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Abstract

Transcranial brain stimulation and evidence of ephaptic coupling have sparked strong interests in understanding
the effects of weak electric fields on the dynamics of neuronal populations. While their influence on the
subthreshold membrane voltage can be biophysically well explained using spatially extended neuron models,
mechanistic analyses of neuronal spiking and network activity have remained a methodological challenge.
More generally, this challenge applies to phenomena for which single-compartment (point) neuron models
are oversimplified. Here we employ a pyramidal neuron model that comprises two compartments, allowing
to distinguish basal-somatic from apical dendritic inputs and accounting for an extracellular field in a
biophysically minimalistic way. Using an analytical approach we fit its parameters to reproduce the response
properties of a canonical, spatial model neuron and dissect the stochastic spiking dynamics of single cells and
large networks. We show that oscillatory weak fields effectively mimic anti-correlated inputs at the soma and
dendrite and strongly modulate neuronal spiking activity in a rather narrow frequency band. This effect
carries over to coupled populations of pyramidal cells and inhibitory interneurons, boosting network-induced
resonance in the beta and gamma frequency bands. Our work contributes a useful theoretical framework for
mechanistic analyses of population dynamics going beyond point neuron models, and provides insights on
modulation effects of extracellular fields due to the morphology of pyramidal cells.

Author Summary

The elongated spatial structure of pyramidal neurons, which possess large apical dendrites, plays an important
role for the integration of synaptic inputs and mediates sensitivity to weak extracellular electric fields.
Modeling studies at the population level greatly contribute to our mechanistic understanding but face a
methodological challenge because morphologically detailed neuron models are too complex for use in noisy,
in-vivo like conditions and large networks in particular. Here we present an analytical approach based on
a two-compartment spiking neuron model that can distinguish synaptic inputs at the apical dendrite from
those at the somatic region and accounts for an extracellular field in a biophysically minimalistic way. We
devised efficient methods to approximate the responses of a spatially more detailed pyramidal neuron model,
and to study the spiking dynamics of single neurons and sparsely coupled large networks in the presence of
fluctuating inputs. Using these methods we focused on how responses are affected by oscillatory weak fields.
Our results suggest that ephaptic coupling may play a mechanistic role for oscillations of population activity
and indicate the potential to entrain networks by weak electric stimulation.
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Introduction

The interaction between weak electric fields and neuronal activity in the brain has gained increased attention
over the past decade [1]. These weak fields can be generated endogenously by populations of neurons [2–4] or
through transcranial electrical stimulation [5–7], and they can modify neural activity in various ways [2,8–11].
Although the electric fields caused by this type of noninvasive intervention exhibit low magnitudes (≤
1-2 V/m [5, 6]) they can modulate neuronal spiking activity [2, 12, 13] and lead to changes in cognitive
processing [14,15], offering a number of possible clinical interventions [16, 17]. The influence of extracellular
fields on the subthreshold membrane voltage of single cells has been thoroughly studied and biophysically
explained [12, 18–21]. How weak electric fields affect neuronal spiking activity and interact with network
dynamics, however, is currently not well understood.

Multi-compartment models are useful tools to dissect effects in single neurons in the absence of input
fluctuations [22–24], but they are not well suited to study neuronal and network spiking activity in noisy,
in-vivo like conditions, because of their large complexity. Single-compartment (point) neuron models on the
other hand allow for effective mechanistic analyses at the network level (see, e.g., [25–27]); however, they lack
the spatial structure that is required to biophysically describe the effects of an electric field [20]. Nevertheless,
networks of point model neurons have been repeatedly used in conjunction with rough phenomenological
implementations of extracellular field effects [2, 9, 11,28].

Here we employ a model of pyramidal (PY) spiking neurons with the minimal level of spatial detail
necessary to biophysically take into account an extracellular electric field. It consists of a compartment for the
soma and one for the apical dendrite, allowing to differentiate between synaptic inputs at the soma (including
basal dendrite) and those at the distal (apical) dendrite. The model parameters are semi-analytically tuned
to reproduce the behavior of a more sophisticated, spatially extended neuron model which involves the
cable equation. To effectively study neuronal spiking dynamics for in-vivo like fluctuating inputs and the
activity of sparsely coupled large populations in the presence and absence of extracellular fields we develop
an analytical method. It utilizes the Fokker-Planck equation and a moment closure approximation technique
to characterize the stochastic model dynamics.

Using these tools we study (i) how a weak oscillatory field affects the spiking activity of neurons exposed
to fluctuating synaptic inputs, (ii) how these effects compare to those of weak oscillatory inputs in the absence
of an electric field, and (iii) how weak applied fields modulate network-induced oscillations. Our contribution
sheds some light on the effects of extracellular fields at the population level. Furthermore, it provides useful
methods for mechanistic studies on the dynamics of coupled compartmentalized spiking neurons that allow
to broadly distinguish inputs according to the location of the synapses. Such a distinction is important, for
example, in circuit models which involve different types of (inhibitory) neurons.

Results

Modeling approach

Pyramidal neuron model The PY model neurons consist of two compartments, one for the soma and one
for the (apical) dendrite, for which we consider trans-membrane capacitive currents, ionic leak currents, an
approximation of the somatic Na+ current at spike initiation, an internal current, synaptic input currents and
an extracellular field. The latter is defined as E(t) := [V e

s (t)− V e
d (t)]/∆, where V e

s , V e
d are the extracellular

membrane potentials for the somatic and dendritic compartments, whose centers are separated with distance
∆. The dynamics of action potentials are simplified by a reset mechanism of the integrate-and-fire type at
the soma. Fluctuating input currents at the soma and the dendrite, Is and Id, that mimic the compound
effect of synaptic bombardment in vivo, are described by stochastic processes with means Īs, Īd and standard
deviations σs, σd. In this model the dynamics of the somatic and the dendritic membrane voltage, Vs and
Vd, respectively, are thus governed by two coupled differential equations together with a reset condition for
spikes (for details see Methods section 1). A schematic circuit diagram of the model is depicted in Fig 1A.
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Figure 1. PY neuron model: parameter fitting and response properties. A: schematic circuit diagram for
the membrane voltage dynamics of the two-compartment (2C) model (for the full description see Methods section 1).
B: visualization of a spatial ball-and-stick (BS) model neuron (black) whose somatic voltage dynamics is approximated
by the 2C model (green). Is, Id denote the input currents at the soma and dendrite, E is the extracellular electric
field and Vs is the somatic membrane voltage of the 2C model neuron and V is the membrane voltage of the BS model.
C–G: responses of a BS neuron parametrized to model a typical PY cell and of the fitted 2C model (for parameter
values see Table 1). C: amplitude of subthreshold somatic impedances for inputs at the soma ẐIs and dendrite ẐId as
a function of input frequency (using Eqs (11), (12) and (67)–(69)). D: amplitude of subthreshold somatic voltage
responses to a sinusoidal electric field with amplitude E1 = 1 V/m (and E0 = 0) as a function of field frequency. E:
example time series of the somatic voltage in response to fluctuating inputs, with spike times indicated, as well as
voltage histograms of both models (right) and voltage density ps (green line; analytically calculated, cf. Methods
section 3). F: spike coincidence measure Γ between the spike trains of both models for Īd = 3 pA, σd = 5 pA

√
ms

(left) and Īs = 3 pA, σs = 15 pA
√

ms (right). Γ = 1 indicates an optimal match with precision ∆c = 5 ms, Γ = 0
indicates pure chance (for details see Methods section 5). G: spike rates from numerical simulation (symbols) and
analytically calculated (green line; cf. Methods section 3) for input parameter values as in F. The grey square marks
the parameter values used for E.
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Model parametrization To determine the parameter values of the two-compartment model and assess
whether its spatial complexity is adequate we semi-analytically fit the model to a biophysically more
sophisticated, spatially elongated ball-and-stick neuron model (Fig 1B). That model involves the cable
equation, an integrate-and-fire spike mechanism at the soma and an extracellular field which is assumed
spatially homogeneous (see Methods section 4). Due to its mathematical complexity this model is not well
suited for analyses of spiking dynamics and application in networks. The fitting method approximates the
somatic responses of the ball-and-stick model in an efficient way without requiring the parameter values for
the input or the electric field. In brief, we analytically calculate the somatic subthreshold responses for small
amplitude variations of the inputs and the electric field as well as the transient somatic voltage responses
after a spike for threshold inputs, and subsequently apply a least-squares fit. Note that the membrane voltage
dynamics at the soma directly affect spike timing and are therefore the most relevant (axon initial segments
are absorbed by the somatic compartments and not separately included in the models). In this way we rapidly
obtain an accurate reproduction of the relevant response properties of the ball-and-stick model (Fig 1C-G).
Specifically, the subthreshold responses, in terms of somatic impedances for inputs at the soma and dendrite
(Fig 1C), the somatic voltage response for an oscillatory applied field (Fig 1D), and spiking activity, in terms
of spike coincidences (Fig 1F, see Methods section 5) and the spike rate (Fig 1G), are well approximated.

