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Abstract 

Transcriptional dysregulation drives cancer formation but the underlying mechanisms are still poorly 

understood. As a model system, we used renal cell carcinoma (RCC), the most common malignant kidney 

tumor which canonically activates the hypoxia-inducible transcription factor (HIF) pathway. We performed 

genome-wide chromatin accessibility and transcriptome profiling on paired tumor/normal samples and 

found that numerous transcription factors with a RCC-selective expression pattern also demonstrated 

evidence of HIF binding in the vicinity of their gene body. Some of these transcription factors influenced 

the tumor’s regulatory landscape, notably the stem cell transcription factor POU5F1 (OCT4). 

Unexpectedly, we discovered a HIF-pathway-responsive cryptic promoter embedded within a human-

specific retroviral repeat element that drives POU5F1 expression in RCC via a novel transcript. Elevated 

POU5F1 expression levels were correlated with advanced tumor stage and poorer overall survival in RCC 

patients. Thus, integrated transcriptomic and epigenomic analysis of even a small number of primary 

patient samples revealed remarkably convergent shared regulatory landscapes and a novel mechanism 

for dysregulated expression of POU5F1 in RCC. 
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Introduction 

Development of new therapeutic strategies for cancer treatment depends on identification of critical 

mechanisms and pathways utilized by tumor cells. Numerous insights have been gleaned from large tumor 

consortium programs such as The Cancer Genome Atlas (TCGA), which has extensively catalogued 

somatic mutations and selected phenotypic features from thousands of tumor and normal tissue samples 

across a variety of human cancers. To some extent, insights from such broad-based studies are 

intrinsically limited by tumor heterogeneity (including presence of non-tumor cell types) and general sample 

variability, which may collectively obscure sensitive and robust detection of subtle changes in cellular 

pathways such as transcription factor regulatory networks that define and govern the malignant state 

(Stergachis et al. 2013). Epigenomic mapping of tumors in large consortium-driven projects has generally 

focused on DNA methylation analysis (TCGA, Roadmap Epigenomics Project) and targeted histone 

modification profiling using ChIP-seq (Roadmap). These systematic approaches leverage the fact that 

patterns of regulatory DNA (e.g. promoters, enhancers, insulators) activation and organization are 

extensively disrupted in cancer (Stergachis et al. 2013; Polak et al. 2015). Generic identification of 

regulatory DNA is best achieved by open chromatin profiling methods such as DNase-seq (Boyle et al. 

2008) and ATAC-seq (Buenrostro et al. 2013). However, the complexity of these deep epigenomic 

mapping methods has focused their initial application to mouse tissues (Yue et al. 2014), cultured human 

cell lines (Thurman et al. 2012), whole adult and fetal human tissues (Kundaje et al. 2015), hematopoietic 

neoplasms  (where both malignant and normal cells of origin are readily obtained (Corces et al. 2016; Qu 

et al. 2017)), and a limited number of epithelial malignances (Polak et al. 2015). When deploying sensitive 

epigenomic methods, matched normal tissues of origin provide the best control for patient genotype and 

environmental exposure but are often discarded or unavailable at the time of tumor resection. Taken 

together, these hurdles have limited the characterization of primary human epithelial malignancies together 

with their patient-matched normal cells-of-origin. 
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In this regard, clear cell renal cell carcinoma (RCC), the most common and lethal kidney 

malignancy, is an ideal model cancer system for high-resolution functional genomic analyses for several 

reasons. First, RCC tissues are readily available since the standard of care is surgical removal of the often-

large tumor mass, frequently with plentiful adjacent, non-neoplastic tissue. Second, the tumor cells and 

their cells-of-origin – proximal tubule epithelial cells (Chen et al. 2016) – are readily isolated at high purity 

and grow well in short-term primary cultures (Cifola et al. 2011), which removes the obstacle of 

contaminating non-relevant cell populations. Third, the majority of spontaneously arising tumors utilize a 

common oncogenic pathway: stereotypic loss of chromosome 3p, resulting in loss of heterozygosity for 

the VHL tumor suppressor gene combined with inactivation of the remaining allele of VHL (Seizinger et al. 

1988). While it is well understood that loss of functional VHL protein leads to constitutive stabilization of 

two DNA-binding transcription factors, hypoxia-inducible factors 1a and 2a (HIF1a, HIF2a) (Maxwell et al. 

1999), the precise nature of genomic dysregulation downstream of HIF pathway activation that drives 

oncogenesis remains poorly understood. Given that RCC has an annual incidence of >60,000 and mortality 

of >14,000 in the United States alone (NCI SEER database), additional insights are urgently needed to 

develop new treatments.  

Here, using a combination of DNase I-hypersensitivity mapping (DNase-seq) and transcriptome 

profiling (RNA-seq) of primary tumor and normal cell cultures derived from three patients, we uncover a 

high degree of concordance in the epigenomic landscape of RCC. Analyses of these high-resolution 

reference maps in conjunction with publicly available datasets (Cancer Genome Atlas Research 2013; 

Salama et al. 2015; Ricketts et al. 2018) reveal unexpected insights into the transcription factors driving 

genome dysregulation in RCC, notably the stem cell factor POU5F1 (OCT4). This approach provides a 

general framework for the analysis of other solid tumors for which matched malignant and normal cells can 

be isolated at high purity, and greatly amplifies the utility of cancer -omics catalogs. 
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Results 

RCC regulatory landscapes are highly concordant across individual tumors 

Using RCC as a model system, we first sought to reduce or eliminate the contribution of non-relevant cell 

types by generating primary cultures of RCC and proximal tubules (cell of origin for RCC) from three 

patients. In culture, tumor cells were large, grew slowly and frequently contained intracellular vacuoles, 

typical of adenocarcinoma. In contrast, proximal tubule cells were epithelioid in morphology and grew 

rapidly (Figure 1A). Previous work has demonstrated that primary RCC cultures preserve the cytogenetic 

profile of their originating tumor (Cifola et al. 2011). In line with this, we found that the primary tumor 

cultures revealed characteristic karyotype abnormalities associated with RCC: all three patients’ tumors 

carried a loss of the short arm of chromosome 3 (chr3p-) and a gain of the long arm of chromosome 5 

(chr5q+) (Figure 1B and Supplemental figure 1A). The VHL gene is located on chr3p, and Sanger 

sequencing of the remaining allele identified inactivating missense mutations in all three tumor samples 

(Supplemental figure 1B). Taken together with the loss of heterozygosity on chromosome 3p, this 

indicated that all three patients’ tumors were VHL-null, typical of the majority of sporadic RCC (Cancer 

Genome Atlas Research 2013).  

Next, we generated high-quality DNase-seq datasets in duplicate from each patient’s primary RCC 

and tubule cultures. Windowed aggregation of DNase-seq tags again corroborated chromosome arm-level 

gains and losses delineated by conventional karyotyping (Supplemental figure 1C). Globally, accessible 

chromatin regions appear as DNase-hypersensitive sites (DHSs, called at FDR 1%) and most of these 

were located >5 kilobases (kb) from known transcription start sites, a feature that is typical of enhancer 

elements (Supplemental figure 1D). In parallel, we generated gene expression profiles (RNA-seq) from 

these cultures and compared them to TCGA RNA-seq data generated from 72 normal kidney tissues and 

534 RCC specimens (Cancer Genome Atlas Research 2013). Lastly, we cross-referenced our DNase-seq 

and RNA-seq datasets with publicly available ChIP-seq data for HIF components (HIF1 a, HIF2a, HIF1b) 

from the VHL-null 786-O RCC cell line (Salama et al. 2015). As an example of such comparison, STC2, a 
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well-known HIF-induced target gene (Law and Wong 2010), had several differentially accessible DHSs 

near its promoter in the RCC samples which correlated with increased STC2 gene expression in our own 

data and in the larger TCGA data set (Figure 1C). Some of the induced DHSs near the STC2 promoter 

overlapped HIF ChIP-seq peaks, consistent with HIF binding at these regulatory elements. However, other 

induced DHSs do not appear to be bound by HIF, implicating a role for transcription factors (TFs) in opening 

nuclear chromatin at these sites. 

