MuTect 
(https://www.broadinstitute.org/cancer/cga/mutect) for each 
tumor/control pair and annotated with the Annovar software package 
(19). 

Single-cell RNA-sequencing, data processing and neoplastic-cell 

classification 

Data processing of C1 data was performed as described previously (3). 
Briefly, reads were quality trimmed and TrimGalore! 
(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) was 
used to clip Nextera adapters. HISAT2 (20) was used to perform 
alignments to the grch37 human genome. Gene expression was 
quantified using the ENSEMBL reference with featureCounts (21). 
Only correctly paired, uniquely mapped reads were kept. In each cell, 
expression values were scaled to counts per million (CPM)/100+1 and 
log transformed. Low-quality cells were filtered by thresholding 
number of genes detected at 1000 and at least 100,000 uniquely aligned 
reads. For 10x data we utilized CellRangeR for data pre-processing and 
gene expression quantification (version 1.3.6.).  

Classification of somatic mutations 

The presence/absence of somatic CNVs in 10x data was assessed with 
CONICSmat (6). We retained CNVs with a CONICSmat likelihood-
ratio test <0.001 and a difference in Bayesian Criterion >300. For each 
CNV we used a cutoff of posterior probability >0.5 in the CONICSmat 
mixture model to infer the presence/absence of that CNV in a given 
cell.  

For the Fluidigm C1 data we utilized our previous CNV and SNV 
classifications (3).  We retained only SNVs detected in exome-seq at 
>10% variant frequency in the tumor and <10% variant frequency in 
patient‐matched normal blood. Cells expressing those tumor-restricted 
variant alleles were considered positive for the respective SNVs.  

Dimensionality reduction and calculation of stemness scores 

The Seurat package was used for tSNE plots (9). PCA was done using R 
3.4.2. The 1000 top genes with the highest biological variability were 
identified with the scran R package (22), for each patient. PCA was 
done using those genes that were amongst the 1000 most variable genes 
for at least three patients (757 genes). We defined the mGSC and pGSC 
gene sets as the top 15% of genes most strongly loading PC1, positively 
for mGSCs and negatively pGSCs. Stemness scores were calculated 

using these gene sets as input to the AddModuleScore function from the 
Seurat package.  

Deconvolution of TCGA RNA-sequencing data via linear models 

To deconvolve GBM RNA-sequencing data from TCGA according to 
cell types learned from scRNA-seq, we first pooled scRNA-seq read-
counts by cell type across mGSCs, pGSCs, non-malignant 
oligodendrocytes, astrocytes, neurons, TAMs, T-cells, and endothelial 
cells. The data used for this were our GBM scRNA-seq, as well as 
scRNA-seq of human fetal and adult non-malignant brain tissues (11, 
12). The resulting 8 count vectors were independently normalized to 
log2(CPM/10+1). We then fit a linear model to each TCGA RNA-
sequencing dataset (also scaled to log2(CPM/10+1) using these vectors 
as predictors. We assessed the relative contribution of each predictor to 
the overall variance explained using the Lindeman, Merenda and Gold 
(lmg) method as implemented in the relaimpo R package (23). 

Immunohistochemistry  

Immunohistochemistry (IHC) Optimization was performed on a Leica 
Bond automated immunostainer using conditions optimized for each 
antibody (table S5). Heat-induced antigen retrieval was performed using 
Leica Bond Epitope Retrieval Buffer 1 (Citrate Buffer, pH 6.0) and 
Leica Bond Epitope Retrieval Buffer 2 (EDTA solution, pH 9.0) for 20 
minutes (ER2(20)). Non-specific antibody binding was blocked using 
5% milk in PBST or Novocastra Protein Block (Novolink #RE7158). 
Positivity was detected using Novocastra Bond Refine Polymer 
Detection and visualized with 3’3 diaminobenzidine (DAB; brown) and 
alkaline phosphatase (AP; red). A Hematoxylin nuclear counterstain 
(blue) was applied. Duplex controls were performed to provide a 
reference of specificity of the selected primary antibody and secondary 
detection system. For the DLL3 and CA9 duplex, 2 sets of single-
stained control tissues were used since the antigens of interest are not 
commonly co-expressed in normal tissue types. Image analysis of whole 
slide images (8 slides from GBM patients, 5 control slides) was 
performed using the Aperio software (Leica) and the ImageDx slide-
management pipeline (Reveal Bio). All tissue and staining artifacts 
were digitally excluded from the reported quantification.  
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