Characterization of spiking dynamics We focus on spiking activity, in particular the dynamics of the
(instantaneous) spike rate r. This quantity can be calculated exactly using the Fokker-Planck equation
that governs the evolution of the joint probability density for the somatic and dendritic membrane voltage
p(Vs, Vd, t), describing the stochastic dynamics in deterministic form (see Methods section 3). Since this
equation cannot be solved numerically in reasonable time we employ a moment closure approximation method.
Specifically, we use p(Vs, Vd, t) = ps(Vs, t)pd(Vd|Vs, t), where ps is the marginal probability density for the
somatic voltage and pd the probability density for the dendritic voltage conditioned on Vs, and approximate
pd by a conditioned Gaussian probability density. The resulting system allows for convenient and efficient
calculation of the spike rate responses for constant input statistics as well as weak sinusoidal variations of the
input moments or the applied field. An evaluation of this method in comparison to numerical simulation for
constant input moments is shown in Fig 1E,G.

Modulation of neuronal spiking activity

We first consider a PY neuron exposed to fluctuating inputs at the soma and the dendrite and a weak
sinusoidal applied field. The noisy inputs drive the neuron to stochastic spiking activity that is influenced
by the field. This effect can be quantified by the instantaneous spike rate across a large number of trials
(obtained from numerical simulations with different realizations of the input), which is equivalent to the
population-averaged spike rate for a large number of uncoupled PY neurons receiving independent inputs.
The field leads to an oscillatory modulation of the spike rate that is accurately reproduced by our analytical
calculation method (Fig 2A).

By measuring these spike rate responses over a range of field frequencies we observe a clear resonance in a
biologically relevant, relatively narrow frequency band (Fig 2B). In other words, the spike rate oscillations
are strongest for field oscillations in that frequency range. This resonance behavior is not shown by the
subthreshold membrane voltage response to the field in the absence of suprathreshold fluctuating inputs.
Interestingly, spike rate responses to weak sinusoidal modulations of the mean input at the soma or dendrite
instead of an applied field do not exhibit such a resonance (Fig 2C,D). Response amplitudes typically decrease
as the frequency of the input modulations increases, although spike rate responses remain elevated for somatic
modulations of up to about 100 Hz. Notably, the analytical results are in good agreement with those of
numerical simulations. This justifies the extensive application of our analytical method in the subsequent
analyses.

Next, we assess the resonance behavior caused by the applied field for a range of biologically plausible
input statistics (see Fig 3). Resonance frequency and strength increase with increasing input mean, but not
necessarily with increasing input variance. For mean-dominated input (that is, large input mean and small
input variance) the resonance frequency is similar to the baseline spike rate (compare the dashed curves for
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Figure 2. Neuronal responses to an applied electric field and to input modulations. A: spike times and
spike rate (histogram: grey, analytical result: green line; cf. Methods section 3) of a PY model neuron in response to a
sinusoidal electric field, E(t) = E1 sin(ωt) with angular frequency ω (here: ω/(2π) = 12.6 Hz), in the presence of noisy
background input. B: amplitude of spike rate responses to a field with amplitude E1 = 1 V/m as a function of field
frequency for Īs = 10 pA, σs = 15 pA

√
ms, Īd = 3 pA, σd = 5 pA

√
ms (green squares) and Īs = 3 pA, σs = 15 pA

√
ms,

Īd = 7 pA, σd = 60 pA
√

ms (green circles), as well as amplitude of normalized subthreshold somatic voltage responses
(magenta dashed line). C and D: amplitude of spike rate responses (green) and of normalized subthreshold somatic
voltage responses (impedances; magenta dashed lines) to sinusoidal modulations of the mean input at the soma,
Īs(t) = Ī0s + Ī1s sin(ωt), with amplitude Ī1s = 0.5 pA (C) or at the dendrite, Īd(t) = Ī0d + Ī1d sin(ωt), with amplitude
Ī1d = 1 pA (D) as a function of modulation frequency in the absence of an extracellular field. Baseline (constant)
input statistics in C and D correspond to those in B.

large input mean with Fig 2G). In this case an increase in input variance interestingly leads to a decrease in
resonance frequency and strength. For fluctuation-dominated input the resonance frequency is restricted to
the the beta and low gamma frequency bands.

How does the external field promote this resonance behavior? From the definition of the extracellular field
and the circuit diagram in Fig 1A it becomes evident that the trans-membrane currents caused by the field at
the soma and dendrite are opposed (using Kirchhoff’s law, that all incoming currents at a point of the circuit
must sum to zero; see Eqs. (1), (2) in Methods section 1). This indicates that the electric field effectively
reflects anti-correlated inputs at the soma and dendrite. To examine the influence of input correlations
more closely we applied sinusoidal modulations of the mean input at the soma and dendrite with a phase
shift (Fig 4A). A resonance peak emerges as the phase shift increases from 0 (synchronized modulations /

5

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 30, 2018. ; https://doi.org/10.1101/379560doi: bioRxiv preprint 

https://doi.org/10.1101/379560
http://creativecommons.org/licenses/by-nc/4.0/


Figure 3. Spike rate resonance caused by an applied field. Resonance frequency (argmaxω r1(ω)/(2π); top
panel), amplitude (max r1(ω); center panel) and strength (max r1(ω)/r1(0); bottom panel) of the oscillatory spike
rate with amplitude r1 (cf. Methods section 3) in response to a sinusoidal applied field with E1 = 1 V/m and angular
frequency ω for a range of input statistics. Left: σs = 15 pA

√
ms (dashed lines), σs = 25 pA

√
ms (solid lines),

Īd = 3 pA and σd = 5 pA
√

ms; right: σd = 5 pA
√

ms (dashed lines), σd = 60 pA
√

ms (solid lines), Īs = 3 pA and
σs = 15 pA

√
ms.

strong correlation) towards 180◦ (anti-synchronized modulations / negative correlation) and becomes most
pronounced at that value. To explore the effects of synaptic delays in this regard we further considered a
temporal shift instead of a phase shift between the two mean input modulations (Fig 4B). Delays that are
sufficiently large cause multiple resonance peaks. The frequency that corresponds to the most dominant peak
(with positive frequency) decreases with increasing delay, but is otherwise largely independent of the baseline
input statistics (Fig 4C).

Modulation of network dynamics

To examine how an applied field interacts with network mechanisms to shape population dynamics we derived
a mean-field network model from large populations of sparsely coupled PY neurons and inhibitory (IN)
interneurons exposed to fluctuating background inputs and a spatially homogeneous (with respect to neuronal
orientation) weak electric field. PY neurons are described by the two-compartment model and IN neurons by
an established single-compartment spiking model (exponential integrate-and-fire), because IN neurons are
spatially more compact and therefore the direct effect of the electric field on them is negligible. Synaptic
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Figure 4. Spike rate responses to input modulations at soma and dendrite. A: amplitude of normalized
rate responses to sinusoidal modulations of the mean input at the soma, Ī0s + Ī1 sin(ωt), and dendrite, Ī0d + Ī1 sin(ωt+φ),
with phase shift φ as a function of modulation frequency for the baseline input statistics Ī0s = 10 pA, σs = 15 pA

√
ms,

Ī0d = 3 pA, σd = 5 pA
√

ms (left) and Ī0s = 3 pA, σs = 15 pA
√

ms, Ī0d = 7 pA, σd = 60 pA
√

ms (right). φ = π
corresponds to negatively correlated (anti-synchronous) modulations. B: amplitude of normalized rate responses to
mean input modulations Ī0s + Ī1 sin(ωt) and Ī0d + Ī1 sin(ω[t+ ∆T ]) with temporal shift (delay) ∆T . Baseline input
statistics as in A. C: frequency (left) and normalized amplitude (resonance strength, using the amplitude at frequency
0; right) of the most dominant peak at a positive frequency >1 Hz as a function of delay ∆T for baseline input
statistics as in A (left: blue lines, right: magenta lines).

coupling is incorporated by delayed current pulses which cause post-synaptic potentials of reasonably small
magnitude with distributed delays. In the derivation we apply a diffusion approximation and a moment
closure method to transform the original network model into a manageable system of two Fokker-Planck
equations – one for each population – coupled via synaptic input moments. This system describes the
collective stochastic dynamics in a way that allows for convenient dissection of the network activity in terms
of population-averaged instantaneous spike rates (see Methods section 6).
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The network is parametrized to exhibit a baseline state of low or high asynchronous (irregular) spiking
activity depending on the strength of the external drive. Network-induced resonance emerges for weak
sinusoidal input modulations at the soma of PY neurons with strongest responses in the gamma frequency
range (Fig 5). This resonance behavior is more pronounced in the high activity state compared to the low
activity state. The resonance peak shifts to a higher or lower gamma frequency depending on whether IN
neurons target PY neurons only at the soma or only at the dendrite. Interestingly, for input modulations at
the dendrite of PY neurons such a clear resonance behavior does not appear.