  

Figure 1. Overview of patient samples and data sets used for integrated analyses 
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(A) Primary culture of tumor and matched-normal tubule cells from three patients. Renal cell carcinoma 

tumor nephrectomies from three patients were used to derive primary cultures of proximal tubules and 

renal cell carcinoma.  

(B) Cytogenetic analysis of primary tumor cultures. Karyotype analysis of the carcinoma cultures revealed 

loss of the short of arm of chromosome 3 in all three patient samples. Sanger sequencing of the VHL gene 

in these same samples identified inactivating mutations in the remaining copy. 

(C) Example of integrated analysis at the STC2 gene locus. DNase-seq and RNA-seq datasets were also 

generated from the primary tubule and carcinoma cultures and compared to HIF ChIP-seq datasets from 

the 786-O renal cell carcinoma cell line and RNA-seq expression data from TCGA. STC2, a canonical HIF 

target gene, exhibits several differential DHS (blue arrows), some of which coincide with HIF binding 

determined by ChIP-seq. Compared to normal tubules, the STC2 transcript is strongly induced in the 

primary tumor cultures and in the TCGA tumor samples. 
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Supplemental Figure 1. Characterization of primary RCC cultures and overview of DHS landscape 

(A) Karyotypes of primary RCC cultures. Primary RCC cultures were submitted for G-band karyotyping at 

the University of Washington Cytogenetics Laboratory. Inferred karyotypes from 20 metaphase spreads 

are shown. All three patient tumors show characteristic loss of chromosome 3p and gain of chromosome 

5q. 

(B) VHL mutation status in primary tubule and RCC cultures. Sanger sequencing of the coding regions 

identifies an inactivating mutation in the single copy of the VHL gene in all three primary RCC cultures.  
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(C) Chromosome arm level gains and losses are identified by DNase-seq tags. Windowed aggregation 

(5Mb windows) of tags from DNase-seq datasets from the primary tubule and RCC cultures reveals arm 

level gains and losses, including the canonical loss of chromosome 3p and gain of chromosome 5q. 

(D) DNase I-hypersensitive sites identify predominantly distal regulatory elements. A minority of the master 

list DHS derived from tubule and RCC datasets localize to promoter elements (1.9%) or lie within 5 kb of 

a known transcription start site (20.3%). The majority (77.8%) lie >5 kb from known transcription start sites, 

characteristic of distal regulatory elements such as enhancers. 

(E) Overlap of differential DHS identifies the shared regulatory landscape of RCC. DHSs with differential 

accessibility in tumors vs. their matched tubule controls define the differentially accessible regulatory 

landscape of RCC. Pair wise comparisons of these differential DHS across patients reveals that ~35% of 

all differential DHS are shared among at least two patient samples. 

 

Genome-wide chromatin accessibility patterns define the regulatory landscape of each primary 

patient sample. Globally, the regulatory landscapes of the primary tubule cultures show substantial overlap 

among the three profiled patients (Figure 2A). In contrast, while each tumor specimen retains a proportion 

of DHSs from its tubule of origin, the remainder of its landscape is composed of de novo DHSs. A 

proportion of these de novo DHSs is shared among the tumor samples, and together with the tubule-

derived DHSs retained in the tumors, they define the shared regulatory landscape of RCC. The similarity 

of the tubule regulatory landscapes is also evident in the tight clustering of these samples in principal 

component analysis whereas the RCC samples (and the 786-O RCC cell line) localize to distinct positions 

in the regulatory space (Figure 2B).  

After obtaining a global picture of regulatory landscape similarities based on presence or absence 

of individual DHS peak calls, we identified accessibility changes between each patient’s normal and tumor 

cells at a common set of DHSs, and then compared the behavior of those differentially accessible sites 

across all three patients. This analysis identified between 24,976-61,072 differential DHSs (dDHSs, FDR 
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1%; see Methods) in each patient (roughly split between sites with increased and decreased accessibility 

in tumor cells), representing ~8-20% of all sites examined (Supplemental figure 1E). At least 35% of 

these dDHSs were shared by at least 2 patients. Most strikingly, we found that 93.6-98.5% of dDHSs 

shared between any two patients displayed highly concordant directional accessibility changes in the tumor 

samples (Figure 2C). In total, we identified 6,080 dDHSs with concordant accessibility changes across all 

three patients. 

The above results show that primary cultures of proximal tubules and RCC can be generated at 

high purity and provide an ideal platform for functional genomic methodologies. While the regulatory 

landscape of each patient’s tumor cells is in part unique, the shared DHSs show highly convergent 

accessibility changes across all three patients and therefore define the core regulatory program of RCC.   

 

Figure 2. Shared regulatory landscapes in tubules and matched renal cell carcinomas from three 

patients 

(A) Comparison of the shared regulatory landscape among patient samples. The three tubule samples 

share a significant proportion of DHSs. Each tumor’s landscape of DHSs incorporates a different fraction 

of DHSs from its tubule of origin and activates de novo DHSs. In the tumors, most of the tubule-derived 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 27, 2018. ; https://doi.org/10.1101/379198doi: bioRxiv preprint 

https://doi.org/10.1101/379198


 

11 
 

DHSs are shared with tubule-derived DHSs from other patients. In contrast, a smaller fraction of RCC-

derived de novo DHSs is shared among patient tumors.  

(B) Comparison of DNase-seq data by principal component analysis. While the tubule cultures from all 

three patients (brown spheres, in replicate) are tightly clustered, each tumor (red spheres, in replicate) and 

the 786-O cell line (blue spheres, in replicate) occupy a unique position in regulatory space. 

(C) Differential DHSs show highly concordant patterns of accessibility across patient samples. In pairwise 

comparisons, the shared differential DHSs are classified as concordantly upregulated in the tumor samples 

(gold), downregulated in the tumor samples (blue) or discordant in the two patient samples being compared 

(grey). The majority (>95%) of shared differential DHS show concordant up- or downregulation. 

 

Convergent gene expression landscapes 

Examination of gene expression profiles for genes changing by >1.5x in all three patient samples revealed 

consistently increased expression of RCC-associated genes (including VEGFA, CA9, EGLN3, etc.) in 

tumor cultures with concomitant downregulation of normal tubule-associated transcripts (e.g. CDH1, 

ANPEP) (Supplemental Figure 2A). Some tubule-derived genes did not change significantly in the RCC 

samples (e.g. MME). For subsequent analyses, we chose to anchor on genes that were expressed in our 

primary tumor cultures since the TCGA RNA-seq dataset is derived from whole kidney and tumor tissue 

and contains transcripts derived from non-tumor and non-tubule cell types (e.g. circulating immune cells, 

stromal cells, endothelial cells). Of genes that were expressed at a minimum threshold (FPKM≥1) in our 

samples, 1,072 genes were upregulated and 1,207 genes were downregulated across all three patient 

tumor samples compared to their respective tubule controls. Gene ontology analysis identified pathways 

characteristically dysregulated in RCC, such as genes related to the hypoxic response (e.g. VEGFA), 

organic ion transport (e.g. CA9) and lipid metabolism (e.g. FABP6), which were enriched in the upregulated 

gene set. Genes related to cell cycle regulation (e.g. AURKA, TOP2B) and chromatin organization (e.g. 