Figure 5. Resonance in PY-IN networks. Amplitude of oscillatory spike rate of the PY neuron population for a
mean-field network of sparsely coupled PY and IN neurons exposed to an applied field (solid lines) or weak modulations
of the mean input to PY neuron somas (dashed lines) and dendrites (dotted lines) as a function of field/modulation
frequency. for strong (top panel) and weak (bottom panel) external drive. Each PY neuron receives inputs from 100
IN neurons both at soma and dendrite (A) or from 200 IN neurons only at the soma (B) or dendrite (C), each IN
neuron receives inputs from 200 PY neurons; random connectivity, excitatory/inhibitory coupling strengths ±0.1 mV
and distributed delays with bi-exponential delay density (rise time constant 0.5 ms, decay time constant 2 ms/5 ms
for excitatory/inhibitory connections; for details see Methods section 6). Baseline mean of the external input for PY
neurons (at soma and dendrite): 12 pA (top panel), 6 pA (bottom panel) and 0 pA for IN neurons; input standard
deviation: 20 pA

√
ms for PY neurons, 0.5 nA

√
ms for IN neurons. Field amplitude was E1 = 1 V/m, input modulation

amplitudes were chosen to yield equal response amplitude at the lowest frequency.

When we consider a weak sinusoidal field instead of input modulations we observe a strongly amplified
resonance of the population activity in the same (gamma) frequency band. The prominent effect of an
applied field in single cells thus carries over to PY-IN networks, boosting network-based oscillations (that
are mediated by an excitation-inhibition loop). These results indicate that an oscillatory electric field as
generated, for example, by transcranial stimulation should be most effective to induce or maintain rhythmic
network dynamics in the gamma frequency range.
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Discussion

Methodological aspects

Neuron model Model-based investigations on how extracellular electric fields impact neuronal spiking
activity face a methodological challenge: the neuronal spatial extent plays an important biophysical role,
however, morphologically detailed neuron models are too complex for use in noisy, in-vivo like conditions,
especially in large networks. Two-compartment neuron models provide a useful compromise between
biophysical detail and analytical tractability in this regard. Models of this type have been applied to study,
for example, the influence of dendritic morphology on neuronal responses in the absence of extracellular
fields [29] and the effects of constant electric fields on the activity of single neurons and synchronization of
neuronal pairs in the absence of input fluctuations [30,31]. Our approach is based on a two-compartment
spiking PY neuron model which accounts for an external electric field and includes fluctuating synaptic input
at the soma and/or (apical) dendrite.

Using semi-analytical techniques this model was rapidly calibrated to well approximate the (subthreshold
somatic and spiking) response properties of a morphologically more plausible ball-and-stick model neuron.
Based on that spatially elongated model we have recently developed an extension for single-compartment
(point) neuron models to match the subthreshold somatic responses to synaptic inputs and an applied weak
electric field [20]. The methodology presented here entails several advantages compared to our previous work:
the fitted neuron model involves a low-dimensional differential equation in contrast to an integro-differential
equation (in case of the extended point model to account for dendritic filtering effects), allowing for faster
numerical simulation, straightforward implementation of networks, and a natural way to account for an
extracellular field. Notably, the latter feature highlights the main benefit compared to networks of point model
neurons for which simple phenomenological input currents were used to implement field effects [2, 9, 11,28].
Importantly, the two-compartment model further allowed for the application of analytical methods to study
spiking dynamics.

Spike rate dynamics We devised a method to efficiently study the spike rate dynamics of these two-
compartment neurons and the population activity of sparsely coupled large networks. It employs the
Fokker-Planck partial differential equation and a moment closure technique for dimension reduction which
allows to numerically solve the resulting system in reasonable time. These solutions yield an accurate and
efficient approximation of the instantaneous (population) spike rate (cf. Fig. 1G and Fig. 2).

Similar moment closure methods were previously applied in different contexts, such as integrate-and-fire
point model neurons with synaptic dynamics (see, e.g., [32, 33] and references therein). In [32] the issue was
raised that moment closure may not be applicable for certain ranges of parameter values. For the setting and
regions of parameter space considered throughout the present study, however, this approximation method
was well suited.

We approximated the conditional probability density pd(Vd|Vs, t) by a conditioned Gaussian, thereby
closing the system of lower dimensional equations at the 3rd central moment of Vd (assuming the 3rd and
higher cumulants are zero). Closure at lower order moments leads so markedly less accurate results due
to similar timescales for the somatic and dendritic voltage and strong coupling between those variables.
Closure at higher order moments, on the other hand, does not yield a substantial improvement but increases
computational demands.

Notably, moment closure at order 1 is equivalent to the adiabatic approximation frequently applied for
adaptive integrate-and-fire neurons in the presence of noise [27, 34–36]. In that case the conditional first
centered moment (of the adaptation variable given membrane voltage) is approximated by the corresponding
unconditioned moment. This usually leads to an accurate reproduction of the spike rate dynamics due to
the circumstance that the timescales of the two variables are separated. Such an adiabatic approximation
has also been applied for two-compartment Purkinje model neurons [29] which possess large dendritic trees.
A substantial difference in somatic and overall dendritic capacitance justifies the assumption of separated
timescales for those models. Our approach, in contrast, is also valid for model parametrizations that yield
rather similar timescales for soma and dendrite, and therefore suitable for pyramidal cells.
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It is worth noting that our analytical techniques also allow for correlated somatic and dendritic inputs (cf.
Methods section 3); an investigation into input correlations, however, is beyond the scope of the present study.
The methodological results presented here may further be used to derive a simple spike rate model in form
of a low-dimensional differential equation from two-compartment model neurons. This could be achieved
by adapting available approximation methods [27] to our reduced description based on the Fokker-Planck
equation.

Described phenomena

By applying our analytical tools we showed that oscillatory weak electric fields strongly modulate neuronal
spiking in a rather narrow frequency band. The resonance frequency depends on the input statistics. Spike
rate modulation exhibited a clear resonance in the beta and gamma frequency bands in particular for strongly
fluctuating inputs.

Recent modeling results suggest that this resonance frequency may be largely determined by the location
of background input (soma vs. distal dendrite) [20]. Our results confirm that resonance frequencies are
higher for mainly dendritic background inputs compared to mainly somatic background inputs (cf. Fig. 3,
top panel). However, unless the input at one location is completely extinguished (as in [20]) the statistics of
background inputs at either location appear to play the dominant role. It may also be noted at this point
that spike rate resonance frequencies are lower for model neurons that include an exponential nonlinearity
(at the soma) compared to purely leaky integrate-and-fire neurons [20].

To date, experimental evidence for frequency-dependent modulation of neuronal activity by extracellular
fields is very sparse (see [37] for a review). Weak electric fields alternating at 30 Hz have been shown to
increase spiking coherence of pyramidal cells in rat hippocampal slices [13], and fields with high-frequency
components have been evidenced to entrain spiking activity in ferret primary visual cortex more effectively
than fields that only contain low-frequency components [2]. To the best of our knowledge, the effects of
multiple field frequencies have not yet been experimentally assessed. Therefore, our results on spike rate
resonance are currently not completely confirmed and may be regarded as predictions.

Interestingly, these resonance effects at the suprathreshold level are not shown by the subthreshold
membrane voltage, whose amplitude monotonically decreases with increasing field frequency (cf. Fig. 1D,
Fig. 2B). The latter phenomenon is in accordance with electrophysiological observations: the subthreshold
response amplitude (which scales linearly with the field amplitude [18]) is of the same order of magnitude as
that measured in pyramidal cells and decreases with increasing field frequency [12]. Note that the parameter
values of our model were not optimized to reproduce this behavior quantitatively but can be adjusted
accordingly in a straightforward way [20].

The two-compartment model naturally accounts for input filtering caused by the dendrite (for example, as
described in [20]). Notably, the somatic impedance and spike rate response for input modulations at the soma
exhibit rather distinct dependencies on input frequency (compare Fig. 1C and Fig. 2C, right), which may be
attributed to the nonlinearity caused by spiking. The presence of the dendrite leads to increased spike rate
responses to weak oscillatory input modulations with high frequency at the soma. This is consistent with
previous findings for Purkinje neurons in vitro and using a two-compartment model similar to the one used
here [29] despite marked differences in the morphology between Purkinje and pyramidal cells. Specifically,
the ratio between dendritic and somatic membrane surface (hence, capacitance) are quite distinct for these
two types of neurons, which explains certain differences in the results.

Models and Methods

1. Two-compartment neuron model

The two-compartment neuron model consists of two differential equations for the dynamics of the somatic
and the dendritic membrane voltage, Vs and Vd, respectively, together with a reset condition of the integrate-
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and-fire type (for similar models with and without an extracellular field see [29,31,38,39]),

Cs
dVs

dt
+ Iion,s(Vs) = Gi(Vd − Vs −∆E(t)) + Is(t), (1)

Cd
dVd

dt
+GdVd = Gi(Vs − Vd + ∆E(t)) + Id(t), (2)

Iion,s(Vs) := GsVs −Ge∆Te
Vs−VT

∆T , (3)

if Vs(t) ≥ Vth then Vs(t)← Vr, (4)

where Vs, Vd are defined by the difference between the deviations V i
s , V i

d of the intracellular membrane
potentials from the leak reversal potential (assumed identical for soma and dendrite) and the extracellular
membrane potentials V e

s , V e
d for the somatic and dendritic compartment, respectively,

Vs(t) := V i
s (t)− V e

s (t), Vd(t) := V i
d(t)− V e

d (t). (5)

Cs, Cd and Gs, Gd denote the capacitances and leak conductances of the somatic and dendritic membranes.
The exponential term with conductance Ge, threshold slope factor ∆T and effective threshold voltage VT

approximates the rapidly increasing Na+ current at spike initiation [40]. Gi is the internal conductance
between the somatic and the dendritic compartment, ∆ is the spatial distance between their centers, and E
denotes the extracellular electric field, defined by

E(t) :=
V e

s (t)− V e
d (t)

∆
. (6)

Is and Id are the synaptic input currents at the soma and dendrite, respectively. When Vs increases beyond
VT, it diverges to infinity in finite time due to the exponential term, which defines a spike. In practice,
however, the spike is said to occur when Vs reaches a given threshold value Vth > VT. The downswing of the
spike is not explicitly modeled; instead, when Vs passes Vth (from below), the somatic membrane voltage is
instantaneously reset to a lower value Vr, cf. (4).

Eqs. (1) and (2) are the current balance equations for the center points of the two compartments according
to the electrical circuit diagram in Fig. 1A. This can be seen by using Kirchhoff’s law, that all incoming currents
at a circuit point must sum to zero, and the definitions (5) and (6) which imply V i

d − V i
s = Vd − Vs −∆E.

We consider an applied weak sinusoidal field,

E(t) = E0 + E1 sin(ωt), (7)

with offset E0 = 0, amplitude E1 = 1 V/m and angular frequency ω, unless stated otherwise.
The synaptic inputs are fluctuating currents that mimic the compound effect of synaptic bombardment

in-vivo, described by

Is(t) := Īs(t) + σs(t) ξs(t), (8)

Id(t) := Īd(t) + σd(t) ξd(t) (9)

with time-varying moments Īs, Īd and σs, σd, and uncorrelated unit Gaussian white noise processes ξs, ξd, i.e.,〈
ξs(t)ξd(t+ τ)

〉
= δ(τ)δsd, where 〈·〉 denotes expectation (with respect to the ensemble of noise realizations

at times t and t+ τ) and δsd is the Kronecker delta.

2. Calculation of subthreshold responses

We analytically calculate the somatic membrane voltage response for small amplitude variations of the
synaptic inputs Is(t), Id(t) and a weak oscillatory field E(t), which do not elicit spikes. Considering that the
somatic voltage evolves sufficiently below the effective threshold value VT allows us to neglect the exponential
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term in Eq. (1) (i.e., the somatic membrane is purely leaky and capacitive). Using the Fourier transform of
Eqs. (1) and (2) we then obtain:

V̂s(ω) = Îs(ω)ẐIs2C(ω) + Îd(ω)ẐId2C(ω) +Gi∆Ê(ω)
[
ẐId2C(ω)− ẐIs2C(ω)

]
, (10)

where

ẐIs2C(ω) = 1/
[
(Csiω +Gs +Gi)−G2

i /(Cdiω +Gd +Gi)
]
, (11)

ẐId2C(ω) = ẐIs2C(ω)Gi/(Cdiω +Gd +Gi) (12)

are the somatic impedances for inputs at the soma and at the dendrite, respectively. .̂ indicates the a Fourier
transformed variable and ω denotes angular frequency.

3. Calculation of spike rate responses

To assess spiking activity we solved the stochastic differential equations Eqs. (1)–(4), (7)–(9) numerically
using the Euler-Maruyama integration scheme with time steps between 0.01 ms and 0.05 ms. In addition, we
employed analytical calculations as described in the following.

Fokker-Planck system For improved readability we rewrite Eqs. (1)–(3) with extracellular field according
to Eq. (7) and synaptic input given by Eqs. (8) and (9) in compact form:

dVs

dt
= f(Vs) + aVd + µs(t) + σss(t)ξs(t) + σsd(t)ξd(t), (13)

dVd

dt
= bVs + cVd + µd(t) + σds(t)ξs(t) + σdd(t)ξd(t), (14)

where the coefficients on the right hand side depend on the parameters of the system described in Methods
section 1. Note that here σsd = σds = 0, since the input fluctuations at the soma and dendrite are uncorrelated;
however, the methods in this section may also be applied in scenarios where any of these parameters is
nonzero and varies over time.

The dynamics of the joint membrane voltage probability density p(Vs, Vd, t) for this system plus reset
condition (4) are governed by the Fokker-Planck equation (see, e.g., [27, 34,41])

∂p

∂t
+
∂qs

∂Vs
+
∂qd

∂Vd
= 0, (15)

where qs and qd are the probability fluxes for the somatic and dendritic membrane voltage, respectively, given
by

qs := [f(Vs) + aVd + µs(t)]p−
σ2

ss(t)

2

∂p

∂Vs
− σ̃(t)

2

∂p

∂Vd
, (16)

qd := [bVs + cVd + µd(t)]p− σ2
dd(t)

2

∂p

∂Vd
− σ̃(t)

2

∂p

∂Vs
(17)

with σ̃(t) := σss(t)σds(t) + σsd(t)σdd(t), subject to the boundary conditions:

p(Vth, Vd, t) = 0 (absorbing boundary) (18)

lim
Vs→−∞

qs(Vs, Vd, t) = 0 (reflecting boundary) (19)

lim
Vd→±∞

qd(Vs, Vd, t) = 0 (reflecting boundaries) (20)

lim
Vs↘Vr

qs(Vs, Vd, t)− lim
Vs↗Vr

qs(Vs, Vd, t) = qs(Vth, Vd, t) (re-injection). (21)

The latter condition, a re-injection of probability flux, accounts for the voltage reset in the neuron model.
We obtain the instantaneous spike rate as

r(t) =

∫ ∞
−∞

qs(Vth, Vd, t) dVd. (22)
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Dimension reduction Solving the 2+1 dimensional Fokker-Planck partial differential equation (PDE)
system (15)–(21) numerically is possible in principle, but computationally demanding. To reduce the
dimension of this PDE system we utilize a moment closure approximation method. The (full) probability
density p can be expressed in terms of the marginal probability density for the somatic voltage, ps, and the
conditional probability density for the dendritic voltage, pd, as p(Vs, Vd, t) = ps(Vs, t) pd(Vd|Vs, t). Note that
pd is characterized by a (potentially) infinite number of conditioned moments {ηd,1(Vs, t), ηd,2(Vs, t), . . . }.
The method approximates pd by considering only the first k moments as described below (see [32] for the
application of such a method in a different setting). We transform the PDE system (15)–(21) into a system
of 1+1-dimensional PDEs

∂ps

∂t
= L0(ηd,1)[ps]

∂psηd,1

∂t
= L1(ηd,1, ηd,2)[ps]

∂psηd,2

∂t
= L2(ηd,1, ηd,2, ηd,3)[ps]

. . .