HMGA1) were consistently transcriptionally downregulated (Supplemental Figure 2B). Thus, the gene 
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expression landscapes of our primary cultures are concordant across patient samples and recapitulate key 

transcriptional signatures of RCC. 

 

Supplemental Figure 2.  Individual renal cell carcinomas exhibit highly concordant RNA 

landscapes 

(A) Consistent patterns of gene expression among patients. Comparison of expression fold change of 

genes reveals largely consistent patterns of gene expression among patient tumor samples. Genes that 

typify the HIF transcriptional response (e.g. CA9, VEGFA, EGLN3) are upregulated and some genes 

associated with normal tubular function (e.g. CDH1, ANPEP) are downregulated in all three tumor samples 

compared to their normal tubule controls. 

(B) Gene ontology enrichment. Ranked list GOrilla enrichment analysis (rank in boldface) identifies both 

canonical (e.g. hypoxia response, lipid metabolic process, chromatin organization) and unexpected gene 
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ontologies (e.g. complement activation) that are differentially regulated in renal cell carcinoma compared 

to tubules. 

 

Concordant tumor regulatory landscapes expose transcription factor drivers of RCC 

Chromatin accessibility profiling methodologies such as DNase-seq uniquely provide insight into the 

transcription factors drivers of oncogenesis (Stergachis et al. 2013). Since HIF is canonically dysregulated 

in RCC, we next explored its role and that of other transcription factors (TFs) in driving the chromatin 

accessibility changes we observed in the regulatory landscapes of the patients’ tumor samples. Even 

though most (>93%) HIF binding sites coincide with DHSs, ~70% of these DHSs show no significant 

change in accessibility between tubule and RCC (Figure 3A). Even the HIF-bound DHSs that showed 

significant accessibility changes in one tumor-normal pair often did not show differential DHS accessibility 

in the other patient samples (Figure 3B). This suggested that HIF alone does not broadly reprogram the 

regulatory landscape of RCC, but did not exclude the possibility that it may regulate other TFs that 

contribute to the process of malignant transformation. 213/776 of the TFs that are upregulated (≥1.5x) in 

at least one patient RCC-tubule pair have a HIF-occupied DHS within 250kb of their transcription start site 

(TSS) (Figure 3C). A subset of these 213 TFs shows evidence of restricted transcriptional induction in 

RCC compared to multiple somatic tumors for which matched normal tissues are available for comparison 

in the TCGA expression data (Figure 3D). Since the presence of a HIF-bound DHS near an induced TF 

gene does not conclusively demonstrate regulation of that gene by HIF, the TF gene subset that is induced 

in the TCGA data is more likely to contain TFs truly subject to HIF regulation in RCC. Alternatively, the fact 

that only a subset of the putative HIF-regulated TFs in our primary culture system shows selective 

expression in the TCGA RCC RNA-seq data may reflect the contaminating effect of non-tumor cell types 

in TCGA samples that can obscure small changes in transcription factor genes that are typically expressed 

at low levels.  
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Figure 3. Concordant tumor regulatory landscapes expose key transcription factor drivers of RCC 

(A) HIF-binding only accounts for a small proportion of the differentially accessible RCC regulatory 

landscape. ChIP-seq datasets for HIF1A and HIF2A show substantial overlap with each other and most of 
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these peaks coincide with a DHS in the tubule and/or RCC DNase-seq datasets. Most HIF peaks in DHS 

map to non-changing/constitutive DHS in the tubules and RCC. 

(B) Differentially accessible HIF-bound DHS show different patterns of accessibility across patient 

samples. Of the 904 HIF peaks that map to differentially accessible DHS in at least one patient sample, 

most do not show significant change across the other patients’ samples. 

(C) Transcription factors with changing expression located near HIF binding sites. The expression levels 

of 213 transcription factors change by >1.5x in at least one patient sample and exhibit at least one HIF 

bound DHS within 250kb of their transcription start site (TSS). Many of these contain numerous HIF binding 

sites in proximity to their TSS, including transcription factors linked to renal cell carcinoma susceptibility 

(ZEB2, BHLHE41) and POU5F1. 

(D) Selective expression of transcription factors in cancer. The transcription factors that are expressed 

(FPKM>1) and changing by at least 1.5-fold in any of the three patient samples (from panel C) are 

examined for differential expression in a wide range of tumors that have matched normal tissues available 

in TCGA RNA-seq expression dataset (209 transcription factors are depicted; 4 factors are not mapped in 

the TCGA RNA-seq data). Transcription factors with RCC-selective increased expression are highlighted 

(e.g. HSF4, BHLHE41, ZEB2, POU5F1, etc.). 

 

To uncover the identities of the TFs that are likely to be driving the regulatory program of RCC, we 

determined the relative enrichment of TF recognition sequences within the shared set of differential DHSs 

(discussed above) compared to a background of static DHSs. AP-1, ETS and E-box family recognition 

sequences were significantly enriched in DHSs with decreased accessibility in RCC (Figure 4A). Motifs 

for basic helix-loop-helix (bHLH) family transcription factors (which include MYC, HIF and BHLHE41) were 

enriched in DHSs that do not change their accessibility in RCC. Recognition sequences for several TF 

families (including homeodomain, nuclear receptor and HNF1/POU) were enriched in DHSs with increased 

accessibility in RCC.  
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Since several TF family members can recognize the same DNA binding recognition sequence, we 

next asked if the differential TF gene expression levels between tubules and RCC could help identify the 

specific family members that were contributing to the observed motif enrichment in the regulatory 

landscape. This analysis revealed that for the POU family transcription factors, only the stem cell related 

factor POU5F1 (also known as OCT4) is consistently expressed and upregulated in RCC compared to 

tubules (Figure 4B). POU5F1 and some of the transcription factors which are associated with genetic risk 

for RCC and whose binding sequences are enriched in differentially accessible DHSs (e.g. BHLHE41) 

show evidence of regulation by HIF (Figure 3C). POU5F1 is normally expressed only in stem cells and 

germ cell-derived tumors but in the larger TCGA data set, it shows strikingly selective induction in RCC 

and papillary kidney cancer (both derived from proximal tubule cells) compared to normal kidney tissue 

(Figure 4C). Other known cellular reprogramming transcription factor genes, namely SOX2, KLF4 and 

NANOG, are not induced in RCC (data not shown). 

Taken together, these results suggest that instead of driving large-scale changes in chromatin 

accessibility by itself, HIF may have a broader impact on the regulatory landscape of RCC by activating 

other transcription factors. We sought to corroborate this notion by closer examination of the role of HIF in 

the regulation of POU5F1. 
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Figure 4. Correlation of DNA binding motif enrichments with gene expression identifies enrichment 

for POU5F1 in RCC 

(A) Transcription factor enrichment. Examination of differentially accessible or non-changing DHSs reveals 

different classes of transcription factors whose DNA binding recognition sequences are enriched in each 

category. The motif families containing transcription factors with genetic evidence linked to renal cell 

carcinoma susceptibility (i.e. MYC, BHLHE41, ZEB2 and HIF) and the stem cell related transcription factor 

POU5F1 (OCT4) are indicated. 
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(B) Examination of RNA expression identifies candidate POU-family transcription factors driving motif 

enrichments in the DHS landscape. Since multiple transcription factors within the POU family share 

redundant DNA binding motifs, examination of transcription factor expression patterns may identify 

specific family members that are driving motif enrichment signatures. Examination of the differential gene 

expression patterns of these family members in RCC vs. tubules in our primary cultures and in the TCGA 

RNA-seq dataset reveals upregulation of POU5F1 in RCC. 