(23)

together with the associated boundary conditions by multiplying Eqs. (15)–(21) with V ld for l ∈ {0, 1, 2, . . . }
and integrating over Vd assuming that p and qd tend sufficiently fast to zero for Vd → ±∞, i.e., lim

Vd→±∞
V ld p(Vs, Vd, t) =

0, lim
Vd→±∞

V ld qd(Vs, Vd, t) = 0. Each linear operator Ll in (23) depends on the next higher conditioned moment

ηd,l+1, hence the system is (potentially) infinitely large. Note that we have omitted the obvious arguments
Vs, t for ps, ηd,l for improved readability.

We close the system (23) at k = 3 by setting the 3rd central moment of Vd (as well as higher cumulants)
to zero, such that ηd,3 = 3ηd,1ηd,2 − 2η3

d,1, thereby assuming that pd can be sufficiently well approximated by
a conditioned Gaussian probability density,

pd(Vd|Vs, t) ∝ exp
{
− [Vd − ηd,1(Vs, t)]

2

2[ηd,2(Vs, t)− η2
d,1(Vs, t)]

}
. (24)

For a motivation of this assumption see the remark below. Defining ps,1 := psηd,1 and ps,2 := psηd,2 we obtain
the system of 3 coupled PDEs:

∂ps

∂t
+
∂us

∂Vs
= 0 (25)

∂ps,1

∂t
+
∂us,1

∂Vs
− [bVs + µd(t)]ps − cps,1 +

σ̃(t)

2

∂ps

∂Vs
= 0 (26)

∂ps,2

∂t
+
∂us,2

∂Vs
− 2[bVs + µd(t)]ps,1 − 2cps,2 − [σ2

ds(t) + σ2
dd(t)]ps + σ̃(t)

∂ps,1

∂Vs
= 0 (27)

with

us =

∫ ∞
−∞

qsdVd = [f(Vs) + µs(t)]ps + aps,1 −
σ2

ss(t) + σ2
sd(t)

2

∂ps

∂Vs
(28)

us,1 =

∫ ∞
−∞

VdqsdVd = [f(Vs) + µs(t)]ps,1 + aps,2 −
σ2

ss(t) + σ2
sd(t)

2

∂ps,1

∂Vs
+
σ̃(t)

2
ps (29)

us,2 =

∫ ∞
−∞

V 2
d qsdVd = [f(Vs) + µs(t)]ps,2 + ahs −

σ2
ss(t) + σ2

sd(t)

2

∂ps,2

∂Vs
+ σ̃(t)ps,1 (30)

and

hs = 3
ps,1ps,2

ps
− 2

p3
s,1

ps
(31)
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subject to the conditions

ps(Vth, t) = 0 (32)

lim
Vs→−∞

us(Vs, t) = lim
Vs→−∞

us,1(Vs, t) = lim
Vs→−∞

us,2(Vs, t) = 0 (33)

lim
Vs↘Vr

us(Vs, t)− lim
Vs↗Vr

us(Vs, t) = us(Vth, t) (34)

lim
Vs↘Vr

us,1(Vs, t)− lim
Vs↗Vr

us,1(Vs, t) = us,1(Vth, t) (35)

lim
Vs↘Vr

us,2(Vs, t)− lim
Vs↗Vr

us,2(Vs, t) = us,2(Vth, t) (36)

and requiring that ps is initialized such that
∫ Vth

−∞ ps(Vs, 0)dVs = 1. The spike rate is then obtained by

r(t) = us(Vth, t). (37)

Note that ps(Vth, t) = 0 implies ps,1(Vth, t) = ps,2(Vth, t) = 0. The conditions (33) follow from condition (19)
and a self-consistency requirement with respect to the dynamics of the unconditioned moments ηd,1(t) =∫ Vth

−∞ ps,1(Vs, t)dVs and ηd,2(t) =
∫ Vth

−∞ ps,2(Vs, t)dVs. The latter can be seen by integration of Eqs. (26), (27)
over Vs and comparison with the moment equations obtained by successive integration of Eq. (15) over Vs,
multiplication by Vd or V 2

d , respectively, and integration over Vd. Conditions (34)–(36) follow from (21).
Note also that

us,1(Vth, t) = r(t)ηd,1(Vth, t), us,2(Vth, t) = r(t)ηd,2(Vth, t). (38)

Remark : The assumption that pd can be sufficiently well approximated by a conditioned Gaussian is
supported by the circumstance that for subthreshold inputs and an electric field which keep the somatic
voltage (sufficiently) below the spike threshold the approximation is excellent. In that case pd(Vd|Vs, t)
is indeed a conditioned Gaussian probability density (because the exponential term in Eq. (1) as well as
conditions (18) and (21) are negligible). Since this is not the case for stronger inputs (that cause spiking) the
reproduction performance of this approximation needs to be evaluated (cf. Fig 1E,G, Fig 2 and Discussion).

Steady state For the steady state (in case of constant parameters µs, µd, σss, σds, σsd, σdd) we obtain, by
setting the time derivatives in Eqs. (25)–(27) to zero, the 6-dimensional ordinary differential equation (ODE)
system

dus

dVs
= 0

dps

dVs
=

2[(f(Vs) + µs)ps + aps,1 − us]

σ2
ss + σ2

sd

(39)

dus,1

dVs
= (bVs + µd)ps + cps,1 −

σ̃

2

dps

dVs
(40)

dps,1

dVs
=

2[(f(Vs) + µs)ps,1 + aps,2 + σ̃ps/2− us,1]

σ2
ss + σ2

sd

(41)

dus,2

dVs
= 2(bVs + µd)ps,1 + 2cps,2 + (σ2

ds + σ2
dd)ps − σ̃

dps,1

dVs
(42)

dps,2

dVs
=

2[(f(Vs) + µs)ps,2 + ahs + σ̃ps,1 − us,2]

σ2
ss + σ2

sd

(43)

subject to the conditions (32)–(36) (with time dependence omitted).

Numerical solution We solve this nonlinear ODE system (nonlinearity due to hs, cf. Eq. (31)) with variable
coefficients numerically by integrating Eqs (39)–(43) backwards from Vth with ps(Vth) = ps,1(Vth) = ps,2(Vth) =
0, us(Vth) = 1, us,1(Vth) = ηd,1(Vth), us,2(Vth) = ηd,2(Vth) to a sufficiently small (lower bound) voltage value
Vlb, taking into account the “jump” conditions (34)–(36), and determine ηd,1(Vth) and ηd,2(Vth) such that
us,1(Vlb) = us,2(Vlb) = 0, cf. condition (33), is fulfilled. Then, the scaling factor r (the spike rate) of the
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obtained solution is determined such that
∫ Vth

Vlb
ps(Vs)dVs = 1 holds. The solution was achieved by means of

Python implementation using a root finding algorithm provided by the package Scipy [42] (optimize.root,
modification of the Powell hybrid method [43]) and low-level virtual machine acceleration through the package
Numba [44].

Response to modulations In order to characterize the spike rate dynamics we calculate the response
to small-amplitude sinusoidal variations of the mean input around a baseline, Īs(t) = Ī0

s + Ī1
s sin(ωt),

Īd(t) = Ī0
d + Ī1

d sin(ωt), or to a weak sinusoidal field, cf. Eq. (7). These modulations translate to sinusoidal
modulations of µs(t) and µd(t) in the system (25)–(36). The parameters σss, σds, σsd and σdd remain constant.