(C) Expression of POU5F1 in diverse somatic tumors. The mRNA expression levels of the stem cell related 

transcription factor POU5F1 (OCT4) in several non-germ cell tumors is compared to their matched normal 

tissue controls. The ends of the bar plots represent the 25th and 75th quartiles with whiskers representing 

1.5x inter-quartile range (10% outlier trim applied). 

 

Expression of a novel POU5F1 transcript in RCC from a human- and kidney-specific promoter 

Close examination of the chromatin accessibility and RNA-seq data from our three patients revealed a 

long, intergenic stretch of RNA transcription starting from a DHS and leading into (and on the same strand 

as) the annotated POU5F1 transcripts (Figure 5; strand-specific signal not shown). This regulatory 

element, ~16 kb upstream of the POU5F1 TSS used in embryonic stem (ES) cells, was distinct from the 

well-characterized distal and proximal enhancers that regulate POU5F1 in ES cells (Nordhoff et al. 2001). 

Furthermore, this DHS was only present in adult kidney tubule- and RCC-derived cells/cell lines and was 

not detected in ES cells, fetal kidney tissues or many other diverse cell types (Supplemental Figure 3). 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 27, 2018. ; https://doi.org/10.1101/379198doi: bioRxiv preprint 

https://doi.org/10.1101/379198


 

19 
 

 

Figure 5. A novel human-specific promoter drives POU5F1 expression in RCC  

Overview of the POU5F1 genomic locus (hg19 chr6:31,125,253-31,156,354). RNA-seq tracks for the 

primary patient samples and the RCC cell line 786-O reveal a novel transcript originating from a DHS 

~16kb upstream of the known ES cell transcription start site. ChIP-seq reveals binding of HIF components 

(HIF1 a, HIF2a, HIF1b) to this DHS with evidence of histone modification typical of active transcription 

across the entire transcript (H3K36Me3). This DHS is also associated with histone modifications 

characteristic of an active promoter, i.e. positioned nucleosomes marked by H3K4Me3 and depletion of 

the repressive H3K27Me3 mark. Examination of sequence conservation shows that this novel promoter 

lies within a complex tandem long terminal repeat element that is unique to humans. 
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Supplemental Figure 3. An adult kidney-specific DHS encodes a novel promoter for POU5F1 

The novel transcription start site for POU5F1 in RCC maps to a DHS that is only present in adult kidney 

derived tubules, primary cultures or tumors. This DHS is not present in fetal kidney, embryonic stem cells, 

non-epithelial kidney cells (e.g. glomerular endothelial cells, HRGEC) or a variety of ontologically diverse 

cells. 
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FANTOM5 data suggest that this kidney-specific DHS acts as a promoter: it coincides with 

H3K4me3, which marks active promoters; lacks H3K4me27; and demarcates H3K36me3 signal, a mark 

associated with transcription elongation, that extends into annotated POU5F1 transcripts (Andersson et 

al. 2014; FANTOM Consortium and the RIKEN PMI and CLST (DGT) et al. 2014).  We sought to determine 

whether novel transcripts of POU5F1 were generated from the -16kb DHS in RCC. Knowing that the 

expression of POU5F1 may be confounded by that of its pseudogene, POU5F1B (Takeda et al. 1992; 

Liedtke et al. 2007), we examined chromatin accessibility and gene expression at the POU5F1B 

pseudogene locus in our samples, and did not detect significant amounts of either (Supplemental Figure 

4). We then proceeded to unambiguously determine if the putative promoter initiated transcription of a 

novel POU5F1 isoform. To do this, we performed 5’-RACE on cDNA isolated from the VHL-null 786-O 

RCC cell line and sequenced the resulting products (Figure 6A). This captured a new transcription start 

site for POU5F1 originating within the -16kb DHS. Several exon combinations were observed suggesting 

a complex mixture of isoforms expressed in 786-O cells. 

Critically, the -16kb DHS coincided with strong HIF1a and HIF2a ChIP-seq signal in the 786-O cell 

line, suggesting that HIF is bound to this promoter element in RCC. We note that this HIF site is encoded 

by  long-terminal repeat (LTR) elements of the Harlequin-int and LTR2B subfamilies of ERV1 endogenous 

retroviruses. This repeat configuration appears to represent an evolutionarily recent insertion into the 

human genome as it is not conserved among higher primates or other mammals (Figure 5). Good CRG 

alignability (Derrien et al. 2012) at this composite LTR reduced the possibility that degeneracy of viral 

repeat elements may confound locus-specific mapping of short-read sequences.  

Finally, we asked if the canonical and novel isoforms of POU5F1 exhibited dependence on VHL 

protein (stably reintroduced into the 786-O cell line) and/or hypoxia using isoform specific RT-PCR primers 

(Figure 6A). Reintroduction of VHL protein into 786-O cells cultured in normoxia strongly suppressed 

expression of both canonical and novel POU5F1 transcripts (Figure 6B). The presence of VHL protein 
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also resulted in significant induction of canonical and novel POU5F1 transcripts when the 786-O+VHL cells 

were cultured in hypoxia (Figure 6B). These transcripts did not change appreciably when 786-O cells were 

shifted from normoxia to hypoxia, consistent with already maximal HIF-signaling in this VHL-null cell line. 

Taken together, these results establish the presence of a HIF-responsive, kidney-specific promoter 

element that initiates expression of a novel transcript of POU5F1 in RCC and originated at this locus by 

insertion of endogenous retrovirus elements within the human lineage.   

 

Supplemental Figure 4. Overview of the POU5F1B genomic locus (hg19 chr8:128,420,724-

128,436,573) 

POU5F1B is expressed in human ESCs, but not in the primary tubule and RCC cultures described in this 

study. There are no DHSs in this genomic interval and there is negligible binding of HIF components. 

Histone modifications typical of active transcription are also not present. 
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Figure 6. The novel transcript for POU5F1 exhibits HIF dependence and POU5F1 expression 

levels correlate with patient survival 

(A) Schematic mapping of POU5F1 5’-RACE PCR products. 5’-RACE performed on 786-O RNA captures 

a transcription start site originating in the novel DHS therefore defining a novel isoform of POU5F1. 

Reverse primers in known POU5F1 exons (e.g. EX1 = reverse primer in exon 1) were used to amplify the 
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5’-ends of the cDNA molecule captured by 5’-RACE and sequence mapped to the genome. The exon 2 

primer (*) failed to yield mappable sequence. The exon 5 primer yielded 3 different products (EX5-1, EX5-

2, EX5-3). The location of PCR primers to detect the canonical and novel POU5F1 transcript variants are 

indicated. 

(B) Canonical and novel POU5F1 transcripts exhibit HIF-dependence. RT-PCR primers were used to 

quantify the canonical and novel POU5F1 transcripts in 786-O cells and 786-O cell stably transduced with 

VHL (786-O+VHL) cultured in normoxia or hypoxia (2% O2) for 24 hours. Expression levels (relative 

quantification, RQ) were calculated using the b-actin housekeeping gene (ACTB). Reintroduction of VHL 

protein into 786-O cells suppresses expression of both POU5F1 transcripts. Exposing 786-O+VHL cells to 

hypoxia induces both POU5F1 transcripts. Error bars indicate standard deviations of three experimental 

replicates. * p<0.05, ** p<0.005. 