For mathematical convenience we write the modulations in complex form

µs(t) = µ0
s + µ1

se
iωt µd(t) = µ0

d + µ1
de

iωt, (44)

with small µ1
s > 0 and µ1

d > 0 (thereby introducing a companion system) and approximate the solution to
first order, r(t) = r0 + r̂1(ω)eiωt, where r̂1 is a complex variable from which the response amplitude r1 and
phase shift ψ of the oscillatory spike rate r0 + r1(ω) sin(ωt+ψ(ω)) can be extracted in a straightforward way:
r1 = |r̂1|, ψ = arg(r̂1) (see, e.g., [45] for a similar type of analysis in a different setting). Note that also the
state variables of this solution take the form ps(Vs, t) = p0

s (Vs) + p̂1
s (Vs;ω)eiωt (analogously for ps,1, ps,2, us,

us,1, us,2). For fixed (angular) frequency ω we obtain the following ODE system (neglecting terms of second
and higher order in µ1

s , µ
1
d):

dû1
s

dVs
= −iωp̂1

s

dp̂1
s

dVs
=

2[(f(Vs) + µ0
s )p̂1

s + µ1
sp

0
s + ap̂1

s,1 − û1
s ]

σ2
ss + σ2

sd

(45)

dû1
s,1

dVs
= −iωp̂1

s,1 + (bVs + µ0
d)p̂1

s + µ1
dp

0
s + cp̂1

s,1 −
σ̃

2

dp̂1
s

dVs
(46)

dp̂1
s,1

dVs
=

2[(f(Vs) + µ0
s )p̂1

s,1 + µ1
sp

0
s,1 + ap̂1

s,2 + σ̃p̂1
s/2− û1

s,1]

σ2
ss + σ2

sd

(47)

dû1
s,2

dVs
= 2(bVs + µ0

d)p̂1
s,1 + 2µ1

dp
0
s,1 + 2cp̂1

s,2 + (σ2
ds + σ2

dd)p̂1
s − σ̃

dp̂1
s,1

dVs
(48)

dp̂1
s,2

dVs
=

2[(f(Vs) + µ0
s )p̂1

s,2 + µ1
sp

0
s,2 + aĥ1

s + σ̃p̂1
s,1 − û1

s,2]

σ2
ss + σ2

sd

(49)

with

ĥ1
s =

[
4

(p0
s,1)3

(p0
s )3
− 3

p0
s,1p

0
s,2

(p0
s )2

]
p1

s +

[
3
p0

s,2

p0
s

− 6
(p0

s,1)2

(p0
s )2

]
p1

s,1 + 3
p0

s,1

p0
s

p1
s,2 (50)

subject to the conditions

p̂1
s (Vth;ω) = 0 (51)

lim
Vs→−∞

û1
s (Vs;ω) = lim

Vs→−∞
û1

s,1(Vs;ω) = lim
Vs→−∞

û1
s,2(Vs;ω) = 0 (52)

lim
Vs↘Vr

û1
s (Vs;ω)− lim

Vs↗Vr

û1
s (Vs;ω) = û1

s (Vth;ω) (53)

lim
Vs↘Vr

û1
s,1(Vs;ω)− lim

Vs↗Vr

û1
s,1(Vs;ω) = û1

s,1(Vth;ω) (54)

lim
Vs↘Vr

û1
s,2(Vs;ω)− lim

Vs↗Vr

û1
s,2(Vs;ω) = û1

s,2(Vth;ω), (55)

where .̂ indicates a complex valued variable that depends on ω. Note that this ODE system depends on the
(steady state) solution of the system (39)–(43) through p0

s , p0
s,1 and p0

s,2.

Numerical solution The linear (complex valued) ODE system with variable coefficients (45)–(55) can be
conveniently solved in the following way. The desired spike rate response solution can be written as
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r̂1(ω) = µ1
s r̂
µs

1 (ω) + µ1
dr̂
µd

1 (ω) where the solution component r̂µs

1 (ω) corresponds to µ1
d = 0 and, vice versa,

r̂µd

1 (ω) corresponds to µ1
s = 0. We first describe how we obtain r̂µs

1 (ω) (r̂µd

1 (ω) is calculated in an analogous
way, see further below). The solution xs(Vs;ω) := (p̂1

s , p̂
1
s,1, p̂

1
s,2, û

1
s , û

1
s,1, û

1
s,2) associated with r̂µs

1 (ω) can be
decomposed into (omitting the argument ω below for improved readability)

xs(Vs) = r̂µs

1 xα(Vs) + η̂1
d,1(Vth)xβ(Vs) + η̂1

d,2(Vth)xγ(Vs) + xδ(Vs), (56)

where xα, xβ , xγ solve the homogeneous part (µ1
s = 0, µ1

d = 0) of the ODE system (45)–(50) with
p̂1
x(Vth) = p̂1

x,1(Vth) = p̂1
x,2(Vth) = 0 for x ∈ {α, β, γ}, û1

α(Vth) = 1, û1
β(Vth) = û1

γ(Vth) = 0, û1
α,1(Vth) =

η0
d,1(Vth), û1

α,2(Vth) = η0
d,2(Vth), û1

β,1(Vth) = r0, û1
β,2(Vth) = 0, û1

γ,1(Vth) = 0, û1
γ,2(Vth) = r0, and “jump”

conditions (53)–(55). Note that r0, η0
d,1(Vth) and η0

d,2(Vth) are known from the solution for the steady state

system. xδ solves the inhomogeneous system (45)–(50) with µ1
s = 1 (µ1

d = 0) and condition xδ(Vth) = 0.
These solutions are obtained numerically by backward integration from Vth to Vlb. r̂µs

1 (ω) together with
η̂1

d,1(Vth), η̂1
d,2(Vth) are then calculated by solving the linear equation system that arises to satisfy the

condition û1
s (Vlb) = û1

s,1(Vlb) = û1
s,2(Vlb) = 0. The solution method for r̂µd

1 (ω) is completely analogous with
the difference that r̂µd

1 appears instead of r̂µs

1 in Eq. (56) and xδ solves the inhomogeneous system (45)–(50)
with µ1

d = 1 (µ1
s = 0).

We obtain the amplitude of the spike rate response to an applied field from

r̂1(ω) =
Gi∆E1

Cd
r̂µd

1 (ω)− Gi∆E1

Cs
r̂µs

1 (ω), (57)

whereas the response modulations to sinusoidal mean input at the soma and dendrite in the absence of an
oscillatory field are given by r̂1(ω) = Ī1

s r̂
µs

1 (ω)/Cs and r̂1(ω) = Ī1
d r̂
µd

1 (ω)/Cd, respectively.

4. Parametrization via ball-and-stick model

In the following we describe a semi-analytical technique to fit the two-compartment (2C) model to a
biophysically more detailed, spatially extended ball-and-stick (BS) model. In particular, the parameter values
of the 2C model are determined to best approximate the somatic voltage dynamics of the BS model. This is
done in an efficient way using analytical results for the voltage dynamics of both models, and it does not
depend on a particular choice of parameter values for the input or the extracellular field. This part may thus
be regarded as a reduction of the BS model.

Ball-and-stick model The BS neuron model consists of a finite passive dendritic cable of length L with
lumped somatic compartment at the proximal end, x = 0, and a sealed end boundary condition at the
distal extremity, x = L. It includes capacitive and leak currents across the membrane, an approximation of
the spike-generating sodium current at the soma, an internal current (along the cable) and synaptic input
currents at the soma and distal dendrite as well as a spatially homogeneous but time-varying external electric
field (for details on the derivation of this model see [20]). The dynamics of the model are governed by

cm
∂V

∂t
− gi

∂2V

∂x2
+ gmV = 0, 0 < x < L, (58)

cs
∂V

∂t
− gi

∂V

∂x
+ gsV − gs∆Te

V−VT

∆T = Is(t)− giE(t), x = 0, (59)

∂V

∂x
=
Id(t)

gi
+ E(t), x = L (60)

together with a reset condition
if V (0, t) ≥ Vth then V (0, t) := V ′r , (61)

where cm = cDdπ is the membrane capacitance, gm = %mDdπ is the membrane conductance and gi =
%i(Dd/2)2π is the internal (axial) conductance of a dendritic cable segment of unit length. c is the specific
membrane capacitance (in F/m2), %i is the specific internal conductance (in S/m), %m is the specific membrane
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conductance (in S/m2) and Dd is the cable diameter. cs = cD2
sπ and gs = %mD

2
sπ are the somatic membrane

capacitance and leak conductance, respectively, with soma diameter Ds. The exponential term with threshold
slope factor ∆T and effective threshold voltage VT approximates the rapidly increasing Na+ current at spike
initiation [40]. Spike times are defined by the times at which the somatic membrane voltage V (0, t) crosses
the threshold voltage value Vth from below (cf. spike mechanism of the 2C model). Is(t), Id(t) and E(t) are
described by Eqs. (8), (9) and (7), respectively. The parameter values are provided in table 1.