(C) Immunohistochemistry of POU5F1 protein in renal cell carcinoma samples. POU5F1 (OCT4) 

immunohistochemistry was performed on RCC samples from 20 patients (5 from each of ISUP grades 1-

4) and showed patchy nuclear positivity (arrows) in a single random sample from 4 patients. No nuclear 

staining was seen in any of the matched normal renal parenchyma from the same patients. 

(D) Overall survival as a function of POU5F1 expression in TCGA. Patients with POU5F1 expression data 

from TCGA (KIRC) were evenly divided into two groups split at the median expression level (233 RSEM 

normalized) and Kaplan-Meier curves for overall survival were plotted using the UCSC Xena browser tool.   

 

 

POU5F1 expression in RCC correlates with overall survival 

Next, we sought to evaluate if induced POU5F1 transcription led to increased protein levels in human RCC 

specimens. For these experiments, we utilized an antibody recognizing a C-terminal epitope of POU5F1 

(OCT4) that is expected to be represented in both the canonical and novel isoforms of POU5F1. 

Preliminary experiments using a tissue microarray with 102 cases of localized RCC and 25 cases of 

advanced stage/metastatic RCC did not reveal significant POU5F1 (OCT4) expression in the tumor cells 
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(data not shown). However, since the tissue cores for each individual tumor in the array are very small and 

may not be representative of the often large and heterogeneous RCC tumors (Gerlinger et al. 2012; 2014), 

we decided to test POU5F1 (OCT4) expression in larger tissue sections from 20 different patient tumors 

alongside their matched normal kidney controls. In 4 out of 20 RCC tissue sections, patchy nuclear 

POU5F1 (OCT4) protein expression was detectable (Chi-squared p-value=0.035, Figure 6C). We did not 

observe POU5F1 (OCT4) expression in any of the normal kidney tissue sections examined. Therefore, 

even though POU5F1 transcript induction appears to be a consistent feature of RCC, POU5F1 (OCT4) 

protein is less frequently detected which may reflect focal or patchy expression in these large tumors. 

Lastly, we examined POU5F1 expression in the TCGA data set as a function of clinical staging parameters. 

The expression of POU5F1 did not correlate with metastasis status (Supplemental Figure 5A), but was 

positively correlated with pathologic tumor stage, with higher stage tumors exhibiting greater expression 

of POU5F1 (Supplemental Figure 5B). Strikingly, patients with high expression of POU5F1 exhibited 

lower overall survival compared to patients with lower expression levels (Figure 6D). These results 

demonstrate that POU5F1 (OCT4)  protein can be expressed in a patchy fashion in RCC tumors and that 

POU5F1 expression levels can predict overall survival in patients with RCC. 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 27, 2018. ; https://doi.org/10.1101/379198doi: bioRxiv preprint 

https://doi.org/10.1101/379198


 

26 
 

 

Supplemental Figure 5. Expression of POU5F1 in RCC as a function of known metastasis status 

and pathologic stage. Black diamond indicates mean value for the indicated subgroup in both panels. 

(A) Expression of POU5F1 as a function of known metastasis status. 

(B) Expression of POU5F1 as a function of pathologic stage at the time of diagnosis. P-value = 0.037 by 

1-factor ANOVA. 
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Discussion 

Even for a well-studied tumor such as RCC, there is a notable deficit in the understanding of 

genome dysregulation that drives oncogenesis. Here we demonstrate that while each patient’s tumor can 

exhibit its own unique epigenomic signature, subtraction of the genotype-matched cell-of-origin baseline 

and comparison across individuals can identify the core regulatory landscape of cancer. Using high-

resolution epigenomic mapping on primary tumors and matched normal cells from three patients, we 

identified multiple transcription factors with differential expression patterns and significant DNA binding 

motif enrichments that likely contribute to the tumor phenotype. Transcription factors that drive genome 

dysregulation in RCC have hitherto only been explored in piecemeal fashion. Besides the HIFs, other 

sequence-specific factors have been implicated individually in various aspects of RCC biology including 

PAX2 (Daniel et al. 2001; Doberstein et al. 2011; Gnarra and Dressler 1995; Luu et al. 2009), PAX8 (Hu 

et al. 2012; Laury et al. 2011; Tong et al. 2011), CEBPb (Oya et al. 2003), NRF2 (Kinch et al. 2011; Ooi et 

al. 2013), FOXO (Cho and Mier 2012; Gan et al. 2010; Wu et al. 2013a), STAT3 (Bill et al. 2012; Horiguchi 

et al. 2002; 2010; Jung et al. 2005; Li et al. 2008; Xin et al. 2009; 2011), FOXM1 (Wu et al. 2013b; Xue et 

al. 2012), OCT4 (Bussolati et al. 2008; Smith et al. 2011), P53 (Oda et al. 1995; Reiter et al. 1993; Torigoe 

et al. 1992; Uhlman et al. 1994), TCF21 (Ye et al. 2012; Zhang et al. 2012), HCF1 (Peña-Llopis et al. 

2012), HNF1/2 (Anastasiadis et al. 1999; Rebouissou et al. 2005; Sel et al. 1996) and most recently 

BHLHE41 (Bigot et al. 2016; Grampp et al. 2017) and ZNF395 (Rhie et al. 2016; Zhao et al. 2016). Here, 

we show that many of these transcription factors may in fact be regulated by HIF and appear to influence 

the regulatory landscape in RCC.  

One transcription factor that is consistently upregulated in RCC and influences its regulatory 

landscape is the stem cell factor POU5F1 (OCT4). POU5F1, together with KLF4, SOX2 and NANOG 

(which are not expressed in RCC) is well known for its ability to reprogram somatic cells into pluripotent 

stem cells (Park et al. 2008). Hypoxia is a known stimulant of POU5F1 expression in embryonic stem and 

cancer cells (Ezashi et al. 2005; Westfall et al. 2008; Forristal et al. 2009; Mathieu et al. 2011) and can 
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even reprogram committed cells into a pluripotent state (Mathieu et al. 2013; 2014). Our examination of 

the POU5F1 genomic locus identified a novel adult kidney-selective and hypoxia/HIF-responsive promoter 

that produces a previously undescribed transcript isoform for POU5F1 in RCC. We also show that this 

novel promoter lies within a tandem, human-specific LTR element. Repeat elements such as LTRs are 

enriched in primate-specific regulatory elements (Jacques et al. 2013) and are known to influence 

transcription factor regulatory networks (Bourque et al. 2008). Therefore, these findings suggest that 

regulation of POU5F1 expression in adult human kidney epithelial cells, either in response to hypoxia or 

constitutive HIF activation as occurs in RCC, may differ significantly from human embryonic stem cells and 

mouse tissues and requires separate, context-specific study.  

Activation of stem cell-like epigenetic and transcriptional programs are associated with malignant 

transformation, though clear cell RCC appears to behave differently than other tumor types (Malta et al. 

2018). Compared to other somatic cell types (Park et al. 2008), human kidney proximal tubule cells appear 

to have a lower barrier to reprogramming to pluripotency as they require only SOX2 and OCT4 expression 

(Montserrat et al. 2012). Since VHL inactivation and constitutive HIF stabilization appear to be early events 

in sporadic RCC (Mitchell et al. 2018; Turajlic et al. 2018), it will be important to determine if this genetic 

lesion alone is sufficient to induce POU5F1 expression in kidney proximal tubule cells. Interestingly, we 

found that the level of POU5F1 expression appears to predict patient survival even though only a subset 

of tumor cells appear to produce OCT4 protein, perhaps marking RCC cancer stem cells (Bussolati et al., 

2008). In particular, given the documented intratumoral heterogeneity and divergence of metastatic RCC 

clones (Gerlinger et al. 2012; 2014), it will be necessary to compare the epigenomic profiles of those 

samples with that of the primary tumor from multiple patients. Taken together, understanding the 

mechanisms that activate POU5F1 expression from this promoter in adult kidney epithelial cells and its 

effects on cellular transformation and clinical behavior will be intriguing topics for future studies.  