Table 1. Description and values of the ball-and-stick model parameters

Parameter (unit) Description Value
c (F/m2) Specific membrane capacitance 1 · 10−2 [36, 46]
%m (S/m2) Specific membrane conductance 1/3 [46]
%i (S/m) Specific internal conductance 1/2 [47]
Ds (m) Soma diameter 15 · 10−6 [48]
Dd (m) Dendritic cable diameter 1 · 10−6 [47]
L (m) Dendritic cable length 7 · 10−4 [49]

∆T (mV) Threshold slope factor 1.5 [50]
VT (mV) Effective threshold voltage 10 [50]
Vth (mV) Threshold (spike) voltage 20
V ′r (mV) Reset voltage 0

To generate spike trains we simulated the BS neuron model using a semi-implicit numerical scheme
(Crank-Nicolson method; see, e.g., appendix C of [51]) that was extended for stochasticity as proposed in [52],
and by applying the tridiagonal matrix algorithm. Discretization steps were 5 µs for time and L/200 for
space (along the dendrite).

Calculation of subthreshold responses We analytically calculate the somatic membrane voltage re-
sponse of the BS model for small variations of the synaptic inputs Is(t), Id(t) and a weak oscillatory field
E(t), which do not elicit spikes. We consider that the somatic voltage evolves sufficiently below VT, which
allows us to neglect the exponential term in Eq. (59) (cf. Methods section 2). The linear PDE (58) together
with the boundary conditions (59) and (60) is then solved using separation of variables V (x, t) = W (x)U(t)
and the Fourier transform

V̂ (x, ω) = W (x)Û(ω) = W (x)

∫ ∞
−∞

U(t)e−iωtdt. (62)

We obtain the system of differential equations

cmiωV̂ − gi
∂2V̂

∂x2
+ gmV̂ = 0 0 < x < L, (63)

csiωV̂ − gi
∂V̂

∂x
+ gsV̂ = Îs(ω)− giÊ(ω) x = 0, (64)

∂V̂

∂x
=
Îd(ω)

gi
+ Ê(ω) x = L, (65)

where .̂ indicates a (temporally) Fourier transformed variable. The solution of this system can be expressed as

V̂ (0, ω) = Îs(ω)ẐIsBS(ω) + Îd(ω)ẐIdBS(ω) + giÊ(ω)
[
ẐIdBS(ω)− ẐIsBS(ω)

]
(66)

with

ẐIsBS(ω) = 1/ [csiω + gs + z(ω) gi tanh(z(ω)L)] , (67)

ẐIdBS(ω) = ẐIsBS(ω)/ cosh(z(ω)L), (68)

17

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 30, 2018. ; https://doi.org/10.1101/379560doi: bioRxiv preprint 

https://doi.org/10.1101/379560
http://creativecommons.org/licenses/by-nc/4.0/


where ±z(ω) are the roots of the characteristic polynomial giy
2 = gm + cmiω of Eq. (63),

z(ω) =

√
gm +

√
g2

m + ω2c2m
2gi

+ sgn(ω)i

√
−gm +

√
g2

m + ω2c2m
2gi

. (69)

Note that ẐIsBS and ẐIdBS are the somatic impedances for inputs at the soma and the distal dendrite, respectively.
The response to a sinusoidal field variation, E(t) = E1 sin(ϕt), with constant Is and Id can be expressed

in the time domain as

V (0, t) =
∣∣∣E1

[
ẐIdBS(ϕ)− ẐIsBS(ϕ)

]∣∣∣ sin
(
ϕt+ arg

[
ẐIdBS(ϕ)− ẐIsBS(ϕ)

])
. (70)

In addition we calculate the somatic voltage time series in response to subthreshold input for a given
initial condition V (x, 0) = V0(x). Using separation of variables and the Laplace transform

Ṽ (x, s) = W (x)Ũ(s) = W (x)

∫ ∞
0

U(t)e−stdt, (71)

with complex variable s we obtain

cm(sṼ − V0)− gi
∂2Ṽ

∂x2
+ gmṼ = 0 0 < x < L, (72)

cs(sṼ − V0)− gi
∂Ṽ

∂x
+ gsṼ = Ĩs(s)− giẼ(s) x = 0, (73)

∂Ṽ

∂x
=
Ĩd(s)

gi
+ Ẽ(s) x = L, (74)

where .̃ indicates a (temporally) Laplace transformed variable. We solve this system and obtain

Ṽ (0, s) =
[
Ĩs(s) + csV0(0)

]
Z̃IsBS(s) +

[
Ĩd(s) + cm

∫ L

0

cosh(z(s)(L− y))V0(y)dy
]
Z̃IdBS(s)

+ giẼ(s)
[
Z̃IdBS(s)− Z̃IsBS(s)

]
(75)

with

Z̃IsBS(s) = 1/ [csis+ gs + z(s) gi tanh(z(s)L)] , (76)

Z̃IdBS(s) = Z̃IsBS(s)/ cosh(z(s)L), (77)

where ±z(s) are the roots of the characteristic polynomial giy
2 = cms+ gm of Eq. (72), given by

z(s) =

√
cms+ gm

gi
. (78)

The somatic voltage time series V (0, t) is then computed by inverse transforming Ṽ (0, s) using an efficient
numerical method [53].

Parameter fitting We approximate the somatic voltage dynamics of the BS model by the 2C model in two
steps. First, we fit V̂s(ω) to V̂ (0, ω) using Eqs. (10) and (66) over a range of angular frequencies ω ∈ [0, ωmax],
requiring that the voltage values for ω = 0 (i.e. the steady states) match exactly. This constraint determines
three parameters,

Gd = (gs −Gs) cosh(L/λ) + λgm sinh(L/λ), (79)

Gi = Gd/[cosh(L/λ)− 1], (80)

∆ = gi/Gi. (81)
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where we have introduced the electrotonic length constant λ :=
√
gi/gm. The remaining three subthreshold

parameters Cs, Cd and Gs are obtained using the method of least squares, with ωmax/(2π) = 10 kHz. In the
second step we determine the reset voltage Vr by approximating the transient BS somatic voltage time series
immediately after a spike elicited by threshold somatic input and threshold dendritic input for E(t) = 0.
Specifically, we fit the post-spike voltage time series Vs(t) to V (0, t) across the time interval t ∈ [0, τm] with
initial conditions Vs(0) = Vr, Vd(0) = (GiVth + Id)/(Gd +Gi) and V (0, 0) = V ′r ,

V (x, 0) =
Is cosh((L− x)/λ) + Id[cosh(x/λ) + gs/(λgm)]

gs cosh(L/λ) + λgm sinh(L/λ)
0 < x < L (82)

for threshold somatic input Is = Vth[gs + λgm tanh(L/λ)], Id = 0 and for threshold dendritic input Id =
Vth[gs cosh(L/λ)+λgm sinh(L/λ)], Is = 0 simultaneously using the method of least squares. τm = Cs/(Gs+Gi)
is the somatic membrane time constant of the 2C model. Note that we consider threshold input as constant
current that yields V = VT (calculated from the linear subthreshold model systems). The voltage time series
V (0, t) of the BS model is rapidly computed using the Laplace transform, Eq. (75), and the voltage time
series Vs(t) of the 2C model is calculated analytically in a straightforward way (linear ODE system). To
guarantee an equal effectiveness of the exponential term on the somatic membrane voltage dynamics in
the 2C model compared to the BS model we set Ge = Csgs/cs (cf. Eqs. (1) and (59)). The values for ∆T,
VT and Vth are set equal to those of the BS model. Notably, this fitting method is very efficient, since it
involves analytical results and does not depend on specific realizations of time series for the neuronal input
or extracellular field.