The data generated and described here are freely available to provide a reference map upon which 

future functional genomic studies on RCC can be constructed and interpreted. Overall, our approach 

demonstrates the power of epigenomic analysis focused on small numbers of pure primary tumor and 
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matched normal cell-of-origin cultures which can provide a clarifying lens through which to interpret 

inherently noisier large tumor-sequencing datasets. This general framework can reveal unanticipated 

insights into tumor biology and is readily applicable to other cancers in which tumor cells and matched 

normal cells-of-origin are available. 
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Methods 

Patient tissue sample procurement and primary cell culture 

Malignant and normal kidney tissues were obtained from patients undergoing radical nephrectomy for clear 

cell renal cell carcinoma with informed consent for DNA sequencing obtained prior to the surgery. The 

study (#1297) and consent forms were approved by the University of Washington’s IRB. Patient 1’s 

cultures were derived from an 80-year-old woman; Patient 2’s cultures were derived from a 62-year-old 

man and Patient 3’s cultures were obtained from a 63-year-old man. At the time of surgery, all patients 

presented with localized disease. Approximately 1cm3 portions of tumor (from a central, non-necrotic 

location) and uninvolved kidney cortex (usually from the pole furthest from the tumor mass) were harvested 

and transported in RPMI medium on ice. These tissues were then minced with a sterilized razor blade and 

the resulting fragments were placed in 20mls of pre-warmed RPMI medium (without serum) supplemented 

with Accutase (Sigma, diluted 1:10), collagenase P (Roche, 100µg/ml) and trypsin/EDTA (Gibco, 0.25% 

solution diluted 1:10). The tissue fragments were digested at 37°C for 20 minutes with vigorous agitation. 

After digestion, the tissue fragments were spun down and macerated with a sterile plunger from a 5-ml 

syringe. These softened tissue fragments were then transferred into tissue culture flasks with pre-warmed 

culture medium (RPMI supplemented with 10% fetal bovine serum and ITS+ supplement, Corning). After 

3-4 days (for tubule cultures) and 7-10 days (for RCC cultures), the tissue fragments were decanted and 

the adherent cells were fed with fresh medium. At this stage, primary tubule cells grew rapidly and had an 

epithelioid morphology, while primary RCC cells grew slowly, were larger and exhibited frequent 

cytoplasmic vacuoles typical of adenocarcinoma. Cells were sub-cultured 1:4 when they reached 80% 

confluence and used within two passages for all experiments. 

 

786-O and ACHN cell culture  

The VHL-null 786-O (CRL-1932) and VHL-wildtype ACHN (CRL-1611) renal cell carcinoma cell lines were 

obtained from ATCC. Cells were cultured in RPMI medium supplemented with 10% fetal bovine serum, 
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non-essential amino acids, glutamine and penicillin/streptomycin. Cells were sub-cultured 1:10 when they 

reached 80% confluence using Accutase to disaggregate adherent cells. 

 

Processing of cell cultures for DNase-seq 

Primary tubule and RCC cultures, 786-O and ACHN cells were subjected to DNase I treatment, small DNA 

fragment isolation and double-stranded library construction per published ENCODE protocols or a recently 

described low-input single-stranded library construction protocol (Gansauge and Meyer 2013; Snyder et 

al. 2016). Libraries were subjected to paired-end (2x36bp) sequencing. The majority of datasets used in 

this study were deemed of high quality (signal portion of tags, SPOT>0.4) (Thurman et al. 2012). See 

Supplemental Table 1 for cell input, quality metrics and other sequencing metadata. 

 

Processing of cell cultures for RNA-seq 

Disaggregated cells from primary tubule or renal cell carcinoma cultures, 786-O and ACHN cells were 

washed once in PBS and stabilized in RNALater (Ambion). Total RNA was extracted using a mirVana RNA 

isolation kit (Ambion). Illumina sequencer compatible libraries were constructed using a TruSeq Stranded 

Total RNA Library Prep Kit with Ribo-Zero Gold (Illumina) and subjected to paired-end (2x76bp) 

sequencing. See Supplemental Table 1 for cell input, quality metrics and other sequencing metadata. 

 

Karyotyping of primary cell cultures 

G-band karyotyping of the primary renal cell carcinoma cultures was performed by the University of 

Washington Cytogenetics and Genomics Laboratory in the Department of Laboratory Medicine. 

 

Assessing VHL status of primary cell cultures 

Genomic DNA from 200,000 cells from each of the primary cultures was extracted using an ArchivePure 

DNA purification kit from 5Prime. Oligonucleotide primers covering exons 1-3 of the VHL gene 
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(VHL_exon1_F1, GCGCGAAGACTACGGAGGTC; VHL_exon1_R1, CGTGCTATCGTCCCTGCT; 

VHL_exon2_F1, TCCCAAAGTGCTGGGATTAC; VHL_exon2_R1, TGGGCTTAATTTTTCAAGTGG; 

VHL_exon3_F1, TGTTGGCAAAGCCTCTTGTT; VHL_exon3_R1, AAGGAAGGAACCAGTCCTGT) were 

used to amplify genomic sequence using KAPA HiFi Taq polymerase (Kapa Biosystems). The resulting 

PCR products were separated on an agarose gel, purified and subjected to Sanger sequencing (EuroFins 

Scientific). 

 

5’-RACE for novel POU5F1 transcripts 

Total RNA was extracted from 7x106 786-O cells using the RNeasy Mini kit (QIAGEN cat #74104) 

according to manufacturer’s protocol. We then used 9 µg total RNA input for RLM-RACE (ThermoFisher 

Scientific First-Choice RLM-RACE, cat# AM1700), following the manufacturer’s “standard scale” 5’-RACE 

protocol, which ligates an adapter to the 5’ end of full-length, capped mRNA molecules. The primary PCR 

reaction was carried out using a common forward primer recognizing the 5’-RACE adapter and reverse 

primer located in each of the first five coding exons of POU5F1 (“R2” primers), using cycling conditions 

94°C 3min, 35 cycles of 94°C 3min/60°C 30sec/72°C 2min, 72°C 7min. Of the 50µl primary PCR, 2µl was 

used for a secondary PCR with nested primers in the 5’-RACE adapter and within each of the five POU5F1 

coding exons (“R1” primers), using the same cycling conditions as the primary PCR. Secondary PCRs 

were run on an agarose gel, the bands were excised and purified using a MinElute Gel Extraction kit 

(QIAGEN cat #28604) according to the manufacturer’s protocol, and were sequenced from both ends using 

Sanger sequencing.  

 

RT-PCR for canonical and novel POU5F1 transcripts 

A clone of the VHL-null 786-O RCC cell line stably transduced with VHL (786-0+VHL) was originally 

obtained from Dr. William Kaelin’s laboratory (Yan et al. 2007). Approximately 200,000 786-O and 786-

0+VHL cells were exposed in triplicate to hypoxia (2% O2) or normoxia for 24 hours. RNA was extracted 

using the RNeasy Plus Mini Kit (Qiagen, Valencia, CA), cDNA was synthesized using random hexamers 
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and the Superscript IV First-Strand Synthesis Kit and was used to seed triplicate real-time PCR reactions 

using SYBR Green and standard cycling conditions for the Applied Biosystems 7900HT thermocycler. 

Primers were canonical OCT4 (5’-GAGCAAAACCCGGAGGAGT-3’ and 5’-TTCTCTTTCGGGCCTGCAC-

3’); novel OCT4 (5’-GCTTGGCAAATTGCTCGAGTT-3’ and 5’-TGGAGTCCGGACATCTGAAAC-3’), 

and ACTB (5’-TCCCTGGAGAAGAGCTACG-3’ and 5’-GTAGTTTCGTGGATGCCACA-3’). A single peak 

was observed in the dissociation curve analysis for all genes and the sequence of the novel OCT4 PCR 

product was confirmed by Sanger sequencing using the same primers. Cycle threshold (Ct) values were 

determined using Applied Biosystems Sequence Detection software. Relative quantification was 

calculated as 2-delta Ct, where delta Ct values were determined by subtracting the ACTB mean Ct values 

from the target gene Ct values. 

 

OCT4/POU5F1 immunohistochemistry 

A tissue microarray (TMA) composed of cores of 102 cases of localized clear cell RCC, 25 cases of 

advanced/metastatic RCC, 62 cases of papillary RCC, 50 cases of chromophobe RCC/oncocytic 

neoplasms and 25 normal kidney controls was prepared with institutional IRB approval (study 9138). 

Twenty randomly selected RCC specimens (5 in each ISUP grade 1-4) were identified by a third-party 

honest broker, Northwest Biotrust at the University of Washington. One TMA section or a single section 

from each of the tumor mass and adjacent uninvolved kidney cortex were subjected to antigen retrieval 

with HIER ER1 buffer for 20 minutes (ER1= Epitope Retrieval Buffer 1, Citrate based pH 6.0 solution). 

Immunohistochemistry for OCT4/POU5F1 was performed using a 1:250 dilution of the OCT-3/4 (C-10) 

mouse monoclonal antibody (catalog # sc5279 from Santa Cruz Biotechnology). 
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Supplemental Table 1. Sample characteristics and sequencing metadata. 

 

RNA-Seq 
        

GEO Accession 

Patient 

ID/cell line Sample type Sample ID Gender Age 

Input cell 

number RIN 

Total mapped 

reads (2x76bp) 

GSM3290917 HIM13 Human_kidney_tubule DS33394 F 80 2,000,000 10 244,151,932 

GSM3290918 HIM13 Human_renal_cell_carcinoma DS33395 F 80 500,000 9.9 257,438,823 

GSM3290919 HIM15 Human_kidney_tubule DS37923 M 62 2,000,000 9.9 124,435,785 

GSM3290920 HIM15 Human_kidney_tubule DS37924 M 62 2,000,000 9.9 104,505,925 

GSM3290921 HIM15 Human_renal_cell_carcinoma DS37925 M 62 125,000 9.9 99,037,346 

GSM3290922 HIM15 Human_renal_cell_carcinoma DS37926 M 62 125,000 9.8 147,534,033 

GSM3290923 HIM23 Human_kidney_tubule DS40494 M 63 500,000 7.2 246,217,904 

GSM3290924 HIM23 Human_renal_cell_carcinoma DS40496 M 63 500,000 9.1 113,565,853 

GSM3290925 786-O Human_renal_cell_carcinoma DS34766 M 58 4,750,000 9.8 187,589,844 

GSM3290926 ACHN Human_renal_cell_carcinoma DS37193 M 22 2,250,000 7.4 85,933,914 

         

DNase-seq 
        

GEO Accession 

Patient 

ID/cell line Sample type Sample ID Gender Age 

Input cell 

number SPOT 

Total mapped 

reads (2x36bp) 

GSM3291010 HIM13 Human_kidney_tubule DS26689 F 80 9,000,000 0.5650 201,833,536 

GSM3291012 HIM13 Human_kidney_tubule DS27824 F 80 9,000,000 0.4462 211,342,862 

GSM3291022 HIM13 Human_renal_cell_carcinoma DS26693A F 80 5,000,000 0.5721 295,184,545 

GSM3291023 HIM13 Human_renal_cell_carcinoma DS26692B F 80 5,000,000 0.4865 39,174,471 

GSM3291014 HIM15 Human_kidney_tubule DS37969 M 62 2,000,000 0.3638 53,455,680 

GSM3291015 HIM15 Human_kidney_tubule DS37971 M 62 2,000,000 0.4493 350,791,957 

GSM3291016 HIM15 Human_renal_cell_carcinoma DS37973 M 62 300,000 0.4951 260,802,880 

GSM3291017 HIM15 Human_renal_cell_carcinoma DS37974 M 62 300,000 0.5024 55,333,228 

GSM3291020 HIM23 Human_kidney_tubule DS41160 M 63 80,000 0.3944 221,916,751 

GSM3291021 HIM23 Human_kidney_tubule DS41396 M 63 80,000 0.5052 34,333,942 

GSM3291018 HIM23 Human_renal_cell_carcinoma DS40508 M 63 80,000 0.2764 201,007,725 

GSM3291019 HIM23 Human_renal_cell_carcinoma DS40509 M 62 80,000 0.2179 55,078,250 

GSM3291011 786-O Human_renal_cell_carcinoma DS27192 M 58 9,000,000 0.3238 214,308,625 

GSM3291013 786-O Human_renal_cell_carcinoma DS37199 M 58 100,000 0.3742 360,466,731 

GSM3291024 ACHN Human_renal_cell_carcinoma DS24547A M 22 13,100,000 0.4583 261,250,750 

GSM3291025 ACHN Human_renal_cell_carcinoma DS24471A M 22 3,000,000 0.4256 224,800,319 
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DNase-seq data 

Sequence reads from our DNase-seq libraries were subjected to an in-house uniform data processing 

pipeline, which we have used previously for ENCODE DNase-seq datasets (Thurman et al. 2012). Briefly, 

read pairs passing quality filters are trimmed of adapter sequences and aligned to the reference human 

genome (GRCh37/hg19) using BWA (Li and Durbin 2009). Genomic regions with a significant enrichment 

of DNase I cleavages were identified using our hotspot algorithm (Thurman et al. 2012) and were further 

refined to fixed-width, 150-base-pair regions (“peaks”) containing the highest cleavage density (referred to 

as DNase I hypersensitive sites, DHSs). Hotspot (FDR 1%) and peak calling were performed using both 

full-depth and uniformly sub-sampled (to 3.8 x 107 aligned read pairs) data. Also see Supplemental Table 

1. 

 

HIF ChIP-seq data 

We downloaded sequence reads from ChIP-seq experiments for HIF-1a, HIF-2 a and HIF-1b (Salama et 

al. 2015) from GEO (accession GSE67237), aligned them to the reference human genome (GRCh37/hg19) 

using BWA and identified peak summit locations using the macs2 algorithm (Zhang et al. 2008).  