5. Spike coincidence measure

To quantify the similarity between the spike trains of the two-compartment and the ball-and-stick model
neurons we used the coincidence factor Γ defined by [54]

ΓBS,2C =
Nc − 〈Nc〉

(NBS +N2C)/2

1

N
, (83)

where Nc is the number of coincident spikes with precision (i.e., maximal temporal separation) ∆c, NBS and
N2C are the number of spikes in the spike trains of the ball-and-stick and the two-compartment models,
respectively. 〈Nc〉 = 2r∆cNBS is the expected number of coincidences generated by a homogeneous Poisson
process with spike rate r = N2C/T as exhibited by the two-compartment model, where T is the duration of
the spike train. The factor N = 1− 2r∆c normalizes ΓBS,2C to a maximum value of 1, which is attained if
the spike trains match optimally (with precision ∆c). ΓBS,2C = 0 on the other hand would result from a
homogeneous Poisson process with rate that corresponds to the spike train of the two-compartment model,
and therefore indicates pure chance. Here we used ∆c = 5 ms.

6. Two-population mean-field network

In this section we derive a mean-field network model from a large number N of sparsely and randomly
coupled pyramidal (PY) neurons and inhibitory (IN) interneurons. Each PY neuron is described by the 2C
model, Eqs. (1)–(4), (7)–(9), and each IN neuron is described by an exponential integrate-and-fire (point)
neuron model,

CIN
dV

dt
= −GINV +GIN∆Te

V−VT

∆T + IIN(t), (84)

if V ≥ Vth then V ← V ′r , (85)

because IN neurons do not exhibit an elongated spatial morphology compared with PY neurons. We used
CIN = 0.2 nF and GIN = 10 nS. The model neurons receive fluctuating external and recurrent synaptic
input and are exposed to an applied weak electric field E(t) that is spatially uniform. For fields induced
by transcranial brain stimulation [7] this is a valid assumption. Each PY neuron receives inputs from Ks
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IN neurons at the soma and Kd IN neurons at the dendrite and each IN neuron receives inputs from KIN

PY neurons. Synaptic coupling is described by delayed current pulses that produce postsynaptic potentials
of size Js, Jd or JIN (depending on the location of the synapse). Specifically, the input currents for neuron
k, with somatic and dendritic membrane voltage Vs,k, Vd,k (in case of a PY neuron) or overall membrane
voltage Vk (in case of an IN neuron), are given by

Ix,k(t) := Īx,ext(t) + σx,ext(t) ξx,k(t) + Cx

∑
l

Jx
k,l

∑
m

δ(t− tml − dx
k,l), (86)

x ∈ {s, d, IN}, where Jx
k,l ∈ {Jx, 0}, tml is the m-th spike time of neuron l and dx

k,l the coupling delay between
neuron l and k. The delays are independently sampled according to the probability distribution with density

px
d(d) :=

Γ(d)

τx
d − τx

r

(
e−d/τ

x
d − e−d/τ

x
r

)
(87)

x ∈ {s,d, IN}. We consider large numbers of connections Kx and reasonably small coupling strengths Jx.
For large networks (in the mean-field limit N →∞) the overall synaptic input can be approximated by a

mean part with additive fluctuations,

Ix,k(t) ≈ Īx(t, rx
d) + σx(t, rx

d)ζx,k(t), (88)

Īx(t, rx
d) := Īx,ext(t) + CxJxKxr

x
d(t), (89)

σ2
x(t, rx

d) := σ2
x,ext(t) + C2

xJ
2
xKxr

x
d(t), (90)

x ∈ {s, d, IN} with delayed spike rates rs
d = ps

d ∗ rIN, rd
d = pd

d ∗ rIN, rIN
d = pIN

d ∗ rPY, and unit white Gaussian
noise process ζx,k that is uncorrelated to that of any other neuron (see, e.g., [27]). This step is valid under
the assumptions of (i) sufficient presynaptic activity, (ii) that neuronal spike trains can be approximated
by Poisson processes and (iii) that the correlations between the fluctuations of synaptic inputs for different
neurons vanish. Note that the latter assumption is supported by sparse and random synaptic connectivity.

Fokker-Planck based description and resonance analysis The previous approximation allows us to
express the collective spiking dynamics in terms of a coupled system of Fokker-Planck PDEs, one for the
PY population (cf. Methods section 3) and one for the IN population, where the coupling is mediated
through the synaptic input moments Īx and σ2

x (cf. Eqs. (89) and (90); see, e.g., [27]). To analyze the
resonance properties of this mean-field network model we consider either a weak sinusoidal electric field,
Eq. (7), or weak sinusoidal modulations of the external mean input at the soma or dendrite of PY neurons,
Īx,ext(t) = Ī0

x,ext + Ī1
x,exte

iωt, x ∈ {s, d}. We assume a parametrization of the network such that without these

modulations (E1 = Ī1
x,ext = 0) it exhibits asynchronous activity represented by a fixed point solution of the

mean-field system.
We write the modulations in complex form and express the first order population spike rate responses as

(cf. Methods section 3) rPY(t) = r0
PY + r̂1

PY(ω)eiωt and rIN(t) = r0
IN + r̂1

IN(ω)eiωt. To obtain the stationary
(steady state) components r0

PY and r0
IN we solve the system (39)–(43) with µ0

x = Ī0
x,ext/Cx +JxKxr

0
IN and σ2

x =
σ2

x,ext/C
2
x +J2

xKxr
0
IN, x ∈ {s, d} (and with the corresponding boundary conditions) together with the respective

system for the IN population with µ0
IN = Ī0

IN,ext/CIN + JINKINr
0
PY and σ2

IN = σ2
IN,ext/C

2
IN + J2

INKINr
0
PY via

fixed point iteration of the form (r0
PY,n+1, r0

IN,n+1) = F (r0
PY,n, r0

IN,n). Note that σsd = σds = 0 in Eqs. (13)

and (14). The response components r̂1
PY and r̂1

IN are obtained from

r̂1
PY(ω) =

Ī1
s,ext −Gi∆E1

Cs
r̂µs

1 (ω) + JsKsp̂
s
d(ω)r̂1

IN(ω)
[
r̂µs

1 (ω) + Jsr̂
σ2
s

1 (ω)
]

+
Ī1
d,ext +Gi∆E1

Cd
r̂µd

1 (ω) + JdKdp̂
d
d(ω)r̂1

IN(ω)
[
r̂µd

1 (ω) + Jdr̂
σ2
d

1 (ω)
]
, (91)

r̂1
IN(ω) = JINKINp̂

IN
d (ω)r̂1

PY(ω)
[
r̂µIN

1 (ω) + JINr̂
σ2
IN

1 (ω)
]
, (92)
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where p̂x
d(ω) = (τx

r iω+ 1)−1(τx
d iω+ 1)−1, x ∈ {s, d, IN} is the Fourier transformed delay density (cf. Eq. (87))

and r̂µx

1 , r̂
σ2
x

1 are the population spike rate response components for sinusoidal modulations of µx, σ2
x of

unit amplitude. Note that Eqs. (91) and (92) can be jointly solved in a straightforward way. In addition
to first order responses to modulations of µs and µd we therefore need to calculate the responses for
weak sinusoidal modulations of σ2

s and σ2
d. That is, the rate response solution of the system (25)–(36)

for σ2
ss(t) = σ2

s,0 + σ2
s,1e

iωt and σ2
dd(t) = σ2

d,0 + σ2
d,1e

iωt is required. This is done in an analogous way as
explained above for sinusoidal modulations of µs and µd (see Methods section 3): we solve (45)–(55) with
σ2

ss = σ2
s,0, σ2

dd = σ2
d,0, σ2

sd = σ2
ds = 0, and where the inhomogeneous terms µ1

sp
0
s , µ1

sp
0
s,1, µ1

sp
0
s,2 and 2µ1

dp
0
s,1

in Eqs. (45), (47), (49) and (48) are replaced by −σ
2
s,1

2
dp0s
dVs

, −σ
2
s,1

2

dp0s,1
dVs

, −σ
2
s,1

2

dp0s,2
dVs

and σ2
d,1p

0
s , respectively.

The resulting system can be numerically solved as explained in Methods section 3, using Eq. (56) where r̂µs

1

is replaced by r̂
σ2
s

1 and r̂
σ2
d

1 , respectively, and xδ solves the adjusted inhomogeneous system (with σ2
s,1 = 1,

µ1
s = µ1

d = σ2
d,1 = 0 and σ2

d,1 = 1, µ1
s = µ1

d = σ2
s,1 = 0, respectively). For the simpler case of the exponential

integrate-and-fire point model for the IN population (steady state and response modulations) see [27,45].
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