 

RNA-seq data 

RNA-seq libraries were aligned to the reference human genome (GRCh37/hg19) using TopHat 2.0.13 

(Trapnell et al. 2009) and assigned to transcript models (GENCODE v19 basic set) using Cufflinks 2.1.1 

(Trapnell et al. 2013). Also see Supplemental Table 1. Processed RNAseqV2 expression tables from 

TCGA Research Network (http://cancergenome.nih.gov/) were downloaded for frozen tissue samples from 

organ sites with matched normal and tumor tissues available for comparison. Patient annotations (e.g. 

tumor stage, metastasis status) for TCGA patient samples were obtained using the UCSC Xena browser 

tool (Goldman et al. 2018).  
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General data processing 

Data analyses were carried out using custom R scripts that utilized Bioconductor 

(http://www.bioconductor.org) packages for analyzing high-throughput sequencing data, custom Python 

scripts, and the BEDOPS (Neph et al. 2012) suite of tools, as well the publicly available tools GoRILLA 

(Eden et al. 2009) and GREAT (McLean et al. 2010) where indicated.  

 

Generation of DHS master list 

To facilitate comparisons at the same genomic locus across multiple samples, we created a “master list” 

of non-overlapping (i.e. non-redundant) 150 bp DHSs. FDR 1% peak calls from all primary tubule and RCC 

38 million-tag-subsampled datasets were merged by keeping positions covered by peaks from at least 

three datasets. Regions where multiple overlapping peaks produced a large contiguous stretch of peak 

coverage were resolved to multiple, non-overlapping 150-bp segments using a sliding-window approach 

to find the 150-bp segments of highest coverage within the larger contiguous region. 

  

Copy-number correction of DNase data 

We utilized the “copynumber” package in R to identify genomic regions likely to be subject to copy-number 

alterations in our RCC samples, with the goal of correcting DNase cleavage counts accordingly so that 

differences between RCC and TUB samples were more likely to be driven by changes in TF occupancy 

than by altered copy number. Using the log2-normalized fold-change (RCC/TUB) of DNase tag densities 

within master list DHSs, we segmented the genomes of all three patient samples (discontinuity parameter 

gamma = 140). We classified regions whose absolute fold-change were at least twice the median as copy-

number variable (Patient 1 = 22 regions, Patient 2 = 26, Patient 3 = 32), and used the mean value of the 

segment as a scaling factor for raw DNase read counts in those regions for the RCC samples. This analysis 

detected both 3p loss and 5q gain (confirmed by karyotyping of these patient samples) as well as several 

focal copy number changes. 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 27, 2018. ; https://doi.org/10.1101/379198doi: bioRxiv preprint 

https://doi.org/10.1101/379198


 

37 
 

Identification of differential DHSs 

We utilized the DESeq2 software package (Love et al. 2014) in R to identify DHSs with significant 

differences in accessibility between replicate tumor and normal samples, analyzing each patient 

separately. Copy-number-corrected tag counts meeting a minimum threshold in at least one sample (25) 

within the master-list DHSs were used as input for DESeq2, and sites that met an FDR threshold of 1% 

were considered differential DHSs. 

  

Calling of HIF1/HIF2 binding sites and identification of HIF-occupied DHSs 

We used macs2 peaks (FDR 1%) from HIF-1a, -1b, and -2 a ChIP-seq performed in 786-O cells to classify 

HIF1 and HIF2 binding sites genome-wide. We classified HIF1 binding sites as HIF-1a peaks that 

overlapped (by at least 50 bp) a HIF-1b peak (1,820 sites) and HIF2 binding sites as HIF-2a peaks that 

overlapped (by at least 50 bp) a HIF-1b peak (1,243 sites). DHSs in our master list were classified as HIF-

positive if they overlapped a HIF1 or HIF2 binding site by at least 37 bp (25% of DHS width). 

 

Calculation of gene expression changes and GO term enrichment 

Gene expression fold-changes were calculated as the log2 ratio of FPKM values for RCC / TUB (0.001 

was added to each FPKM value to control for zero values). For each patient, genes with FPKM ³ 1 in fold-

change ³ 1.5 in RCC were classified as ‘up-regulated’, the converse criteria were used to classify genes 

as ‘down-regulated’. All other genes were classified as ‘non-changing’, except those with FPKM ² 1 in both 

TUB and RCC, which were considered ‘non-expressed’.  Shared (across all three patients) up- or down-

regulated gene sets were used (along with the shared non-changing gene list as a background set) as 

input for the GoRILLA gene ontology enrichment tool.  
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Comparisons of regulatory landscapes and differential DHSs among patients 

Principal components analysis was performed on log10-transformed DNase I tag densities within master 

list DHSs (or on FPKM values for RNA-seq data) using the “prcomp” function of R (with center=TRUE and 

scale=TRUE). Because the master list of DHSs was used to compute differential DHSs for each patient, 

the DESeq calls (FDR 1%) at each site were used to classify the directionality of change at the same 

genomic locations across all three patients.  

 

Connection of HIF binding sites to neighboring differentially expressed genes 

We were interested in which genes might be regulated by HIF binding events, and considered clusters of 

HIF+ DHSs as prime candidates for such connections. To this end, we systematically located clusters of 

HIF+ DHSs arbitrarily within 12.5 kb of one another, merging neighboring clusters, and examined a 1 Mb 

region centered on each cluster for genes with altered expression (³1.5 fold-change) in either our patient 

samples or TCGA RNA-seq data.  

 

Survival analyses 

Survival analysis based on POU5F1 expression levels in the legacy TCGA RNA-seq expression data (split 

evenly into high- and low-expressing groups at the median expression level) was performed using the 

UCSC Xena web interface (Goldman et al. 2018). 

 

Uncovering candidate TF drivers of regulatory landscape alterations  

Transcription factor motif models were curated from TRANSFAC (version 11) (Matys et al. 2006), JASPAR 

(Bryne et al. 2008), and a SELEX-derived collection (Jolma et al. 2013). Instances of transcription factor 

recognition sequences in the human genome were identified by scanning the genome with these motif 

models using the FIMO tool (Grant et al. 2011) from the MEME Suite version 4.6 (Bailey et al. 2009) with 
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a 5th order Markov model generated from the 36 bp “mappable” genome used as the background model. 

Instances with a FIMO P<10-4 were retained and used for subsequent analyses.  

 

To obtain a “family-level” representation of TF recognition sequences, individual motif models used in the 

genome-wise FIMO scans were compared in a pairwise fashion using the TOMTOM (Gupta et al. 2007) 

tool from the MEME Suite version 4.6 (Bailey et al. 2009) with the parameters “-dist kullback -query-pseudo 

0.1 -target-pseudo 0.1 -text -min-overlap 0 -thresh 1” and the same 5th order Markov model described 

above as background. Pairwise comparisons were then hierarchically clustered using Pearson correlation 

as a distance metric and complete linkage. The resulting trees were cut at a height of 0.1 to select clusters 

of highly similar motifs.  

 

Motif enrichments were calculated by using a custom Python script to count the number of DHSs that 

contain a “family” motif (i.e. contained an instance of any motif model within a cluster of highly similar motif 

models). For a given analysis, these counts were compared between a “foreground” set of DHSs (e.g. 

shared DHSs with increased accessibility in RCC) and a “background” set (e.g. all other DHSs) and 

significance was determined using the hypergeometric distribution and subsequent Bonferroni correction 

of p-values.  

 

Because motif enrichment was computed using family-level representations of TF recognition sequences, 

we aimed to uncover which member(s) of the POU family might be driving changes in the regulatory 

landscape of RCC by examining our and TCGA’s RNA-seq data for all members of the POU family with a 

significant enrichment signal. 

 

Data access 

All primary and uniformly processed sequence data generated in this study are available at the NCBI Gene 

Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE117324. We 
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recently performed a separate and non-overlapping analysis of the tubule data sets included in this study 

in comparison to human kidney glomerular outgrowth cultures and cultured podocytes (manuscript in 

revision). Those data have also been deposited at GEO with accession number GSE115961. 
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